1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/SetOperations.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/BasicAliasAnalysis.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/DependenceAnalysis.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemorySSA.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/LoopUtils.h" 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-simplify" 80 81 STATISTIC(NumNested , "Number of nested loops split out"); 82 83 // If the block isn't already, move the new block to right after some 'outside 84 // block' block. This prevents the preheader from being placed inside the loop 85 // body, e.g. when the loop hasn't been rotated. 86 static void placeSplitBlockCarefully(BasicBlock *NewBB, 87 SmallVectorImpl<BasicBlock *> &SplitPreds, 88 Loop *L) { 89 // Check to see if NewBB is already well placed. 90 Function::iterator BBI = --NewBB->getIterator(); 91 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 92 if (&*BBI == SplitPreds[i]) 93 return; 94 } 95 96 // If it isn't already after an outside block, move it after one. This is 97 // always good as it makes the uncond branch from the outside block into a 98 // fall-through. 99 100 // Figure out *which* outside block to put this after. Prefer an outside 101 // block that neighbors a BB actually in the loop. 102 BasicBlock *FoundBB = nullptr; 103 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 104 Function::iterator BBI = SplitPreds[i]->getIterator(); 105 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 106 FoundBB = SplitPreds[i]; 107 break; 108 } 109 } 110 111 // If our heuristic for a *good* bb to place this after doesn't find 112 // anything, just pick something. It's likely better than leaving it within 113 // the loop. 114 if (!FoundBB) 115 FoundBB = SplitPreds[0]; 116 NewBB->moveAfter(FoundBB); 117 } 118 119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 120 /// preheader, this method is called to insert one. This method has two phases: 121 /// preheader insertion and analysis updating. 122 /// 123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 124 LoopInfo *LI, MemorySSAUpdater *MSSAU, 125 bool PreserveLCSSA) { 126 BasicBlock *Header = L->getHeader(); 127 128 // Compute the set of predecessors of the loop that are not in the loop. 129 SmallVector<BasicBlock*, 8> OutsideBlocks; 130 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 131 PI != PE; ++PI) { 132 BasicBlock *P = *PI; 133 if (!L->contains(P)) { // Coming in from outside the loop? 134 // If the loop is branched to from an indirect terminator, we won't 135 // be able to fully transform the loop, because it prohibits 136 // edge splitting. 137 if (P->getTerminator()->isIndirectTerminator()) 138 return nullptr; 139 140 // Keep track of it. 141 OutsideBlocks.push_back(P); 142 } 143 } 144 145 // Split out the loop pre-header. 146 BasicBlock *PreheaderBB; 147 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 148 LI, MSSAU, PreserveLCSSA); 149 if (!PreheaderBB) 150 return nullptr; 151 152 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 153 << PreheaderBB->getName() << "\n"); 154 155 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 156 // code layout too horribly. 157 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 158 159 return PreheaderBB; 160 } 161 162 /// Add the specified block, and all of its predecessors, to the specified set, 163 /// if it's not already in there. Stop predecessor traversal when we reach 164 /// StopBlock. 165 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 166 SmallPtrSetImpl<BasicBlock *> &Blocks) { 167 SmallVector<BasicBlock *, 8> Worklist; 168 Worklist.push_back(InputBB); 169 do { 170 BasicBlock *BB = Worklist.pop_back_val(); 171 if (Blocks.insert(BB).second && BB != StopBlock) 172 // If BB is not already processed and it is not a stop block then 173 // insert its predecessor in the work list 174 append_range(Worklist, predecessors(BB)); 175 } while (!Worklist.empty()); 176 } 177 178 /// The first part of loop-nestification is to find a PHI node that tells 179 /// us how to partition the loops. 180 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 181 AssumptionCache *AC) { 182 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 183 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 184 PHINode *PN = cast<PHINode>(I); 185 ++I; 186 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 187 // This is a degenerate PHI already, don't modify it! 188 PN->replaceAllUsesWith(V); 189 PN->eraseFromParent(); 190 continue; 191 } 192 193 // Scan this PHI node looking for a use of the PHI node by itself. 194 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 195 if (PN->getIncomingValue(i) == PN && 196 L->contains(PN->getIncomingBlock(i))) 197 // We found something tasty to remove. 198 return PN; 199 } 200 return nullptr; 201 } 202 203 /// If this loop has multiple backedges, try to pull one of them out into 204 /// a nested loop. 205 /// 206 /// This is important for code that looks like 207 /// this: 208 /// 209 /// Loop: 210 /// ... 211 /// br cond, Loop, Next 212 /// ... 213 /// br cond2, Loop, Out 214 /// 215 /// To identify this common case, we look at the PHI nodes in the header of the 216 /// loop. PHI nodes with unchanging values on one backedge correspond to values 217 /// that change in the "outer" loop, but not in the "inner" loop. 218 /// 219 /// If we are able to separate out a loop, return the new outer loop that was 220 /// created. 221 /// 222 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 223 DominatorTree *DT, LoopInfo *LI, 224 ScalarEvolution *SE, bool PreserveLCSSA, 225 AssumptionCache *AC, MemorySSAUpdater *MSSAU) { 226 // Don't try to separate loops without a preheader. 227 if (!Preheader) 228 return nullptr; 229 230 // Treat the presence of convergent functions conservatively. The 231 // transformation is invalid if calls to certain convergent 232 // functions (like an AMDGPU barrier) get included in the resulting 233 // inner loop. But blocks meant for the inner loop will be 234 // identified later at a point where it's too late to abort the 235 // transformation. Also, the convergent attribute is not really 236 // sufficient to express the semantics of functions that are 237 // affected by this transformation. So we choose to back off if such 238 // a function call is present until a better alternative becomes 239 // available. This is similar to the conservative treatment of 240 // convergent function calls in GVNHoist and JumpThreading. 241 for (auto BB : L->blocks()) { 242 for (auto &II : *BB) { 243 if (auto CI = dyn_cast<CallBase>(&II)) { 244 if (CI->isConvergent()) { 245 return nullptr; 246 } 247 } 248 } 249 } 250 251 // The header is not a landing pad; preheader insertion should ensure this. 252 BasicBlock *Header = L->getHeader(); 253 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 254 255 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 256 if (!PN) return nullptr; // No known way to partition. 257 258 // Pull out all predecessors that have varying values in the loop. This 259 // handles the case when a PHI node has multiple instances of itself as 260 // arguments. 261 SmallVector<BasicBlock*, 8> OuterLoopPreds; 262 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 263 if (PN->getIncomingValue(i) != PN || 264 !L->contains(PN->getIncomingBlock(i))) { 265 // We can't split indirect control flow edges. 266 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) 267 return nullptr; 268 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 269 } 270 } 271 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 272 273 // If ScalarEvolution is around and knows anything about values in 274 // this loop, tell it to forget them, because we're about to 275 // substantially change it. 276 if (SE) 277 SE->forgetLoop(L); 278 279 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 280 DT, LI, MSSAU, PreserveLCSSA); 281 282 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 283 // code layout too horribly. 284 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 285 286 // Create the new outer loop. 287 Loop *NewOuter = LI->AllocateLoop(); 288 289 // Change the parent loop to use the outer loop as its child now. 290 if (Loop *Parent = L->getParentLoop()) 291 Parent->replaceChildLoopWith(L, NewOuter); 292 else 293 LI->changeTopLevelLoop(L, NewOuter); 294 295 // L is now a subloop of our outer loop. 296 NewOuter->addChildLoop(L); 297 298 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 299 I != E; ++I) 300 NewOuter->addBlockEntry(*I); 301 302 // Now reset the header in L, which had been moved by 303 // SplitBlockPredecessors for the outer loop. 304 L->moveToHeader(Header); 305 306 // Determine which blocks should stay in L and which should be moved out to 307 // the Outer loop now. 308 SmallPtrSet<BasicBlock *, 4> BlocksInL; 309 for (BasicBlock *P : predecessors(Header)) { 310 if (DT->dominates(Header, P)) 311 addBlockAndPredsToSet(P, Header, BlocksInL); 312 } 313 314 // Scan all of the loop children of L, moving them to OuterLoop if they are 315 // not part of the inner loop. 316 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 317 for (size_t I = 0; I != SubLoops.size(); ) 318 if (BlocksInL.count(SubLoops[I]->getHeader())) 319 ++I; // Loop remains in L 320 else 321 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 322 323 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 324 OuterLoopBlocks.push_back(NewBB); 325 // Now that we know which blocks are in L and which need to be moved to 326 // OuterLoop, move any blocks that need it. 327 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 328 BasicBlock *BB = L->getBlocks()[i]; 329 if (!BlocksInL.count(BB)) { 330 // Move this block to the parent, updating the exit blocks sets 331 L->removeBlockFromLoop(BB); 332 if ((*LI)[BB] == L) { 333 LI->changeLoopFor(BB, NewOuter); 334 OuterLoopBlocks.push_back(BB); 335 } 336 --i; 337 } 338 } 339 340 // Split edges to exit blocks from the inner loop, if they emerged in the 341 // process of separating the outer one. 342 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); 343 344 if (PreserveLCSSA) { 345 // Fix LCSSA form for L. Some values, which previously were only used inside 346 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 347 // in corresponding exit blocks. 348 // We don't need to form LCSSA recursively, because there cannot be uses 349 // inside a newly created loop of defs from inner loops as those would 350 // already be a use of an LCSSA phi node. 351 formLCSSA(*L, *DT, LI, SE); 352 353 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 354 "LCSSA is broken after separating nested loops!"); 355 } 356 357 return NewOuter; 358 } 359 360 /// This method is called when the specified loop has more than one 361 /// backedge in it. 362 /// 363 /// If this occurs, revector all of these backedges to target a new basic block 364 /// and have that block branch to the loop header. This ensures that loops 365 /// have exactly one backedge. 366 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 367 DominatorTree *DT, LoopInfo *LI, 368 MemorySSAUpdater *MSSAU) { 369 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 370 371 // Get information about the loop 372 BasicBlock *Header = L->getHeader(); 373 Function *F = Header->getParent(); 374 375 // Unique backedge insertion currently depends on having a preheader. 376 if (!Preheader) 377 return nullptr; 378 379 // The header is not an EH pad; preheader insertion should ensure this. 380 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 381 382 // Figure out which basic blocks contain back-edges to the loop header. 383 std::vector<BasicBlock*> BackedgeBlocks; 384 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 385 BasicBlock *P = *I; 386 387 // Indirect edges cannot be split, so we must fail if we find one. 388 if (P->getTerminator()->isIndirectTerminator()) 389 return nullptr; 390 391 if (P != Preheader) BackedgeBlocks.push_back(P); 392 } 393 394 // Create and insert the new backedge block... 395 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 396 Header->getName() + ".backedge", F); 397 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 398 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 399 400 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 401 << BEBlock->getName() << "\n"); 402 403 // Move the new backedge block to right after the last backedge block. 404 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 405 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 406 407 // Now that the block has been inserted into the function, create PHI nodes in 408 // the backedge block which correspond to any PHI nodes in the header block. 409 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 410 PHINode *PN = cast<PHINode>(I); 411 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 412 PN->getName()+".be", BETerminator); 413 414 // Loop over the PHI node, moving all entries except the one for the 415 // preheader over to the new PHI node. 416 unsigned PreheaderIdx = ~0U; 417 bool HasUniqueIncomingValue = true; 418 Value *UniqueValue = nullptr; 419 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 420 BasicBlock *IBB = PN->getIncomingBlock(i); 421 Value *IV = PN->getIncomingValue(i); 422 if (IBB == Preheader) { 423 PreheaderIdx = i; 424 } else { 425 NewPN->addIncoming(IV, IBB); 426 if (HasUniqueIncomingValue) { 427 if (!UniqueValue) 428 UniqueValue = IV; 429 else if (UniqueValue != IV) 430 HasUniqueIncomingValue = false; 431 } 432 } 433 } 434 435 // Delete all of the incoming values from the old PN except the preheader's 436 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 437 if (PreheaderIdx != 0) { 438 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 439 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 440 } 441 // Nuke all entries except the zero'th. 442 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 443 PN->removeIncomingValue(e-i, false); 444 445 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 446 PN->addIncoming(NewPN, BEBlock); 447 448 // As an optimization, if all incoming values in the new PhiNode (which is a 449 // subset of the incoming values of the old PHI node) have the same value, 450 // eliminate the PHI Node. 451 if (HasUniqueIncomingValue) { 452 NewPN->replaceAllUsesWith(UniqueValue); 453 BEBlock->getInstList().erase(NewPN); 454 } 455 } 456 457 // Now that all of the PHI nodes have been inserted and adjusted, modify the 458 // backedge blocks to jump to the BEBlock instead of the header. 459 // If one of the backedges has llvm.loop metadata attached, we remove 460 // it from the backedge and add it to BEBlock. 461 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); 462 MDNode *LoopMD = nullptr; 463 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 464 Instruction *TI = BackedgeBlocks[i]->getTerminator(); 465 if (!LoopMD) 466 LoopMD = TI->getMetadata(LoopMDKind); 467 TI->setMetadata(LoopMDKind, nullptr); 468 TI->replaceSuccessorWith(Header, BEBlock); 469 } 470 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); 471 472 //===--- Update all analyses which we must preserve now -----------------===// 473 474 // Update Loop Information - we know that this block is now in the current 475 // loop and all parent loops. 476 L->addBasicBlockToLoop(BEBlock, *LI); 477 478 // Update dominator information 479 DT->splitBlock(BEBlock); 480 481 if (MSSAU) 482 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, 483 BEBlock); 484 485 return BEBlock; 486 } 487 488 /// Simplify one loop and queue further loops for simplification. 489 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 490 DominatorTree *DT, LoopInfo *LI, 491 ScalarEvolution *SE, AssumptionCache *AC, 492 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 493 bool Changed = false; 494 if (MSSAU && VerifyMemorySSA) 495 MSSAU->getMemorySSA()->verifyMemorySSA(); 496 497 ReprocessLoop: 498 499 // Check to see that no blocks (other than the header) in this loop have 500 // predecessors that are not in the loop. This is not valid for natural 501 // loops, but can occur if the blocks are unreachable. Since they are 502 // unreachable we can just shamelessly delete those CFG edges! 503 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 504 BB != E; ++BB) { 505 if (*BB == L->getHeader()) continue; 506 507 SmallPtrSet<BasicBlock*, 4> BadPreds; 508 for (pred_iterator PI = pred_begin(*BB), 509 PE = pred_end(*BB); PI != PE; ++PI) { 510 BasicBlock *P = *PI; 511 if (!L->contains(P)) 512 BadPreds.insert(P); 513 } 514 515 // Delete each unique out-of-loop (and thus dead) predecessor. 516 for (BasicBlock *P : BadPreds) { 517 518 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 519 << P->getName() << "\n"); 520 521 // Zap the dead pred's terminator and replace it with unreachable. 522 Instruction *TI = P->getTerminator(); 523 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA, 524 /*DTU=*/nullptr, MSSAU); 525 Changed = true; 526 } 527 } 528 529 if (MSSAU && VerifyMemorySSA) 530 MSSAU->getMemorySSA()->verifyMemorySSA(); 531 532 // If there are exiting blocks with branches on undef, resolve the undef in 533 // the direction which will exit the loop. This will help simplify loop 534 // trip count computations. 535 SmallVector<BasicBlock*, 8> ExitingBlocks; 536 L->getExitingBlocks(ExitingBlocks); 537 for (BasicBlock *ExitingBlock : ExitingBlocks) 538 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 539 if (BI->isConditional()) { 540 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 541 542 LLVM_DEBUG(dbgs() 543 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 544 << ExitingBlock->getName() << "\n"); 545 546 BI->setCondition(ConstantInt::get(Cond->getType(), 547 !L->contains(BI->getSuccessor(0)))); 548 549 Changed = true; 550 } 551 } 552 553 // Does the loop already have a preheader? If so, don't insert one. 554 BasicBlock *Preheader = L->getLoopPreheader(); 555 if (!Preheader) { 556 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); 557 if (Preheader) 558 Changed = true; 559 } 560 561 // Next, check to make sure that all exit nodes of the loop only have 562 // predecessors that are inside of the loop. This check guarantees that the 563 // loop preheader/header will dominate the exit blocks. If the exit block has 564 // predecessors from outside of the loop, split the edge now. 565 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) 566 Changed = true; 567 568 if (MSSAU && VerifyMemorySSA) 569 MSSAU->getMemorySSA()->verifyMemorySSA(); 570 571 // If the header has more than two predecessors at this point (from the 572 // preheader and from multiple backedges), we must adjust the loop. 573 BasicBlock *LoopLatch = L->getLoopLatch(); 574 if (!LoopLatch) { 575 // If this is really a nested loop, rip it out into a child loop. Don't do 576 // this for loops with a giant number of backedges, just factor them into a 577 // common backedge instead. 578 if (L->getNumBackEdges() < 8) { 579 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, 580 PreserveLCSSA, AC, MSSAU)) { 581 ++NumNested; 582 // Enqueue the outer loop as it should be processed next in our 583 // depth-first nest walk. 584 Worklist.push_back(OuterL); 585 586 // This is a big restructuring change, reprocess the whole loop. 587 Changed = true; 588 // GCC doesn't tail recursion eliminate this. 589 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 590 goto ReprocessLoop; 591 } 592 } 593 594 // If we either couldn't, or didn't want to, identify nesting of the loops, 595 // insert a new block that all backedges target, then make it jump to the 596 // loop header. 597 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); 598 if (LoopLatch) 599 Changed = true; 600 } 601 602 if (MSSAU && VerifyMemorySSA) 603 MSSAU->getMemorySSA()->verifyMemorySSA(); 604 605 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 606 607 // Scan over the PHI nodes in the loop header. Since they now have only two 608 // incoming values (the loop is canonicalized), we may have simplified the PHI 609 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 610 PHINode *PN; 611 for (BasicBlock::iterator I = L->getHeader()->begin(); 612 (PN = dyn_cast<PHINode>(I++)); ) 613 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 614 if (SE) SE->forgetValue(PN); 615 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 616 PN->replaceAllUsesWith(V); 617 PN->eraseFromParent(); 618 Changed = true; 619 } 620 } 621 622 // If this loop has multiple exits and the exits all go to the same 623 // block, attempt to merge the exits. This helps several passes, such 624 // as LoopRotation, which do not support loops with multiple exits. 625 // SimplifyCFG also does this (and this code uses the same utility 626 // function), however this code is loop-aware, where SimplifyCFG is 627 // not. That gives it the advantage of being able to hoist 628 // loop-invariant instructions out of the way to open up more 629 // opportunities, and the disadvantage of having the responsibility 630 // to preserve dominator information. 631 auto HasUniqueExitBlock = [&]() { 632 BasicBlock *UniqueExit = nullptr; 633 for (auto *ExitingBB : ExitingBlocks) 634 for (auto *SuccBB : successors(ExitingBB)) { 635 if (L->contains(SuccBB)) 636 continue; 637 638 if (!UniqueExit) 639 UniqueExit = SuccBB; 640 else if (UniqueExit != SuccBB) 641 return false; 642 } 643 644 return true; 645 }; 646 if (HasUniqueExitBlock()) { 647 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 648 BasicBlock *ExitingBlock = ExitingBlocks[i]; 649 if (!ExitingBlock->getSinglePredecessor()) continue; 650 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 651 if (!BI || !BI->isConditional()) continue; 652 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 653 if (!CI || CI->getParent() != ExitingBlock) continue; 654 655 // Attempt to hoist out all instructions except for the 656 // comparison and the branch. 657 bool AllInvariant = true; 658 bool AnyInvariant = false; 659 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 660 Instruction *Inst = &*I++; 661 if (Inst == CI) 662 continue; 663 if (!L->makeLoopInvariant( 664 Inst, AnyInvariant, 665 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { 666 AllInvariant = false; 667 break; 668 } 669 } 670 if (AnyInvariant) { 671 Changed = true; 672 // The loop disposition of all SCEV expressions that depend on any 673 // hoisted values have also changed. 674 if (SE) 675 SE->forgetLoopDispositions(L); 676 } 677 if (!AllInvariant) continue; 678 679 // The block has now been cleared of all instructions except for 680 // a comparison and a conditional branch. SimplifyCFG may be able 681 // to fold it now. 682 if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU)) 683 continue; 684 685 // Success. The block is now dead, so remove it from the loop, 686 // update the dominator tree and delete it. 687 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 688 << ExitingBlock->getName() << "\n"); 689 690 assert(pred_empty(ExitingBlock)); 691 Changed = true; 692 LI->removeBlock(ExitingBlock); 693 694 DomTreeNode *Node = DT->getNode(ExitingBlock); 695 while (!Node->isLeaf()) { 696 DomTreeNode *Child = Node->back(); 697 DT->changeImmediateDominator(Child, Node->getIDom()); 698 } 699 DT->eraseNode(ExitingBlock); 700 if (MSSAU) { 701 SmallSetVector<BasicBlock *, 8> ExitBlockSet; 702 ExitBlockSet.insert(ExitingBlock); 703 MSSAU->removeBlocks(ExitBlockSet); 704 } 705 706 BI->getSuccessor(0)->removePredecessor( 707 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 708 BI->getSuccessor(1)->removePredecessor( 709 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 710 ExitingBlock->eraseFromParent(); 711 } 712 } 713 714 // Changing exit conditions for blocks may affect exit counts of this loop and 715 // any of its paretns, so we must invalidate the entire subtree if we've made 716 // any changes. 717 if (Changed && SE) 718 SE->forgetTopmostLoop(L); 719 720 if (MSSAU && VerifyMemorySSA) 721 MSSAU->getMemorySSA()->verifyMemorySSA(); 722 723 return Changed; 724 } 725 726 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 727 ScalarEvolution *SE, AssumptionCache *AC, 728 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 729 bool Changed = false; 730 731 #ifndef NDEBUG 732 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 733 // form. 734 if (PreserveLCSSA) { 735 assert(DT && "DT not available."); 736 assert(LI && "LI not available."); 737 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 738 "Requested to preserve LCSSA, but it's already broken."); 739 } 740 #endif 741 742 // Worklist maintains our depth-first queue of loops in this nest to process. 743 SmallVector<Loop *, 4> Worklist; 744 Worklist.push_back(L); 745 746 // Walk the worklist from front to back, pushing newly found sub loops onto 747 // the back. This will let us process loops from back to front in depth-first 748 // order. We can use this simple process because loops form a tree. 749 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 750 Loop *L2 = Worklist[Idx]; 751 Worklist.append(L2->begin(), L2->end()); 752 } 753 754 while (!Worklist.empty()) 755 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 756 AC, MSSAU, PreserveLCSSA); 757 758 return Changed; 759 } 760 761 namespace { 762 struct LoopSimplify : public FunctionPass { 763 static char ID; // Pass identification, replacement for typeid 764 LoopSimplify() : FunctionPass(ID) { 765 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 766 } 767 768 bool runOnFunction(Function &F) override; 769 770 void getAnalysisUsage(AnalysisUsage &AU) const override { 771 AU.addRequired<AssumptionCacheTracker>(); 772 773 // We need loop information to identify the loops... 774 AU.addRequired<DominatorTreeWrapperPass>(); 775 AU.addPreserved<DominatorTreeWrapperPass>(); 776 777 AU.addRequired<LoopInfoWrapperPass>(); 778 AU.addPreserved<LoopInfoWrapperPass>(); 779 780 AU.addPreserved<BasicAAWrapperPass>(); 781 AU.addPreserved<AAResultsWrapperPass>(); 782 AU.addPreserved<GlobalsAAWrapperPass>(); 783 AU.addPreserved<ScalarEvolutionWrapperPass>(); 784 AU.addPreserved<SCEVAAWrapperPass>(); 785 AU.addPreservedID(LCSSAID); 786 AU.addPreserved<DependenceAnalysisWrapperPass>(); 787 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 788 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 789 if (EnableMSSALoopDependency) 790 AU.addPreserved<MemorySSAWrapperPass>(); 791 } 792 793 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 794 void verifyAnalysis() const override; 795 }; 796 } 797 798 char LoopSimplify::ID = 0; 799 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 800 "Canonicalize natural loops", false, false) 801 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 802 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 803 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 804 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 805 "Canonicalize natural loops", false, false) 806 807 // Publicly exposed interface to pass... 808 char &llvm::LoopSimplifyID = LoopSimplify::ID; 809 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 810 811 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 812 /// it in any convenient order) inserting preheaders... 813 /// 814 bool LoopSimplify::runOnFunction(Function &F) { 815 bool Changed = false; 816 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 817 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 818 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 819 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 820 AssumptionCache *AC = 821 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 822 MemorySSA *MSSA = nullptr; 823 std::unique_ptr<MemorySSAUpdater> MSSAU; 824 if (EnableMSSALoopDependency) { 825 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 826 if (MSSAAnalysis) { 827 MSSA = &MSSAAnalysis->getMSSA(); 828 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 829 } 830 } 831 832 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 833 834 // Simplify each loop nest in the function. 835 for (auto *L : *LI) 836 Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); 837 838 #ifndef NDEBUG 839 if (PreserveLCSSA) { 840 bool InLCSSA = all_of( 841 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 842 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 843 } 844 #endif 845 return Changed; 846 } 847 848 PreservedAnalyses LoopSimplifyPass::run(Function &F, 849 FunctionAnalysisManager &AM) { 850 bool Changed = false; 851 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 852 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 853 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 854 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 855 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); 856 std::unique_ptr<MemorySSAUpdater> MSSAU; 857 if (MSSAAnalysis) { 858 auto *MSSA = &MSSAAnalysis->getMSSA(); 859 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 860 } 861 862 863 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 864 // after simplifying the loops. MemorySSA is preserved if it exists. 865 for (auto *L : *LI) 866 Changed |= 867 simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); 868 869 if (!Changed) 870 return PreservedAnalyses::all(); 871 872 PreservedAnalyses PA; 873 PA.preserve<DominatorTreeAnalysis>(); 874 PA.preserve<LoopAnalysis>(); 875 PA.preserve<BasicAA>(); 876 PA.preserve<GlobalsAA>(); 877 PA.preserve<SCEVAA>(); 878 PA.preserve<ScalarEvolutionAnalysis>(); 879 PA.preserve<DependenceAnalysis>(); 880 if (MSSAAnalysis) 881 PA.preserve<MemorySSAAnalysis>(); 882 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 883 // blocks, but it does so only by splitting existing blocks and edges. This 884 // results in the interesting property that all new terminators inserted are 885 // unconditional branches which do not appear in BPI. All deletions are 886 // handled via ValueHandle callbacks w/in BPI. 887 PA.preserve<BranchProbabilityAnalysis>(); 888 return PA; 889 } 890 891 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 892 // below. 893 #if 0 894 static void verifyLoop(Loop *L) { 895 // Verify subloops. 896 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 897 verifyLoop(*I); 898 899 // It used to be possible to just assert L->isLoopSimplifyForm(), however 900 // with the introduction of indirectbr, there are now cases where it's 901 // not possible to transform a loop as necessary. We can at least check 902 // that there is an indirectbr near any time there's trouble. 903 904 // Indirectbr can interfere with preheader and unique backedge insertion. 905 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 906 bool HasIndBrPred = false; 907 for (pred_iterator PI = pred_begin(L->getHeader()), 908 PE = pred_end(L->getHeader()); PI != PE; ++PI) 909 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 910 HasIndBrPred = true; 911 break; 912 } 913 assert(HasIndBrPred && 914 "LoopSimplify has no excuse for missing loop header info!"); 915 (void)HasIndBrPred; 916 } 917 918 // Indirectbr can interfere with exit block canonicalization. 919 if (!L->hasDedicatedExits()) { 920 bool HasIndBrExiting = false; 921 SmallVector<BasicBlock*, 8> ExitingBlocks; 922 L->getExitingBlocks(ExitingBlocks); 923 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 924 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 925 HasIndBrExiting = true; 926 break; 927 } 928 } 929 930 assert(HasIndBrExiting && 931 "LoopSimplify has no excuse for missing exit block info!"); 932 (void)HasIndBrExiting; 933 } 934 } 935 #endif 936 937 void LoopSimplify::verifyAnalysis() const { 938 // FIXME: This routine is being called mid-way through the loop pass manager 939 // as loop passes destroy this analysis. That's actually fine, but we have no 940 // way of expressing that here. Once all of the passes that destroy this are 941 // hoisted out of the loop pass manager we can add back verification here. 942 #if 0 943 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 944 verifyLoop(*I); 945 #endif 946 } 947