xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp (revision 6ba2210ee039f2f12878c217bcf058e9c8b26b29)
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/LoopUtils.h"
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-simplify"
80 
81 STATISTIC(NumNested  , "Number of nested loops split out");
82 
83 // If the block isn't already, move the new block to right after some 'outside
84 // block' block.  This prevents the preheader from being placed inside the loop
85 // body, e.g. when the loop hasn't been rotated.
86 static void placeSplitBlockCarefully(BasicBlock *NewBB,
87                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
88                                      Loop *L) {
89   // Check to see if NewBB is already well placed.
90   Function::iterator BBI = --NewBB->getIterator();
91   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92     if (&*BBI == SplitPreds[i])
93       return;
94   }
95 
96   // If it isn't already after an outside block, move it after one.  This is
97   // always good as it makes the uncond branch from the outside block into a
98   // fall-through.
99 
100   // Figure out *which* outside block to put this after.  Prefer an outside
101   // block that neighbors a BB actually in the loop.
102   BasicBlock *FoundBB = nullptr;
103   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
104     Function::iterator BBI = SplitPreds[i]->getIterator();
105     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
106       FoundBB = SplitPreds[i];
107       break;
108     }
109   }
110 
111   // If our heuristic for a *good* bb to place this after doesn't find
112   // anything, just pick something.  It's likely better than leaving it within
113   // the loop.
114   if (!FoundBB)
115     FoundBB = SplitPreds[0];
116   NewBB->moveAfter(FoundBB);
117 }
118 
119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
120 /// preheader, this method is called to insert one.  This method has two phases:
121 /// preheader insertion and analysis updating.
122 ///
123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
124                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
125                                          bool PreserveLCSSA) {
126   BasicBlock *Header = L->getHeader();
127 
128   // Compute the set of predecessors of the loop that are not in the loop.
129   SmallVector<BasicBlock*, 8> OutsideBlocks;
130   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
131        PI != PE; ++PI) {
132     BasicBlock *P = *PI;
133     if (!L->contains(P)) {         // Coming in from outside the loop?
134       // If the loop is branched to from an indirect terminator, we won't
135       // be able to fully transform the loop, because it prohibits
136       // edge splitting.
137       if (P->getTerminator()->isIndirectTerminator())
138         return nullptr;
139 
140       // Keep track of it.
141       OutsideBlocks.push_back(P);
142     }
143   }
144 
145   // Split out the loop pre-header.
146   BasicBlock *PreheaderBB;
147   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
148                                        LI, MSSAU, PreserveLCSSA);
149   if (!PreheaderBB)
150     return nullptr;
151 
152   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
153                     << PreheaderBB->getName() << "\n");
154 
155   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
156   // code layout too horribly.
157   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
158 
159   return PreheaderBB;
160 }
161 
162 /// Add the specified block, and all of its predecessors, to the specified set,
163 /// if it's not already in there.  Stop predecessor traversal when we reach
164 /// StopBlock.
165 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
166                                   SmallPtrSetImpl<BasicBlock *> &Blocks) {
167   SmallVector<BasicBlock *, 8> Worklist;
168   Worklist.push_back(InputBB);
169   do {
170     BasicBlock *BB = Worklist.pop_back_val();
171     if (Blocks.insert(BB).second && BB != StopBlock)
172       // If BB is not already processed and it is not a stop block then
173       // insert its predecessor in the work list
174       append_range(Worklist, predecessors(BB));
175   } while (!Worklist.empty());
176 }
177 
178 /// The first part of loop-nestification is to find a PHI node that tells
179 /// us how to partition the loops.
180 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
181                                         AssumptionCache *AC) {
182   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
183   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
184     PHINode *PN = cast<PHINode>(I);
185     ++I;
186     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
187       // This is a degenerate PHI already, don't modify it!
188       PN->replaceAllUsesWith(V);
189       PN->eraseFromParent();
190       continue;
191     }
192 
193     // Scan this PHI node looking for a use of the PHI node by itself.
194     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
195       if (PN->getIncomingValue(i) == PN &&
196           L->contains(PN->getIncomingBlock(i)))
197         // We found something tasty to remove.
198         return PN;
199   }
200   return nullptr;
201 }
202 
203 /// If this loop has multiple backedges, try to pull one of them out into
204 /// a nested loop.
205 ///
206 /// This is important for code that looks like
207 /// this:
208 ///
209 ///  Loop:
210 ///     ...
211 ///     br cond, Loop, Next
212 ///     ...
213 ///     br cond2, Loop, Out
214 ///
215 /// To identify this common case, we look at the PHI nodes in the header of the
216 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
217 /// that change in the "outer" loop, but not in the "inner" loop.
218 ///
219 /// If we are able to separate out a loop, return the new outer loop that was
220 /// created.
221 ///
222 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
223                                 DominatorTree *DT, LoopInfo *LI,
224                                 ScalarEvolution *SE, bool PreserveLCSSA,
225                                 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
226   // Don't try to separate loops without a preheader.
227   if (!Preheader)
228     return nullptr;
229 
230   // Treat the presence of convergent functions conservatively. The
231   // transformation is invalid if calls to certain convergent
232   // functions (like an AMDGPU barrier) get included in the resulting
233   // inner loop. But blocks meant for the inner loop will be
234   // identified later at a point where it's too late to abort the
235   // transformation. Also, the convergent attribute is not really
236   // sufficient to express the semantics of functions that are
237   // affected by this transformation. So we choose to back off if such
238   // a function call is present until a better alternative becomes
239   // available. This is similar to the conservative treatment of
240   // convergent function calls in GVNHoist and JumpThreading.
241   for (auto BB : L->blocks()) {
242     for (auto &II : *BB) {
243       if (auto CI = dyn_cast<CallBase>(&II)) {
244         if (CI->isConvergent()) {
245           return nullptr;
246         }
247       }
248     }
249   }
250 
251   // The header is not a landing pad; preheader insertion should ensure this.
252   BasicBlock *Header = L->getHeader();
253   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
254 
255   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
256   if (!PN) return nullptr;  // No known way to partition.
257 
258   // Pull out all predecessors that have varying values in the loop.  This
259   // handles the case when a PHI node has multiple instances of itself as
260   // arguments.
261   SmallVector<BasicBlock*, 8> OuterLoopPreds;
262   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263     if (PN->getIncomingValue(i) != PN ||
264         !L->contains(PN->getIncomingBlock(i))) {
265       // We can't split indirect control flow edges.
266       if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
267         return nullptr;
268       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
269     }
270   }
271   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
272 
273   // If ScalarEvolution is around and knows anything about values in
274   // this loop, tell it to forget them, because we're about to
275   // substantially change it.
276   if (SE)
277     SE->forgetLoop(L);
278 
279   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
280                                              DT, LI, MSSAU, PreserveLCSSA);
281 
282   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
283   // code layout too horribly.
284   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
285 
286   // Create the new outer loop.
287   Loop *NewOuter = LI->AllocateLoop();
288 
289   // Change the parent loop to use the outer loop as its child now.
290   if (Loop *Parent = L->getParentLoop())
291     Parent->replaceChildLoopWith(L, NewOuter);
292   else
293     LI->changeTopLevelLoop(L, NewOuter);
294 
295   // L is now a subloop of our outer loop.
296   NewOuter->addChildLoop(L);
297 
298   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
299        I != E; ++I)
300     NewOuter->addBlockEntry(*I);
301 
302   // Now reset the header in L, which had been moved by
303   // SplitBlockPredecessors for the outer loop.
304   L->moveToHeader(Header);
305 
306   // Determine which blocks should stay in L and which should be moved out to
307   // the Outer loop now.
308   SmallPtrSet<BasicBlock *, 4> BlocksInL;
309   for (BasicBlock *P : predecessors(Header)) {
310     if (DT->dominates(Header, P))
311       addBlockAndPredsToSet(P, Header, BlocksInL);
312   }
313 
314   // Scan all of the loop children of L, moving them to OuterLoop if they are
315   // not part of the inner loop.
316   const std::vector<Loop*> &SubLoops = L->getSubLoops();
317   for (size_t I = 0; I != SubLoops.size(); )
318     if (BlocksInL.count(SubLoops[I]->getHeader()))
319       ++I;   // Loop remains in L
320     else
321       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
322 
323   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
324   OuterLoopBlocks.push_back(NewBB);
325   // Now that we know which blocks are in L and which need to be moved to
326   // OuterLoop, move any blocks that need it.
327   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
328     BasicBlock *BB = L->getBlocks()[i];
329     if (!BlocksInL.count(BB)) {
330       // Move this block to the parent, updating the exit blocks sets
331       L->removeBlockFromLoop(BB);
332       if ((*LI)[BB] == L) {
333         LI->changeLoopFor(BB, NewOuter);
334         OuterLoopBlocks.push_back(BB);
335       }
336       --i;
337     }
338   }
339 
340   // Split edges to exit blocks from the inner loop, if they emerged in the
341   // process of separating the outer one.
342   formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
343 
344   if (PreserveLCSSA) {
345     // Fix LCSSA form for L. Some values, which previously were only used inside
346     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
347     // in corresponding exit blocks.
348     // We don't need to form LCSSA recursively, because there cannot be uses
349     // inside a newly created loop of defs from inner loops as those would
350     // already be a use of an LCSSA phi node.
351     formLCSSA(*L, *DT, LI, SE);
352 
353     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
354            "LCSSA is broken after separating nested loops!");
355   }
356 
357   return NewOuter;
358 }
359 
360 /// This method is called when the specified loop has more than one
361 /// backedge in it.
362 ///
363 /// If this occurs, revector all of these backedges to target a new basic block
364 /// and have that block branch to the loop header.  This ensures that loops
365 /// have exactly one backedge.
366 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
367                                              DominatorTree *DT, LoopInfo *LI,
368                                              MemorySSAUpdater *MSSAU) {
369   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
370 
371   // Get information about the loop
372   BasicBlock *Header = L->getHeader();
373   Function *F = Header->getParent();
374 
375   // Unique backedge insertion currently depends on having a preheader.
376   if (!Preheader)
377     return nullptr;
378 
379   // The header is not an EH pad; preheader insertion should ensure this.
380   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
381 
382   // Figure out which basic blocks contain back-edges to the loop header.
383   std::vector<BasicBlock*> BackedgeBlocks;
384   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
385     BasicBlock *P = *I;
386 
387     // Indirect edges cannot be split, so we must fail if we find one.
388     if (P->getTerminator()->isIndirectTerminator())
389       return nullptr;
390 
391     if (P != Preheader) BackedgeBlocks.push_back(P);
392   }
393 
394   // Create and insert the new backedge block...
395   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
396                                            Header->getName() + ".backedge", F);
397   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
398   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
399 
400   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
401                     << BEBlock->getName() << "\n");
402 
403   // Move the new backedge block to right after the last backedge block.
404   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
405   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
406 
407   // Now that the block has been inserted into the function, create PHI nodes in
408   // the backedge block which correspond to any PHI nodes in the header block.
409   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
410     PHINode *PN = cast<PHINode>(I);
411     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
412                                      PN->getName()+".be", BETerminator);
413 
414     // Loop over the PHI node, moving all entries except the one for the
415     // preheader over to the new PHI node.
416     unsigned PreheaderIdx = ~0U;
417     bool HasUniqueIncomingValue = true;
418     Value *UniqueValue = nullptr;
419     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
420       BasicBlock *IBB = PN->getIncomingBlock(i);
421       Value *IV = PN->getIncomingValue(i);
422       if (IBB == Preheader) {
423         PreheaderIdx = i;
424       } else {
425         NewPN->addIncoming(IV, IBB);
426         if (HasUniqueIncomingValue) {
427           if (!UniqueValue)
428             UniqueValue = IV;
429           else if (UniqueValue != IV)
430             HasUniqueIncomingValue = false;
431         }
432       }
433     }
434 
435     // Delete all of the incoming values from the old PN except the preheader's
436     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
437     if (PreheaderIdx != 0) {
438       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
439       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
440     }
441     // Nuke all entries except the zero'th.
442     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
443       PN->removeIncomingValue(e-i, false);
444 
445     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
446     PN->addIncoming(NewPN, BEBlock);
447 
448     // As an optimization, if all incoming values in the new PhiNode (which is a
449     // subset of the incoming values of the old PHI node) have the same value,
450     // eliminate the PHI Node.
451     if (HasUniqueIncomingValue) {
452       NewPN->replaceAllUsesWith(UniqueValue);
453       BEBlock->getInstList().erase(NewPN);
454     }
455   }
456 
457   // Now that all of the PHI nodes have been inserted and adjusted, modify the
458   // backedge blocks to jump to the BEBlock instead of the header.
459   // If one of the backedges has llvm.loop metadata attached, we remove
460   // it from the backedge and add it to BEBlock.
461   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
462   MDNode *LoopMD = nullptr;
463   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
464     Instruction *TI = BackedgeBlocks[i]->getTerminator();
465     if (!LoopMD)
466       LoopMD = TI->getMetadata(LoopMDKind);
467     TI->setMetadata(LoopMDKind, nullptr);
468     TI->replaceSuccessorWith(Header, BEBlock);
469   }
470   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
471 
472   //===--- Update all analyses which we must preserve now -----------------===//
473 
474   // Update Loop Information - we know that this block is now in the current
475   // loop and all parent loops.
476   L->addBasicBlockToLoop(BEBlock, *LI);
477 
478   // Update dominator information
479   DT->splitBlock(BEBlock);
480 
481   if (MSSAU)
482     MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
483                                                       BEBlock);
484 
485   return BEBlock;
486 }
487 
488 /// Simplify one loop and queue further loops for simplification.
489 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
490                             DominatorTree *DT, LoopInfo *LI,
491                             ScalarEvolution *SE, AssumptionCache *AC,
492                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
493   bool Changed = false;
494   if (MSSAU && VerifyMemorySSA)
495     MSSAU->getMemorySSA()->verifyMemorySSA();
496 
497 ReprocessLoop:
498 
499   // Check to see that no blocks (other than the header) in this loop have
500   // predecessors that are not in the loop.  This is not valid for natural
501   // loops, but can occur if the blocks are unreachable.  Since they are
502   // unreachable we can just shamelessly delete those CFG edges!
503   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
504        BB != E; ++BB) {
505     if (*BB == L->getHeader()) continue;
506 
507     SmallPtrSet<BasicBlock*, 4> BadPreds;
508     for (pred_iterator PI = pred_begin(*BB),
509          PE = pred_end(*BB); PI != PE; ++PI) {
510       BasicBlock *P = *PI;
511       if (!L->contains(P))
512         BadPreds.insert(P);
513     }
514 
515     // Delete each unique out-of-loop (and thus dead) predecessor.
516     for (BasicBlock *P : BadPreds) {
517 
518       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
519                         << P->getName() << "\n");
520 
521       // Zap the dead pred's terminator and replace it with unreachable.
522       Instruction *TI = P->getTerminator();
523       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
524                           /*DTU=*/nullptr, MSSAU);
525       Changed = true;
526     }
527   }
528 
529   if (MSSAU && VerifyMemorySSA)
530     MSSAU->getMemorySSA()->verifyMemorySSA();
531 
532   // If there are exiting blocks with branches on undef, resolve the undef in
533   // the direction which will exit the loop. This will help simplify loop
534   // trip count computations.
535   SmallVector<BasicBlock*, 8> ExitingBlocks;
536   L->getExitingBlocks(ExitingBlocks);
537   for (BasicBlock *ExitingBlock : ExitingBlocks)
538     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
539       if (BI->isConditional()) {
540         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
541 
542           LLVM_DEBUG(dbgs()
543                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
544                      << ExitingBlock->getName() << "\n");
545 
546           BI->setCondition(ConstantInt::get(Cond->getType(),
547                                             !L->contains(BI->getSuccessor(0))));
548 
549           Changed = true;
550         }
551       }
552 
553   // Does the loop already have a preheader?  If so, don't insert one.
554   BasicBlock *Preheader = L->getLoopPreheader();
555   if (!Preheader) {
556     Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
557     if (Preheader)
558       Changed = true;
559   }
560 
561   // Next, check to make sure that all exit nodes of the loop only have
562   // predecessors that are inside of the loop.  This check guarantees that the
563   // loop preheader/header will dominate the exit blocks.  If the exit block has
564   // predecessors from outside of the loop, split the edge now.
565   if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
566     Changed = true;
567 
568   if (MSSAU && VerifyMemorySSA)
569     MSSAU->getMemorySSA()->verifyMemorySSA();
570 
571   // If the header has more than two predecessors at this point (from the
572   // preheader and from multiple backedges), we must adjust the loop.
573   BasicBlock *LoopLatch = L->getLoopLatch();
574   if (!LoopLatch) {
575     // If this is really a nested loop, rip it out into a child loop.  Don't do
576     // this for loops with a giant number of backedges, just factor them into a
577     // common backedge instead.
578     if (L->getNumBackEdges() < 8) {
579       if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
580                                             PreserveLCSSA, AC, MSSAU)) {
581         ++NumNested;
582         // Enqueue the outer loop as it should be processed next in our
583         // depth-first nest walk.
584         Worklist.push_back(OuterL);
585 
586         // This is a big restructuring change, reprocess the whole loop.
587         Changed = true;
588         // GCC doesn't tail recursion eliminate this.
589         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
590         goto ReprocessLoop;
591       }
592     }
593 
594     // If we either couldn't, or didn't want to, identify nesting of the loops,
595     // insert a new block that all backedges target, then make it jump to the
596     // loop header.
597     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
598     if (LoopLatch)
599       Changed = true;
600   }
601 
602   if (MSSAU && VerifyMemorySSA)
603     MSSAU->getMemorySSA()->verifyMemorySSA();
604 
605   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
606 
607   // Scan over the PHI nodes in the loop header.  Since they now have only two
608   // incoming values (the loop is canonicalized), we may have simplified the PHI
609   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
610   PHINode *PN;
611   for (BasicBlock::iterator I = L->getHeader()->begin();
612        (PN = dyn_cast<PHINode>(I++)); )
613     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
614       if (SE) SE->forgetValue(PN);
615       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
616         PN->replaceAllUsesWith(V);
617         PN->eraseFromParent();
618         Changed = true;
619       }
620     }
621 
622   // If this loop has multiple exits and the exits all go to the same
623   // block, attempt to merge the exits. This helps several passes, such
624   // as LoopRotation, which do not support loops with multiple exits.
625   // SimplifyCFG also does this (and this code uses the same utility
626   // function), however this code is loop-aware, where SimplifyCFG is
627   // not. That gives it the advantage of being able to hoist
628   // loop-invariant instructions out of the way to open up more
629   // opportunities, and the disadvantage of having the responsibility
630   // to preserve dominator information.
631   auto HasUniqueExitBlock = [&]() {
632     BasicBlock *UniqueExit = nullptr;
633     for (auto *ExitingBB : ExitingBlocks)
634       for (auto *SuccBB : successors(ExitingBB)) {
635         if (L->contains(SuccBB))
636           continue;
637 
638         if (!UniqueExit)
639           UniqueExit = SuccBB;
640         else if (UniqueExit != SuccBB)
641           return false;
642       }
643 
644     return true;
645   };
646   if (HasUniqueExitBlock()) {
647     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
648       BasicBlock *ExitingBlock = ExitingBlocks[i];
649       if (!ExitingBlock->getSinglePredecessor()) continue;
650       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
651       if (!BI || !BI->isConditional()) continue;
652       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
653       if (!CI || CI->getParent() != ExitingBlock) continue;
654 
655       // Attempt to hoist out all instructions except for the
656       // comparison and the branch.
657       bool AllInvariant = true;
658       bool AnyInvariant = false;
659       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
660         Instruction *Inst = &*I++;
661         if (Inst == CI)
662           continue;
663         if (!L->makeLoopInvariant(
664                 Inst, AnyInvariant,
665                 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
666           AllInvariant = false;
667           break;
668         }
669       }
670       if (AnyInvariant) {
671         Changed = true;
672         // The loop disposition of all SCEV expressions that depend on any
673         // hoisted values have also changed.
674         if (SE)
675           SE->forgetLoopDispositions(L);
676       }
677       if (!AllInvariant) continue;
678 
679       // The block has now been cleared of all instructions except for
680       // a comparison and a conditional branch. SimplifyCFG may be able
681       // to fold it now.
682       if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU))
683         continue;
684 
685       // Success. The block is now dead, so remove it from the loop,
686       // update the dominator tree and delete it.
687       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
688                         << ExitingBlock->getName() << "\n");
689 
690       assert(pred_empty(ExitingBlock));
691       Changed = true;
692       LI->removeBlock(ExitingBlock);
693 
694       DomTreeNode *Node = DT->getNode(ExitingBlock);
695       while (!Node->isLeaf()) {
696         DomTreeNode *Child = Node->back();
697         DT->changeImmediateDominator(Child, Node->getIDom());
698       }
699       DT->eraseNode(ExitingBlock);
700       if (MSSAU) {
701         SmallSetVector<BasicBlock *, 8> ExitBlockSet;
702         ExitBlockSet.insert(ExitingBlock);
703         MSSAU->removeBlocks(ExitBlockSet);
704       }
705 
706       BI->getSuccessor(0)->removePredecessor(
707           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
708       BI->getSuccessor(1)->removePredecessor(
709           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
710       ExitingBlock->eraseFromParent();
711     }
712   }
713 
714   // Changing exit conditions for blocks may affect exit counts of this loop and
715   // any of its paretns, so we must invalidate the entire subtree if we've made
716   // any changes.
717   if (Changed && SE)
718     SE->forgetTopmostLoop(L);
719 
720   if (MSSAU && VerifyMemorySSA)
721     MSSAU->getMemorySSA()->verifyMemorySSA();
722 
723   return Changed;
724 }
725 
726 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
727                         ScalarEvolution *SE, AssumptionCache *AC,
728                         MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
729   bool Changed = false;
730 
731 #ifndef NDEBUG
732   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
733   // form.
734   if (PreserveLCSSA) {
735     assert(DT && "DT not available.");
736     assert(LI && "LI not available.");
737     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
738            "Requested to preserve LCSSA, but it's already broken.");
739   }
740 #endif
741 
742   // Worklist maintains our depth-first queue of loops in this nest to process.
743   SmallVector<Loop *, 4> Worklist;
744   Worklist.push_back(L);
745 
746   // Walk the worklist from front to back, pushing newly found sub loops onto
747   // the back. This will let us process loops from back to front in depth-first
748   // order. We can use this simple process because loops form a tree.
749   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
750     Loop *L2 = Worklist[Idx];
751     Worklist.append(L2->begin(), L2->end());
752   }
753 
754   while (!Worklist.empty())
755     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
756                                AC, MSSAU, PreserveLCSSA);
757 
758   return Changed;
759 }
760 
761 namespace {
762   struct LoopSimplify : public FunctionPass {
763     static char ID; // Pass identification, replacement for typeid
764     LoopSimplify() : FunctionPass(ID) {
765       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
766     }
767 
768     bool runOnFunction(Function &F) override;
769 
770     void getAnalysisUsage(AnalysisUsage &AU) const override {
771       AU.addRequired<AssumptionCacheTracker>();
772 
773       // We need loop information to identify the loops...
774       AU.addRequired<DominatorTreeWrapperPass>();
775       AU.addPreserved<DominatorTreeWrapperPass>();
776 
777       AU.addRequired<LoopInfoWrapperPass>();
778       AU.addPreserved<LoopInfoWrapperPass>();
779 
780       AU.addPreserved<BasicAAWrapperPass>();
781       AU.addPreserved<AAResultsWrapperPass>();
782       AU.addPreserved<GlobalsAAWrapperPass>();
783       AU.addPreserved<ScalarEvolutionWrapperPass>();
784       AU.addPreserved<SCEVAAWrapperPass>();
785       AU.addPreservedID(LCSSAID);
786       AU.addPreserved<DependenceAnalysisWrapperPass>();
787       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
788       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
789       if (EnableMSSALoopDependency)
790         AU.addPreserved<MemorySSAWrapperPass>();
791     }
792 
793     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
794     void verifyAnalysis() const override;
795   };
796 }
797 
798 char LoopSimplify::ID = 0;
799 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
800                 "Canonicalize natural loops", false, false)
801 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
802 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
803 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
804 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
805                 "Canonicalize natural loops", false, false)
806 
807 // Publicly exposed interface to pass...
808 char &llvm::LoopSimplifyID = LoopSimplify::ID;
809 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
810 
811 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
812 /// it in any convenient order) inserting preheaders...
813 ///
814 bool LoopSimplify::runOnFunction(Function &F) {
815   bool Changed = false;
816   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
817   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
818   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
819   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
820   AssumptionCache *AC =
821       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
822   MemorySSA *MSSA = nullptr;
823   std::unique_ptr<MemorySSAUpdater> MSSAU;
824   if (EnableMSSALoopDependency) {
825     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
826     if (MSSAAnalysis) {
827       MSSA = &MSSAAnalysis->getMSSA();
828       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
829     }
830   }
831 
832   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
833 
834   // Simplify each loop nest in the function.
835   for (auto *L : *LI)
836     Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
837 
838 #ifndef NDEBUG
839   if (PreserveLCSSA) {
840     bool InLCSSA = all_of(
841         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
842     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
843   }
844 #endif
845   return Changed;
846 }
847 
848 PreservedAnalyses LoopSimplifyPass::run(Function &F,
849                                         FunctionAnalysisManager &AM) {
850   bool Changed = false;
851   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
852   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
853   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
854   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
855   auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
856   std::unique_ptr<MemorySSAUpdater> MSSAU;
857   if (MSSAAnalysis) {
858     auto *MSSA = &MSSAAnalysis->getMSSA();
859     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
860   }
861 
862 
863   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
864   // after simplifying the loops. MemorySSA is preserved if it exists.
865   for (auto *L : *LI)
866     Changed |=
867         simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
868 
869   if (!Changed)
870     return PreservedAnalyses::all();
871 
872   PreservedAnalyses PA;
873   PA.preserve<DominatorTreeAnalysis>();
874   PA.preserve<LoopAnalysis>();
875   PA.preserve<BasicAA>();
876   PA.preserve<GlobalsAA>();
877   PA.preserve<SCEVAA>();
878   PA.preserve<ScalarEvolutionAnalysis>();
879   PA.preserve<DependenceAnalysis>();
880   if (MSSAAnalysis)
881     PA.preserve<MemorySSAAnalysis>();
882   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
883   // blocks, but it does so only by splitting existing blocks and edges. This
884   // results in the interesting property that all new terminators inserted are
885   // unconditional branches which do not appear in BPI. All deletions are
886   // handled via ValueHandle callbacks w/in BPI.
887   PA.preserve<BranchProbabilityAnalysis>();
888   return PA;
889 }
890 
891 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
892 // below.
893 #if 0
894 static void verifyLoop(Loop *L) {
895   // Verify subloops.
896   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
897     verifyLoop(*I);
898 
899   // It used to be possible to just assert L->isLoopSimplifyForm(), however
900   // with the introduction of indirectbr, there are now cases where it's
901   // not possible to transform a loop as necessary. We can at least check
902   // that there is an indirectbr near any time there's trouble.
903 
904   // Indirectbr can interfere with preheader and unique backedge insertion.
905   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
906     bool HasIndBrPred = false;
907     for (pred_iterator PI = pred_begin(L->getHeader()),
908          PE = pred_end(L->getHeader()); PI != PE; ++PI)
909       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
910         HasIndBrPred = true;
911         break;
912       }
913     assert(HasIndBrPred &&
914            "LoopSimplify has no excuse for missing loop header info!");
915     (void)HasIndBrPred;
916   }
917 
918   // Indirectbr can interfere with exit block canonicalization.
919   if (!L->hasDedicatedExits()) {
920     bool HasIndBrExiting = false;
921     SmallVector<BasicBlock*, 8> ExitingBlocks;
922     L->getExitingBlocks(ExitingBlocks);
923     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
924       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
925         HasIndBrExiting = true;
926         break;
927       }
928     }
929 
930     assert(HasIndBrExiting &&
931            "LoopSimplify has no excuse for missing exit block info!");
932     (void)HasIndBrExiting;
933   }
934 }
935 #endif
936 
937 void LoopSimplify::verifyAnalysis() const {
938   // FIXME: This routine is being called mid-way through the loop pass manager
939   // as loop passes destroy this analysis. That's actually fine, but we have no
940   // way of expressing that here. Once all of the passes that destroy this are
941   // hoisted out of the loop pass manager we can add back verification here.
942 #if 0
943   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
944     verifyLoop(*I);
945 #endif
946 }
947