1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs several transformations to transform natural loops into a 10 // simpler form, which makes subsequent analyses and transformations simpler and 11 // more effective. 12 // 13 // Loop pre-header insertion guarantees that there is a single, non-critical 14 // entry edge from outside of the loop to the loop header. This simplifies a 15 // number of analyses and transformations, such as LICM. 16 // 17 // Loop exit-block insertion guarantees that all exit blocks from the loop 18 // (blocks which are outside of the loop that have predecessors inside of the 19 // loop) only have predecessors from inside of the loop (and are thus dominated 20 // by the loop header). This simplifies transformations such as store-sinking 21 // that are built into LICM. 22 // 23 // This pass also guarantees that loops will have exactly one backedge. 24 // 25 // Indirectbr instructions introduce several complications. If the loop 26 // contains or is entered by an indirectbr instruction, it may not be possible 27 // to transform the loop and make these guarantees. Client code should check 28 // that these conditions are true before relying on them. 29 // 30 // Similar complications arise from callbr instructions, particularly in 31 // asm-goto where blockaddress expressions are used. 32 // 33 // Note that the simplifycfg pass will clean up blocks which are split out but 34 // end up being unnecessary, so usage of this pass should not pessimize 35 // generated code. 36 // 37 // This pass obviously modifies the CFG, but updates loop information and 38 // dominator information. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/Transforms/Utils/LoopSimplify.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/SetOperations.h" 45 #include "llvm/ADT/SetVector.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/BasicAliasAnalysis.h" 51 #include "llvm/Analysis/BranchProbabilityInfo.h" 52 #include "llvm/Analysis/DependenceAnalysis.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/MemorySSA.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/LoopUtils.h" 77 using namespace llvm; 78 79 #define DEBUG_TYPE "loop-simplify" 80 81 STATISTIC(NumNested , "Number of nested loops split out"); 82 83 // If the block isn't already, move the new block to right after some 'outside 84 // block' block. This prevents the preheader from being placed inside the loop 85 // body, e.g. when the loop hasn't been rotated. 86 static void placeSplitBlockCarefully(BasicBlock *NewBB, 87 SmallVectorImpl<BasicBlock *> &SplitPreds, 88 Loop *L) { 89 // Check to see if NewBB is already well placed. 90 Function::iterator BBI = --NewBB->getIterator(); 91 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 92 if (&*BBI == SplitPreds[i]) 93 return; 94 } 95 96 // If it isn't already after an outside block, move it after one. This is 97 // always good as it makes the uncond branch from the outside block into a 98 // fall-through. 99 100 // Figure out *which* outside block to put this after. Prefer an outside 101 // block that neighbors a BB actually in the loop. 102 BasicBlock *FoundBB = nullptr; 103 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 104 Function::iterator BBI = SplitPreds[i]->getIterator(); 105 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { 106 FoundBB = SplitPreds[i]; 107 break; 108 } 109 } 110 111 // If our heuristic for a *good* bb to place this after doesn't find 112 // anything, just pick something. It's likely better than leaving it within 113 // the loop. 114 if (!FoundBB) 115 FoundBB = SplitPreds[0]; 116 NewBB->moveAfter(FoundBB); 117 } 118 119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 120 /// preheader, this method is called to insert one. This method has two phases: 121 /// preheader insertion and analysis updating. 122 /// 123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, 124 LoopInfo *LI, MemorySSAUpdater *MSSAU, 125 bool PreserveLCSSA) { 126 BasicBlock *Header = L->getHeader(); 127 128 // Compute the set of predecessors of the loop that are not in the loop. 129 SmallVector<BasicBlock*, 8> OutsideBlocks; 130 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 131 PI != PE; ++PI) { 132 BasicBlock *P = *PI; 133 if (!L->contains(P)) { // Coming in from outside the loop? 134 // If the loop is branched to from an indirect terminator, we won't 135 // be able to fully transform the loop, because it prohibits 136 // edge splitting. 137 if (P->getTerminator()->isIndirectTerminator()) 138 return nullptr; 139 140 // Keep track of it. 141 OutsideBlocks.push_back(P); 142 } 143 } 144 145 // Split out the loop pre-header. 146 BasicBlock *PreheaderBB; 147 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, 148 LI, MSSAU, PreserveLCSSA); 149 if (!PreheaderBB) 150 return nullptr; 151 152 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " 153 << PreheaderBB->getName() << "\n"); 154 155 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 156 // code layout too horribly. 157 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); 158 159 return PreheaderBB; 160 } 161 162 /// Add the specified block, and all of its predecessors, to the specified set, 163 /// if it's not already in there. Stop predecessor traversal when we reach 164 /// StopBlock. 165 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 166 std::set<BasicBlock*> &Blocks) { 167 SmallVector<BasicBlock *, 8> Worklist; 168 Worklist.push_back(InputBB); 169 do { 170 BasicBlock *BB = Worklist.pop_back_val(); 171 if (Blocks.insert(BB).second && BB != StopBlock) 172 // If BB is not already processed and it is not a stop block then 173 // insert its predecessor in the work list 174 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 175 BasicBlock *WBB = *I; 176 Worklist.push_back(WBB); 177 } 178 } while (!Worklist.empty()); 179 } 180 181 /// The first part of loop-nestification is to find a PHI node that tells 182 /// us how to partition the loops. 183 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, 184 AssumptionCache *AC) { 185 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 186 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 187 PHINode *PN = cast<PHINode>(I); 188 ++I; 189 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 190 // This is a degenerate PHI already, don't modify it! 191 PN->replaceAllUsesWith(V); 192 PN->eraseFromParent(); 193 continue; 194 } 195 196 // Scan this PHI node looking for a use of the PHI node by itself. 197 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 198 if (PN->getIncomingValue(i) == PN && 199 L->contains(PN->getIncomingBlock(i))) 200 // We found something tasty to remove. 201 return PN; 202 } 203 return nullptr; 204 } 205 206 /// If this loop has multiple backedges, try to pull one of them out into 207 /// a nested loop. 208 /// 209 /// This is important for code that looks like 210 /// this: 211 /// 212 /// Loop: 213 /// ... 214 /// br cond, Loop, Next 215 /// ... 216 /// br cond2, Loop, Out 217 /// 218 /// To identify this common case, we look at the PHI nodes in the header of the 219 /// loop. PHI nodes with unchanging values on one backedge correspond to values 220 /// that change in the "outer" loop, but not in the "inner" loop. 221 /// 222 /// If we are able to separate out a loop, return the new outer loop that was 223 /// created. 224 /// 225 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, 226 DominatorTree *DT, LoopInfo *LI, 227 ScalarEvolution *SE, bool PreserveLCSSA, 228 AssumptionCache *AC, MemorySSAUpdater *MSSAU) { 229 // Don't try to separate loops without a preheader. 230 if (!Preheader) 231 return nullptr; 232 233 // The header is not a landing pad; preheader insertion should ensure this. 234 BasicBlock *Header = L->getHeader(); 235 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 236 237 PHINode *PN = findPHIToPartitionLoops(L, DT, AC); 238 if (!PN) return nullptr; // No known way to partition. 239 240 // Pull out all predecessors that have varying values in the loop. This 241 // handles the case when a PHI node has multiple instances of itself as 242 // arguments. 243 SmallVector<BasicBlock*, 8> OuterLoopPreds; 244 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 245 if (PN->getIncomingValue(i) != PN || 246 !L->contains(PN->getIncomingBlock(i))) { 247 // We can't split indirect control flow edges. 248 if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) 249 return nullptr; 250 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 251 } 252 } 253 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 254 255 // If ScalarEvolution is around and knows anything about values in 256 // this loop, tell it to forget them, because we're about to 257 // substantially change it. 258 if (SE) 259 SE->forgetLoop(L); 260 261 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", 262 DT, LI, MSSAU, PreserveLCSSA); 263 264 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 265 // code layout too horribly. 266 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); 267 268 // Create the new outer loop. 269 Loop *NewOuter = LI->AllocateLoop(); 270 271 // Change the parent loop to use the outer loop as its child now. 272 if (Loop *Parent = L->getParentLoop()) 273 Parent->replaceChildLoopWith(L, NewOuter); 274 else 275 LI->changeTopLevelLoop(L, NewOuter); 276 277 // L is now a subloop of our outer loop. 278 NewOuter->addChildLoop(L); 279 280 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 281 I != E; ++I) 282 NewOuter->addBlockEntry(*I); 283 284 // Now reset the header in L, which had been moved by 285 // SplitBlockPredecessors for the outer loop. 286 L->moveToHeader(Header); 287 288 // Determine which blocks should stay in L and which should be moved out to 289 // the Outer loop now. 290 std::set<BasicBlock*> BlocksInL; 291 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 292 BasicBlock *P = *PI; 293 if (DT->dominates(Header, P)) 294 addBlockAndPredsToSet(P, Header, BlocksInL); 295 } 296 297 // Scan all of the loop children of L, moving them to OuterLoop if they are 298 // not part of the inner loop. 299 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 300 for (size_t I = 0; I != SubLoops.size(); ) 301 if (BlocksInL.count(SubLoops[I]->getHeader())) 302 ++I; // Loop remains in L 303 else 304 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 305 306 SmallVector<BasicBlock *, 8> OuterLoopBlocks; 307 OuterLoopBlocks.push_back(NewBB); 308 // Now that we know which blocks are in L and which need to be moved to 309 // OuterLoop, move any blocks that need it. 310 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 311 BasicBlock *BB = L->getBlocks()[i]; 312 if (!BlocksInL.count(BB)) { 313 // Move this block to the parent, updating the exit blocks sets 314 L->removeBlockFromLoop(BB); 315 if ((*LI)[BB] == L) { 316 LI->changeLoopFor(BB, NewOuter); 317 OuterLoopBlocks.push_back(BB); 318 } 319 --i; 320 } 321 } 322 323 // Split edges to exit blocks from the inner loop, if they emerged in the 324 // process of separating the outer one. 325 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); 326 327 if (PreserveLCSSA) { 328 // Fix LCSSA form for L. Some values, which previously were only used inside 329 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them 330 // in corresponding exit blocks. 331 // We don't need to form LCSSA recursively, because there cannot be uses 332 // inside a newly created loop of defs from inner loops as those would 333 // already be a use of an LCSSA phi node. 334 formLCSSA(*L, *DT, LI, SE); 335 336 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && 337 "LCSSA is broken after separating nested loops!"); 338 } 339 340 return NewOuter; 341 } 342 343 /// This method is called when the specified loop has more than one 344 /// backedge in it. 345 /// 346 /// If this occurs, revector all of these backedges to target a new basic block 347 /// and have that block branch to the loop header. This ensures that loops 348 /// have exactly one backedge. 349 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, 350 DominatorTree *DT, LoopInfo *LI, 351 MemorySSAUpdater *MSSAU) { 352 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 353 354 // Get information about the loop 355 BasicBlock *Header = L->getHeader(); 356 Function *F = Header->getParent(); 357 358 // Unique backedge insertion currently depends on having a preheader. 359 if (!Preheader) 360 return nullptr; 361 362 // The header is not an EH pad; preheader insertion should ensure this. 363 assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); 364 365 // Figure out which basic blocks contain back-edges to the loop header. 366 std::vector<BasicBlock*> BackedgeBlocks; 367 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 368 BasicBlock *P = *I; 369 370 // Indirect edges cannot be split, so we must fail if we find one. 371 if (P->getTerminator()->isIndirectTerminator()) 372 return nullptr; 373 374 if (P != Preheader) BackedgeBlocks.push_back(P); 375 } 376 377 // Create and insert the new backedge block... 378 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 379 Header->getName() + ".backedge", F); 380 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 381 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); 382 383 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " 384 << BEBlock->getName() << "\n"); 385 386 // Move the new backedge block to right after the last backedge block. 387 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); 388 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 389 390 // Now that the block has been inserted into the function, create PHI nodes in 391 // the backedge block which correspond to any PHI nodes in the header block. 392 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 393 PHINode *PN = cast<PHINode>(I); 394 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), 395 PN->getName()+".be", BETerminator); 396 397 // Loop over the PHI node, moving all entries except the one for the 398 // preheader over to the new PHI node. 399 unsigned PreheaderIdx = ~0U; 400 bool HasUniqueIncomingValue = true; 401 Value *UniqueValue = nullptr; 402 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 403 BasicBlock *IBB = PN->getIncomingBlock(i); 404 Value *IV = PN->getIncomingValue(i); 405 if (IBB == Preheader) { 406 PreheaderIdx = i; 407 } else { 408 NewPN->addIncoming(IV, IBB); 409 if (HasUniqueIncomingValue) { 410 if (!UniqueValue) 411 UniqueValue = IV; 412 else if (UniqueValue != IV) 413 HasUniqueIncomingValue = false; 414 } 415 } 416 } 417 418 // Delete all of the incoming values from the old PN except the preheader's 419 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 420 if (PreheaderIdx != 0) { 421 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 422 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 423 } 424 // Nuke all entries except the zero'th. 425 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 426 PN->removeIncomingValue(e-i, false); 427 428 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 429 PN->addIncoming(NewPN, BEBlock); 430 431 // As an optimization, if all incoming values in the new PhiNode (which is a 432 // subset of the incoming values of the old PHI node) have the same value, 433 // eliminate the PHI Node. 434 if (HasUniqueIncomingValue) { 435 NewPN->replaceAllUsesWith(UniqueValue); 436 BEBlock->getInstList().erase(NewPN); 437 } 438 } 439 440 // Now that all of the PHI nodes have been inserted and adjusted, modify the 441 // backedge blocks to jump to the BEBlock instead of the header. 442 // If one of the backedges has llvm.loop metadata attached, we remove 443 // it from the backedge and add it to BEBlock. 444 unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); 445 MDNode *LoopMD = nullptr; 446 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 447 Instruction *TI = BackedgeBlocks[i]->getTerminator(); 448 if (!LoopMD) 449 LoopMD = TI->getMetadata(LoopMDKind); 450 TI->setMetadata(LoopMDKind, nullptr); 451 TI->replaceSuccessorWith(Header, BEBlock); 452 } 453 BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); 454 455 //===--- Update all analyses which we must preserve now -----------------===// 456 457 // Update Loop Information - we know that this block is now in the current 458 // loop and all parent loops. 459 L->addBasicBlockToLoop(BEBlock, *LI); 460 461 // Update dominator information 462 DT->splitBlock(BEBlock); 463 464 if (MSSAU) 465 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, 466 BEBlock); 467 468 return BEBlock; 469 } 470 471 /// Simplify one loop and queue further loops for simplification. 472 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, 473 DominatorTree *DT, LoopInfo *LI, 474 ScalarEvolution *SE, AssumptionCache *AC, 475 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 476 bool Changed = false; 477 if (MSSAU && VerifyMemorySSA) 478 MSSAU->getMemorySSA()->verifyMemorySSA(); 479 480 ReprocessLoop: 481 482 // Check to see that no blocks (other than the header) in this loop have 483 // predecessors that are not in the loop. This is not valid for natural 484 // loops, but can occur if the blocks are unreachable. Since they are 485 // unreachable we can just shamelessly delete those CFG edges! 486 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 487 BB != E; ++BB) { 488 if (*BB == L->getHeader()) continue; 489 490 SmallPtrSet<BasicBlock*, 4> BadPreds; 491 for (pred_iterator PI = pred_begin(*BB), 492 PE = pred_end(*BB); PI != PE; ++PI) { 493 BasicBlock *P = *PI; 494 if (!L->contains(P)) 495 BadPreds.insert(P); 496 } 497 498 // Delete each unique out-of-loop (and thus dead) predecessor. 499 for (BasicBlock *P : BadPreds) { 500 501 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " 502 << P->getName() << "\n"); 503 504 // Zap the dead pred's terminator and replace it with unreachable. 505 Instruction *TI = P->getTerminator(); 506 changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA, 507 /*DTU=*/nullptr, MSSAU); 508 Changed = true; 509 } 510 } 511 512 if (MSSAU && VerifyMemorySSA) 513 MSSAU->getMemorySSA()->verifyMemorySSA(); 514 515 // If there are exiting blocks with branches on undef, resolve the undef in 516 // the direction which will exit the loop. This will help simplify loop 517 // trip count computations. 518 SmallVector<BasicBlock*, 8> ExitingBlocks; 519 L->getExitingBlocks(ExitingBlocks); 520 for (BasicBlock *ExitingBlock : ExitingBlocks) 521 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 522 if (BI->isConditional()) { 523 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 524 525 LLVM_DEBUG(dbgs() 526 << "LoopSimplify: Resolving \"br i1 undef\" to exit in " 527 << ExitingBlock->getName() << "\n"); 528 529 BI->setCondition(ConstantInt::get(Cond->getType(), 530 !L->contains(BI->getSuccessor(0)))); 531 532 Changed = true; 533 } 534 } 535 536 // Does the loop already have a preheader? If so, don't insert one. 537 BasicBlock *Preheader = L->getLoopPreheader(); 538 if (!Preheader) { 539 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); 540 if (Preheader) 541 Changed = true; 542 } 543 544 // Next, check to make sure that all exit nodes of the loop only have 545 // predecessors that are inside of the loop. This check guarantees that the 546 // loop preheader/header will dominate the exit blocks. If the exit block has 547 // predecessors from outside of the loop, split the edge now. 548 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) 549 Changed = true; 550 551 if (MSSAU && VerifyMemorySSA) 552 MSSAU->getMemorySSA()->verifyMemorySSA(); 553 554 // If the header has more than two predecessors at this point (from the 555 // preheader and from multiple backedges), we must adjust the loop. 556 BasicBlock *LoopLatch = L->getLoopLatch(); 557 if (!LoopLatch) { 558 // If this is really a nested loop, rip it out into a child loop. Don't do 559 // this for loops with a giant number of backedges, just factor them into a 560 // common backedge instead. 561 if (L->getNumBackEdges() < 8) { 562 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, 563 PreserveLCSSA, AC, MSSAU)) { 564 ++NumNested; 565 // Enqueue the outer loop as it should be processed next in our 566 // depth-first nest walk. 567 Worklist.push_back(OuterL); 568 569 // This is a big restructuring change, reprocess the whole loop. 570 Changed = true; 571 // GCC doesn't tail recursion eliminate this. 572 // FIXME: It isn't clear we can't rely on LLVM to TRE this. 573 goto ReprocessLoop; 574 } 575 } 576 577 // If we either couldn't, or didn't want to, identify nesting of the loops, 578 // insert a new block that all backedges target, then make it jump to the 579 // loop header. 580 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); 581 if (LoopLatch) 582 Changed = true; 583 } 584 585 if (MSSAU && VerifyMemorySSA) 586 MSSAU->getMemorySSA()->verifyMemorySSA(); 587 588 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 589 590 // Scan over the PHI nodes in the loop header. Since they now have only two 591 // incoming values (the loop is canonicalized), we may have simplified the PHI 592 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 593 PHINode *PN; 594 for (BasicBlock::iterator I = L->getHeader()->begin(); 595 (PN = dyn_cast<PHINode>(I++)); ) 596 if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { 597 if (SE) SE->forgetValue(PN); 598 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { 599 PN->replaceAllUsesWith(V); 600 PN->eraseFromParent(); 601 } 602 } 603 604 // If this loop has multiple exits and the exits all go to the same 605 // block, attempt to merge the exits. This helps several passes, such 606 // as LoopRotation, which do not support loops with multiple exits. 607 // SimplifyCFG also does this (and this code uses the same utility 608 // function), however this code is loop-aware, where SimplifyCFG is 609 // not. That gives it the advantage of being able to hoist 610 // loop-invariant instructions out of the way to open up more 611 // opportunities, and the disadvantage of having the responsibility 612 // to preserve dominator information. 613 auto HasUniqueExitBlock = [&]() { 614 BasicBlock *UniqueExit = nullptr; 615 for (auto *ExitingBB : ExitingBlocks) 616 for (auto *SuccBB : successors(ExitingBB)) { 617 if (L->contains(SuccBB)) 618 continue; 619 620 if (!UniqueExit) 621 UniqueExit = SuccBB; 622 else if (UniqueExit != SuccBB) 623 return false; 624 } 625 626 return true; 627 }; 628 if (HasUniqueExitBlock()) { 629 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 630 BasicBlock *ExitingBlock = ExitingBlocks[i]; 631 if (!ExitingBlock->getSinglePredecessor()) continue; 632 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 633 if (!BI || !BI->isConditional()) continue; 634 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 635 if (!CI || CI->getParent() != ExitingBlock) continue; 636 637 // Attempt to hoist out all instructions except for the 638 // comparison and the branch. 639 bool AllInvariant = true; 640 bool AnyInvariant = false; 641 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { 642 Instruction *Inst = &*I++; 643 if (Inst == CI) 644 continue; 645 if (!L->makeLoopInvariant( 646 Inst, AnyInvariant, 647 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { 648 AllInvariant = false; 649 break; 650 } 651 } 652 if (AnyInvariant) { 653 Changed = true; 654 // The loop disposition of all SCEV expressions that depend on any 655 // hoisted values have also changed. 656 if (SE) 657 SE->forgetLoopDispositions(L); 658 } 659 if (!AllInvariant) continue; 660 661 // The block has now been cleared of all instructions except for 662 // a comparison and a conditional branch. SimplifyCFG may be able 663 // to fold it now. 664 if (!FoldBranchToCommonDest(BI, MSSAU)) 665 continue; 666 667 // Success. The block is now dead, so remove it from the loop, 668 // update the dominator tree and delete it. 669 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " 670 << ExitingBlock->getName() << "\n"); 671 672 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 673 Changed = true; 674 LI->removeBlock(ExitingBlock); 675 676 DomTreeNode *Node = DT->getNode(ExitingBlock); 677 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 678 Node->getChildren(); 679 while (!Children.empty()) { 680 DomTreeNode *Child = Children.front(); 681 DT->changeImmediateDominator(Child, Node->getIDom()); 682 } 683 DT->eraseNode(ExitingBlock); 684 if (MSSAU) { 685 SmallSetVector<BasicBlock *, 8> ExitBlockSet; 686 ExitBlockSet.insert(ExitingBlock); 687 MSSAU->removeBlocks(ExitBlockSet); 688 } 689 690 BI->getSuccessor(0)->removePredecessor( 691 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 692 BI->getSuccessor(1)->removePredecessor( 693 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); 694 ExitingBlock->eraseFromParent(); 695 } 696 } 697 698 // Changing exit conditions for blocks may affect exit counts of this loop and 699 // any of its paretns, so we must invalidate the entire subtree if we've made 700 // any changes. 701 if (Changed && SE) 702 SE->forgetTopmostLoop(L); 703 704 if (MSSAU && VerifyMemorySSA) 705 MSSAU->getMemorySSA()->verifyMemorySSA(); 706 707 return Changed; 708 } 709 710 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, 711 ScalarEvolution *SE, AssumptionCache *AC, 712 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 713 bool Changed = false; 714 715 #ifndef NDEBUG 716 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA 717 // form. 718 if (PreserveLCSSA) { 719 assert(DT && "DT not available."); 720 assert(LI && "LI not available."); 721 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 722 "Requested to preserve LCSSA, but it's already broken."); 723 } 724 #endif 725 726 // Worklist maintains our depth-first queue of loops in this nest to process. 727 SmallVector<Loop *, 4> Worklist; 728 Worklist.push_back(L); 729 730 // Walk the worklist from front to back, pushing newly found sub loops onto 731 // the back. This will let us process loops from back to front in depth-first 732 // order. We can use this simple process because loops form a tree. 733 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 734 Loop *L2 = Worklist[Idx]; 735 Worklist.append(L2->begin(), L2->end()); 736 } 737 738 while (!Worklist.empty()) 739 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, 740 AC, MSSAU, PreserveLCSSA); 741 742 return Changed; 743 } 744 745 namespace { 746 struct LoopSimplify : public FunctionPass { 747 static char ID; // Pass identification, replacement for typeid 748 LoopSimplify() : FunctionPass(ID) { 749 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); 750 } 751 752 bool runOnFunction(Function &F) override; 753 754 void getAnalysisUsage(AnalysisUsage &AU) const override { 755 AU.addRequired<AssumptionCacheTracker>(); 756 757 // We need loop information to identify the loops... 758 AU.addRequired<DominatorTreeWrapperPass>(); 759 AU.addPreserved<DominatorTreeWrapperPass>(); 760 761 AU.addRequired<LoopInfoWrapperPass>(); 762 AU.addPreserved<LoopInfoWrapperPass>(); 763 764 AU.addPreserved<BasicAAWrapperPass>(); 765 AU.addPreserved<AAResultsWrapperPass>(); 766 AU.addPreserved<GlobalsAAWrapperPass>(); 767 AU.addPreserved<ScalarEvolutionWrapperPass>(); 768 AU.addPreserved<SCEVAAWrapperPass>(); 769 AU.addPreservedID(LCSSAID); 770 AU.addPreserved<DependenceAnalysisWrapperPass>(); 771 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 772 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 773 if (EnableMSSALoopDependency) 774 AU.addPreserved<MemorySSAWrapperPass>(); 775 } 776 777 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 778 void verifyAnalysis() const override; 779 }; 780 } 781 782 char LoopSimplify::ID = 0; 783 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", 784 "Canonicalize natural loops", false, false) 785 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 786 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 787 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 788 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", 789 "Canonicalize natural loops", false, false) 790 791 // Publicly exposed interface to pass... 792 char &llvm::LoopSimplifyID = LoopSimplify::ID; 793 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 794 795 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do 796 /// it in any convenient order) inserting preheaders... 797 /// 798 bool LoopSimplify::runOnFunction(Function &F) { 799 bool Changed = false; 800 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 801 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 802 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 803 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; 804 AssumptionCache *AC = 805 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 806 MemorySSA *MSSA = nullptr; 807 std::unique_ptr<MemorySSAUpdater> MSSAU; 808 if (EnableMSSALoopDependency) { 809 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 810 if (MSSAAnalysis) { 811 MSSA = &MSSAAnalysis->getMSSA(); 812 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 813 } 814 } 815 816 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 817 818 // Simplify each loop nest in the function. 819 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 820 Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); 821 822 #ifndef NDEBUG 823 if (PreserveLCSSA) { 824 bool InLCSSA = all_of( 825 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); 826 assert(InLCSSA && "LCSSA is broken after loop-simplify."); 827 } 828 #endif 829 return Changed; 830 } 831 832 PreservedAnalyses LoopSimplifyPass::run(Function &F, 833 FunctionAnalysisManager &AM) { 834 bool Changed = false; 835 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); 836 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 837 ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 838 AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); 839 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F); 840 std::unique_ptr<MemorySSAUpdater> MSSAU; 841 if (MSSAAnalysis) { 842 auto *MSSA = &MSSAAnalysis->getMSSA(); 843 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 844 } 845 846 847 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA 848 // after simplifying the loops. MemorySSA is preserved if it exists. 849 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 850 Changed |= 851 simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false); 852 853 if (!Changed) 854 return PreservedAnalyses::all(); 855 856 PreservedAnalyses PA; 857 PA.preserve<DominatorTreeAnalysis>(); 858 PA.preserve<LoopAnalysis>(); 859 PA.preserve<BasicAA>(); 860 PA.preserve<GlobalsAA>(); 861 PA.preserve<SCEVAA>(); 862 PA.preserve<ScalarEvolutionAnalysis>(); 863 PA.preserve<DependenceAnalysis>(); 864 if (MSSAAnalysis) 865 PA.preserve<MemorySSAAnalysis>(); 866 // BPI maps conditional terminators to probabilities, LoopSimplify can insert 867 // blocks, but it does so only by splitting existing blocks and edges. This 868 // results in the interesting property that all new terminators inserted are 869 // unconditional branches which do not appear in BPI. All deletions are 870 // handled via ValueHandle callbacks w/in BPI. 871 PA.preserve<BranchProbabilityAnalysis>(); 872 return PA; 873 } 874 875 // FIXME: Restore this code when we re-enable verification in verifyAnalysis 876 // below. 877 #if 0 878 static void verifyLoop(Loop *L) { 879 // Verify subloops. 880 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 881 verifyLoop(*I); 882 883 // It used to be possible to just assert L->isLoopSimplifyForm(), however 884 // with the introduction of indirectbr, there are now cases where it's 885 // not possible to transform a loop as necessary. We can at least check 886 // that there is an indirectbr near any time there's trouble. 887 888 // Indirectbr can interfere with preheader and unique backedge insertion. 889 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 890 bool HasIndBrPred = false; 891 for (pred_iterator PI = pred_begin(L->getHeader()), 892 PE = pred_end(L->getHeader()); PI != PE; ++PI) 893 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 894 HasIndBrPred = true; 895 break; 896 } 897 assert(HasIndBrPred && 898 "LoopSimplify has no excuse for missing loop header info!"); 899 (void)HasIndBrPred; 900 } 901 902 // Indirectbr can interfere with exit block canonicalization. 903 if (!L->hasDedicatedExits()) { 904 bool HasIndBrExiting = false; 905 SmallVector<BasicBlock*, 8> ExitingBlocks; 906 L->getExitingBlocks(ExitingBlocks); 907 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 908 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 909 HasIndBrExiting = true; 910 break; 911 } 912 } 913 914 assert(HasIndBrExiting && 915 "LoopSimplify has no excuse for missing exit block info!"); 916 (void)HasIndBrExiting; 917 } 918 } 919 #endif 920 921 void LoopSimplify::verifyAnalysis() const { 922 // FIXME: This routine is being called mid-way through the loop pass manager 923 // as loop passes destroy this analysis. That's actually fine, but we have no 924 // way of expressing that here. Once all of the passes that destroy this are 925 // hoisted out of the loop pass manager we can add back verification here. 926 #if 0 927 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 928 verifyLoop(*I); 929 #endif 930 } 931