1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides utilities to convert a loop into a loop with bottom test. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/AssumptionCache.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/SSAUpdater.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-rotate" 46 47 STATISTIC(NumNotRotatedDueToHeaderSize, 48 "Number of loops not rotated due to the header size"); 49 STATISTIC(NumInstrsHoisted, 50 "Number of instructions hoisted into loop preheader"); 51 STATISTIC(NumInstrsDuplicated, 52 "Number of instructions cloned into loop preheader"); 53 STATISTIC(NumRotated, "Number of loops rotated"); 54 55 static cl::opt<bool> 56 MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden, 57 cl::desc("Allow loop rotation multiple times in order to reach " 58 "a better latch exit")); 59 60 namespace { 61 /// A simple loop rotation transformation. 62 class LoopRotate { 63 const unsigned MaxHeaderSize; 64 LoopInfo *LI; 65 const TargetTransformInfo *TTI; 66 AssumptionCache *AC; 67 DominatorTree *DT; 68 ScalarEvolution *SE; 69 MemorySSAUpdater *MSSAU; 70 const SimplifyQuery &SQ; 71 bool RotationOnly; 72 bool IsUtilMode; 73 bool PrepareForLTO; 74 75 public: 76 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 77 const TargetTransformInfo *TTI, AssumptionCache *AC, 78 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 79 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, 80 bool PrepareForLTO) 81 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 82 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), 83 IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} 84 bool processLoop(Loop *L); 85 86 private: 87 bool rotateLoop(Loop *L, bool SimplifiedLatch); 88 bool simplifyLoopLatch(Loop *L); 89 }; 90 } // end anonymous namespace 91 92 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not 93 /// previously exist in the map, and the value was inserted. 94 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { 95 bool Inserted = VM.insert({K, V}).second; 96 assert(Inserted); 97 (void)Inserted; 98 } 99 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 100 /// old header into the preheader. If there were uses of the values produced by 101 /// these instruction that were outside of the loop, we have to insert PHI nodes 102 /// to merge the two values. Do this now. 103 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 104 BasicBlock *OrigPreheader, 105 ValueToValueMapTy &ValueMap, 106 ScalarEvolution *SE, 107 SmallVectorImpl<PHINode*> *InsertedPHIs) { 108 // Remove PHI node entries that are no longer live. 109 BasicBlock::iterator I, E = OrigHeader->end(); 110 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 111 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 112 113 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 114 // as necessary. 115 SSAUpdater SSA(InsertedPHIs); 116 for (I = OrigHeader->begin(); I != E; ++I) { 117 Value *OrigHeaderVal = &*I; 118 119 // If there are no uses of the value (e.g. because it returns void), there 120 // is nothing to rewrite. 121 if (OrigHeaderVal->use_empty()) 122 continue; 123 124 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 125 126 // The value now exits in two versions: the initial value in the preheader 127 // and the loop "next" value in the original header. 128 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 129 // Force re-computation of OrigHeaderVal, as some users now need to use the 130 // new PHI node. 131 if (SE) 132 SE->forgetValue(OrigHeaderVal); 133 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 134 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 135 136 // Visit each use of the OrigHeader instruction. 137 for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) { 138 // SSAUpdater can't handle a non-PHI use in the same block as an 139 // earlier def. We can easily handle those cases manually. 140 Instruction *UserInst = cast<Instruction>(U.getUser()); 141 if (!isa<PHINode>(UserInst)) { 142 BasicBlock *UserBB = UserInst->getParent(); 143 144 // The original users in the OrigHeader are already using the 145 // original definitions. 146 if (UserBB == OrigHeader) 147 continue; 148 149 // Users in the OrigPreHeader need to use the value to which the 150 // original definitions are mapped. 151 if (UserBB == OrigPreheader) { 152 U = OrigPreHeaderVal; 153 continue; 154 } 155 } 156 157 // Anything else can be handled by SSAUpdater. 158 SSA.RewriteUse(U); 159 } 160 161 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 162 // intrinsics. 163 SmallVector<DbgValueInst *, 1> DbgValues; 164 llvm::findDbgValues(DbgValues, OrigHeaderVal); 165 for (auto &DbgValue : DbgValues) { 166 // The original users in the OrigHeader are already using the original 167 // definitions. 168 BasicBlock *UserBB = DbgValue->getParent(); 169 if (UserBB == OrigHeader) 170 continue; 171 172 // Users in the OrigPreHeader need to use the value to which the 173 // original definitions are mapped and anything else can be handled by 174 // the SSAUpdater. To avoid adding PHINodes, check if the value is 175 // available in UserBB, if not substitute undef. 176 Value *NewVal; 177 if (UserBB == OrigPreheader) 178 NewVal = OrigPreHeaderVal; 179 else if (SSA.HasValueForBlock(UserBB)) 180 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 181 else 182 NewVal = UndefValue::get(OrigHeaderVal->getType()); 183 DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal); 184 } 185 } 186 } 187 188 // Assuming both header and latch are exiting, look for a phi which is only 189 // used outside the loop (via a LCSSA phi) in the exit from the header. 190 // This means that rotating the loop can remove the phi. 191 static bool profitableToRotateLoopExitingLatch(Loop *L) { 192 BasicBlock *Header = L->getHeader(); 193 BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator()); 194 assert(BI && BI->isConditional() && "need header with conditional exit"); 195 BasicBlock *HeaderExit = BI->getSuccessor(0); 196 if (L->contains(HeaderExit)) 197 HeaderExit = BI->getSuccessor(1); 198 199 for (auto &Phi : Header->phis()) { 200 // Look for uses of this phi in the loop/via exits other than the header. 201 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 202 return cast<Instruction>(U)->getParent() != HeaderExit; 203 })) 204 continue; 205 return true; 206 } 207 return false; 208 } 209 210 // Check that latch exit is deoptimizing (which means - very unlikely to happen) 211 // and there is another exit from the loop which is non-deoptimizing. 212 // If we rotate latch to that exit our loop has a better chance of being fully 213 // canonical. 214 // 215 // It can give false positives in some rare cases. 216 static bool canRotateDeoptimizingLatchExit(Loop *L) { 217 BasicBlock *Latch = L->getLoopLatch(); 218 assert(Latch && "need latch"); 219 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 220 // Need normal exiting latch. 221 if (!BI || !BI->isConditional()) 222 return false; 223 224 BasicBlock *Exit = BI->getSuccessor(1); 225 if (L->contains(Exit)) 226 Exit = BI->getSuccessor(0); 227 228 // Latch exit is non-deoptimizing, no need to rotate. 229 if (!Exit->getPostdominatingDeoptimizeCall()) 230 return false; 231 232 SmallVector<BasicBlock *, 4> Exits; 233 L->getUniqueExitBlocks(Exits); 234 if (!Exits.empty()) { 235 // There is at least one non-deoptimizing exit. 236 // 237 // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, 238 // as it can conservatively return false for deoptimizing exits with 239 // complex enough control flow down to deoptimize call. 240 // 241 // That means here we can report success for a case where 242 // all exits are deoptimizing but one of them has complex enough 243 // control flow (e.g. with loops). 244 // 245 // That should be a very rare case and false positives for this function 246 // have compile-time effect only. 247 return any_of(Exits, [](const BasicBlock *BB) { 248 return !BB->getPostdominatingDeoptimizeCall(); 249 }); 250 } 251 return false; 252 } 253 254 /// Rotate loop LP. Return true if the loop is rotated. 255 /// 256 /// \param SimplifiedLatch is true if the latch was just folded into the final 257 /// loop exit. In this case we may want to rotate even though the new latch is 258 /// now an exiting branch. This rotation would have happened had the latch not 259 /// been simplified. However, if SimplifiedLatch is false, then we avoid 260 /// rotating loops in which the latch exits to avoid excessive or endless 261 /// rotation. LoopRotate should be repeatable and converge to a canonical 262 /// form. This property is satisfied because simplifying the loop latch can only 263 /// happen once across multiple invocations of the LoopRotate pass. 264 /// 265 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go 266 /// so to reach a suitable (non-deoptimizing) exit. 267 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 268 // If the loop has only one block then there is not much to rotate. 269 if (L->getBlocks().size() == 1) 270 return false; 271 272 bool Rotated = false; 273 do { 274 BasicBlock *OrigHeader = L->getHeader(); 275 BasicBlock *OrigLatch = L->getLoopLatch(); 276 277 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 278 if (!BI || BI->isUnconditional()) 279 return Rotated; 280 281 // If the loop header is not one of the loop exiting blocks then 282 // either this loop is already rotated or it is not 283 // suitable for loop rotation transformations. 284 if (!L->isLoopExiting(OrigHeader)) 285 return Rotated; 286 287 // If the loop latch already contains a branch that leaves the loop then the 288 // loop is already rotated. 289 if (!OrigLatch) 290 return Rotated; 291 292 // Rotate if either the loop latch does *not* exit the loop, or if the loop 293 // latch was just simplified. Or if we think it will be profitable. 294 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 295 !profitableToRotateLoopExitingLatch(L) && 296 !canRotateDeoptimizingLatchExit(L)) 297 return Rotated; 298 299 // Check size of original header and reject loop if it is very big or we can't 300 // duplicate blocks inside it. 301 { 302 SmallPtrSet<const Value *, 32> EphValues; 303 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 304 305 CodeMetrics Metrics; 306 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO); 307 if (Metrics.notDuplicatable) { 308 LLVM_DEBUG( 309 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 310 << " instructions: "; 311 L->dump()); 312 return Rotated; 313 } 314 if (Metrics.convergent) { 315 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 316 "instructions: "; 317 L->dump()); 318 return Rotated; 319 } 320 if (Metrics.NumInsts > MaxHeaderSize) { 321 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " 322 << Metrics.NumInsts 323 << " instructions, which is more than the threshold (" 324 << MaxHeaderSize << " instructions): "; 325 L->dump()); 326 ++NumNotRotatedDueToHeaderSize; 327 return Rotated; 328 } 329 330 // When preparing for LTO, avoid rotating loops with calls that could be 331 // inlined during the LTO stage. 332 if (PrepareForLTO && Metrics.NumInlineCandidates > 0) 333 return Rotated; 334 } 335 336 // Now, this loop is suitable for rotation. 337 BasicBlock *OrigPreheader = L->getLoopPreheader(); 338 339 // If the loop could not be converted to canonical form, it must have an 340 // indirectbr in it, just give up. 341 if (!OrigPreheader || !L->hasDedicatedExits()) 342 return Rotated; 343 344 // Anything ScalarEvolution may know about this loop or the PHI nodes 345 // in its header will soon be invalidated. We should also invalidate 346 // all outer loops because insertion and deletion of blocks that happens 347 // during the rotation may violate invariants related to backedge taken 348 // infos in them. 349 if (SE) 350 SE->forgetTopmostLoop(L); 351 352 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 353 if (MSSAU && VerifyMemorySSA) 354 MSSAU->getMemorySSA()->verifyMemorySSA(); 355 356 // Find new Loop header. NewHeader is a Header's one and only successor 357 // that is inside loop. Header's other successor is outside the 358 // loop. Otherwise loop is not suitable for rotation. 359 BasicBlock *Exit = BI->getSuccessor(0); 360 BasicBlock *NewHeader = BI->getSuccessor(1); 361 if (L->contains(Exit)) 362 std::swap(Exit, NewHeader); 363 assert(NewHeader && "Unable to determine new loop header"); 364 assert(L->contains(NewHeader) && !L->contains(Exit) && 365 "Unable to determine loop header and exit blocks"); 366 367 // This code assumes that the new header has exactly one predecessor. 368 // Remove any single-entry PHI nodes in it. 369 assert(NewHeader->getSinglePredecessor() && 370 "New header doesn't have one pred!"); 371 FoldSingleEntryPHINodes(NewHeader); 372 373 // Begin by walking OrigHeader and populating ValueMap with an entry for 374 // each Instruction. 375 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 376 ValueToValueMapTy ValueMap, ValueMapMSSA; 377 378 // For PHI nodes, the value available in OldPreHeader is just the 379 // incoming value from OldPreHeader. 380 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 381 InsertNewValueIntoMap(ValueMap, PN, 382 PN->getIncomingValueForBlock(OrigPreheader)); 383 384 // For the rest of the instructions, either hoist to the OrigPreheader if 385 // possible or create a clone in the OldPreHeader if not. 386 Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); 387 388 // Record all debug intrinsics preceding LoopEntryBranch to avoid 389 // duplication. 390 using DbgIntrinsicHash = 391 std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>; 392 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { 393 auto VarLocOps = D->location_ops(); 394 return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()), 395 D->getVariable()}, 396 D->getExpression()}; 397 }; 398 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 399 for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) { 400 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) 401 DbgIntrinsics.insert(makeHash(DII)); 402 else 403 break; 404 } 405 406 // Remember the local noalias scope declarations in the header. After the 407 // rotation, they must be duplicated and the scope must be cloned. This 408 // avoids unwanted interaction across iterations. 409 SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; 410 for (Instruction &I : *OrigHeader) 411 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 412 NoAliasDeclInstructions.push_back(Decl); 413 414 while (I != E) { 415 Instruction *Inst = &*I++; 416 417 // If the instruction's operands are invariant and it doesn't read or write 418 // memory, then it is safe to hoist. Doing this doesn't change the order of 419 // execution in the preheader, but does prevent the instruction from 420 // executing in each iteration of the loop. This means it is safe to hoist 421 // something that might trap, but isn't safe to hoist something that reads 422 // memory (without proving that the loop doesn't write). 423 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 424 !Inst->mayWriteToMemory() && !Inst->isTerminator() && 425 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 426 Inst->moveBefore(LoopEntryBranch); 427 ++NumInstrsHoisted; 428 continue; 429 } 430 431 // Otherwise, create a duplicate of the instruction. 432 Instruction *C = Inst->clone(); 433 ++NumInstrsDuplicated; 434 435 // Eagerly remap the operands of the instruction. 436 RemapInstruction(C, ValueMap, 437 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 438 439 // Avoid inserting the same intrinsic twice. 440 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 441 if (DbgIntrinsics.count(makeHash(DII))) { 442 C->deleteValue(); 443 continue; 444 } 445 446 // With the operands remapped, see if the instruction constant folds or is 447 // otherwise simplifyable. This commonly occurs because the entry from PHI 448 // nodes allows icmps and other instructions to fold. 449 Value *V = SimplifyInstruction(C, SQ); 450 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 451 // If so, then delete the temporary instruction and stick the folded value 452 // in the map. 453 InsertNewValueIntoMap(ValueMap, Inst, V); 454 if (!C->mayHaveSideEffects()) { 455 C->deleteValue(); 456 C = nullptr; 457 } 458 } else { 459 InsertNewValueIntoMap(ValueMap, Inst, C); 460 } 461 if (C) { 462 // Otherwise, stick the new instruction into the new block! 463 C->setName(Inst->getName()); 464 C->insertBefore(LoopEntryBranch); 465 466 if (auto *II = dyn_cast<AssumeInst>(C)) 467 AC->registerAssumption(II); 468 // MemorySSA cares whether the cloned instruction was inserted or not, and 469 // not whether it can be remapped to a simplified value. 470 if (MSSAU) 471 InsertNewValueIntoMap(ValueMapMSSA, Inst, C); 472 } 473 } 474 475 if (!NoAliasDeclInstructions.empty()) { 476 // There are noalias scope declarations: 477 // (general): 478 // Original: OrigPre { OrigHeader NewHeader ... Latch } 479 // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } 480 // 481 // with D: llvm.experimental.noalias.scope.decl, 482 // U: !noalias or !alias.scope depending on D 483 // ... { D U1 U2 } can transform into: 484 // (0) : ... { D U1 U2 } // no relevant rotation for this part 485 // (1) : ... D' { U1 U2 D } // D is part of OrigHeader 486 // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader 487 // 488 // We now want to transform: 489 // (1) -> : ... D' { D U1 U2 D'' } 490 // (2) -> : ... D' U1' { D U2 D'' U1'' } 491 // D: original llvm.experimental.noalias.scope.decl 492 // D', U1': duplicate with replaced scopes 493 // D'', U1'': different duplicate with replaced scopes 494 // This ensures a safe fallback to 'may_alias' introduced by the rotate, 495 // as U1'' and U1' scopes will not be compatible wrt to the local restrict 496 497 // Clone the llvm.experimental.noalias.decl again for the NewHeader. 498 Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI()); 499 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { 500 LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:" 501 << *NAD << "\n"); 502 Instruction *NewNAD = NAD->clone(); 503 NewNAD->insertBefore(NewHeaderInsertionPoint); 504 } 505 506 // Scopes must now be duplicated, once for OrigHeader and once for 507 // OrigPreHeader'. 508 { 509 auto &Context = NewHeader->getContext(); 510 511 SmallVector<MDNode *, 8> NoAliasDeclScopes; 512 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) 513 NoAliasDeclScopes.push_back(NAD->getScopeList()); 514 515 LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n"); 516 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context, 517 "h.rot"); 518 LLVM_DEBUG(OrigHeader->dump()); 519 520 // Keep the compile time impact low by only adapting the inserted block 521 // of instructions in the OrigPreHeader. This might result in slightly 522 // more aliasing between these instructions and those that were already 523 // present, but it will be much faster when the original PreHeader is 524 // large. 525 LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n"); 526 auto *FirstDecl = 527 cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]); 528 auto *LastInst = &OrigPreheader->back(); 529 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst, 530 Context, "pre.rot"); 531 LLVM_DEBUG(OrigPreheader->dump()); 532 533 LLVM_DEBUG(dbgs() << " Updated NewHeader:\n"); 534 LLVM_DEBUG(NewHeader->dump()); 535 } 536 } 537 538 // Along with all the other instructions, we just cloned OrigHeader's 539 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 540 // successors by duplicating their incoming values for OrigHeader. 541 for (BasicBlock *SuccBB : successors(OrigHeader)) 542 for (BasicBlock::iterator BI = SuccBB->begin(); 543 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 544 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 545 546 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 547 // OrigPreHeader's old terminator (the original branch into the loop), and 548 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 549 LoopEntryBranch->eraseFromParent(); 550 551 // Update MemorySSA before the rewrite call below changes the 1:1 552 // instruction:cloned_instruction_or_value mapping. 553 if (MSSAU) { 554 InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); 555 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, 556 ValueMapMSSA); 557 } 558 559 SmallVector<PHINode*, 2> InsertedPHIs; 560 // If there were any uses of instructions in the duplicated block outside the 561 // loop, update them, inserting PHI nodes as required 562 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE, 563 &InsertedPHIs); 564 565 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 566 // previously had debug metadata attached. This keeps the debug info 567 // up-to-date in the loop body. 568 if (!InsertedPHIs.empty()) 569 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 570 571 // NewHeader is now the header of the loop. 572 L->moveToHeader(NewHeader); 573 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 574 575 // Inform DT about changes to the CFG. 576 if (DT) { 577 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 578 // the DT about the removed edge to the OrigHeader (that got removed). 579 SmallVector<DominatorTree::UpdateType, 3> Updates; 580 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 581 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 582 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 583 584 if (MSSAU) { 585 MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true); 586 if (VerifyMemorySSA) 587 MSSAU->getMemorySSA()->verifyMemorySSA(); 588 } else { 589 DT->applyUpdates(Updates); 590 } 591 } 592 593 // At this point, we've finished our major CFG changes. As part of cloning 594 // the loop into the preheader we've simplified instructions and the 595 // duplicated conditional branch may now be branching on a constant. If it is 596 // branching on a constant and if that constant means that we enter the loop, 597 // then we fold away the cond branch to an uncond branch. This simplifies the 598 // loop in cases important for nested loops, and it also means we don't have 599 // to split as many edges. 600 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 601 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 602 if (!isa<ConstantInt>(PHBI->getCondition()) || 603 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 604 NewHeader) { 605 // The conditional branch can't be folded, handle the general case. 606 // Split edges as necessary to preserve LoopSimplify form. 607 608 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 609 // thus is not a preheader anymore. 610 // Split the edge to form a real preheader. 611 BasicBlock *NewPH = SplitCriticalEdge( 612 OrigPreheader, NewHeader, 613 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 614 NewPH->setName(NewHeader->getName() + ".lr.ph"); 615 616 // Preserve canonical loop form, which means that 'Exit' should have only 617 // one predecessor. Note that Exit could be an exit block for multiple 618 // nested loops, causing both of the edges to now be critical and need to 619 // be split. 620 SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit)); 621 bool SplitLatchEdge = false; 622 for (BasicBlock *ExitPred : ExitPreds) { 623 // We only need to split loop exit edges. 624 Loop *PredLoop = LI->getLoopFor(ExitPred); 625 if (!PredLoop || PredLoop->contains(Exit) || 626 ExitPred->getTerminator()->isIndirectTerminator()) 627 continue; 628 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 629 BasicBlock *ExitSplit = SplitCriticalEdge( 630 ExitPred, Exit, 631 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 632 ExitSplit->moveBefore(Exit); 633 } 634 assert(SplitLatchEdge && 635 "Despite splitting all preds, failed to split latch exit?"); 636 (void)SplitLatchEdge; 637 } else { 638 // We can fold the conditional branch in the preheader, this makes things 639 // simpler. The first step is to remove the extra edge to the Exit block. 640 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 641 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 642 NewBI->setDebugLoc(PHBI->getDebugLoc()); 643 PHBI->eraseFromParent(); 644 645 // With our CFG finalized, update DomTree if it is available. 646 if (DT) DT->deleteEdge(OrigPreheader, Exit); 647 648 // Update MSSA too, if available. 649 if (MSSAU) 650 MSSAU->removeEdge(OrigPreheader, Exit); 651 } 652 653 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 654 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 655 656 if (MSSAU && VerifyMemorySSA) 657 MSSAU->getMemorySSA()->verifyMemorySSA(); 658 659 // Now that the CFG and DomTree are in a consistent state again, try to merge 660 // the OrigHeader block into OrigLatch. This will succeed if they are 661 // connected by an unconditional branch. This is just a cleanup so the 662 // emitted code isn't too gross in this common case. 663 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 664 BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); 665 bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); 666 if (DidMerge) 667 RemoveRedundantDbgInstrs(PredBB); 668 669 if (MSSAU && VerifyMemorySSA) 670 MSSAU->getMemorySSA()->verifyMemorySSA(); 671 672 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 673 674 ++NumRotated; 675 676 Rotated = true; 677 SimplifiedLatch = false; 678 679 // Check that new latch is a deoptimizing exit and then repeat rotation if possible. 680 // Deoptimizing latch exit is not a generally typical case, so we just loop over. 681 // TODO: if it becomes a performance bottleneck extend rotation algorithm 682 // to handle multiple rotations in one go. 683 } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); 684 685 686 return true; 687 } 688 689 /// Determine whether the instructions in this range may be safely and cheaply 690 /// speculated. This is not an important enough situation to develop complex 691 /// heuristics. We handle a single arithmetic instruction along with any type 692 /// conversions. 693 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 694 BasicBlock::iterator End, Loop *L) { 695 bool seenIncrement = false; 696 bool MultiExitLoop = false; 697 698 if (!L->getExitingBlock()) 699 MultiExitLoop = true; 700 701 for (BasicBlock::iterator I = Begin; I != End; ++I) { 702 703 if (!isSafeToSpeculativelyExecute(&*I)) 704 return false; 705 706 if (isa<DbgInfoIntrinsic>(I)) 707 continue; 708 709 switch (I->getOpcode()) { 710 default: 711 return false; 712 case Instruction::GetElementPtr: 713 // GEPs are cheap if all indices are constant. 714 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 715 return false; 716 // fall-thru to increment case 717 LLVM_FALLTHROUGH; 718 case Instruction::Add: 719 case Instruction::Sub: 720 case Instruction::And: 721 case Instruction::Or: 722 case Instruction::Xor: 723 case Instruction::Shl: 724 case Instruction::LShr: 725 case Instruction::AShr: { 726 Value *IVOpnd = 727 !isa<Constant>(I->getOperand(0)) 728 ? I->getOperand(0) 729 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 730 if (!IVOpnd) 731 return false; 732 733 // If increment operand is used outside of the loop, this speculation 734 // could cause extra live range interference. 735 if (MultiExitLoop) { 736 for (User *UseI : IVOpnd->users()) { 737 auto *UserInst = cast<Instruction>(UseI); 738 if (!L->contains(UserInst)) 739 return false; 740 } 741 } 742 743 if (seenIncrement) 744 return false; 745 seenIncrement = true; 746 break; 747 } 748 case Instruction::Trunc: 749 case Instruction::ZExt: 750 case Instruction::SExt: 751 // ignore type conversions 752 break; 753 } 754 } 755 return true; 756 } 757 758 /// Fold the loop tail into the loop exit by speculating the loop tail 759 /// instructions. Typically, this is a single post-increment. In the case of a 760 /// simple 2-block loop, hoisting the increment can be much better than 761 /// duplicating the entire loop header. In the case of loops with early exits, 762 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 763 /// canonical form so downstream passes can handle it. 764 /// 765 /// I don't believe this invalidates SCEV. 766 bool LoopRotate::simplifyLoopLatch(Loop *L) { 767 BasicBlock *Latch = L->getLoopLatch(); 768 if (!Latch || Latch->hasAddressTaken()) 769 return false; 770 771 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 772 if (!Jmp || !Jmp->isUnconditional()) 773 return false; 774 775 BasicBlock *LastExit = Latch->getSinglePredecessor(); 776 if (!LastExit || !L->isLoopExiting(LastExit)) 777 return false; 778 779 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 780 if (!BI) 781 return false; 782 783 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 784 return false; 785 786 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 787 << LastExit->getName() << "\n"); 788 789 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 790 MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, 791 /*PredecessorWithTwoSuccessors=*/true); 792 793 if (MSSAU && VerifyMemorySSA) 794 MSSAU->getMemorySSA()->verifyMemorySSA(); 795 796 return true; 797 } 798 799 /// Rotate \c L, and return true if any modification was made. 800 bool LoopRotate::processLoop(Loop *L) { 801 // Save the loop metadata. 802 MDNode *LoopMD = L->getLoopID(); 803 804 bool SimplifiedLatch = false; 805 806 // Simplify the loop latch before attempting to rotate the header 807 // upward. Rotation may not be needed if the loop tail can be folded into the 808 // loop exit. 809 if (!RotationOnly) 810 SimplifiedLatch = simplifyLoopLatch(L); 811 812 bool MadeChange = rotateLoop(L, SimplifiedLatch); 813 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 814 "Loop latch should be exiting after loop-rotate."); 815 816 // Restore the loop metadata. 817 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 818 if ((MadeChange || SimplifiedLatch) && LoopMD) 819 L->setLoopID(LoopMD); 820 821 return MadeChange || SimplifiedLatch; 822 } 823 824 825 /// The utility to convert a loop into a loop with bottom test. 826 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 827 AssumptionCache *AC, DominatorTree *DT, 828 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 829 const SimplifyQuery &SQ, bool RotationOnly = true, 830 unsigned Threshold = unsigned(-1), 831 bool IsUtilMode = true, bool PrepareForLTO) { 832 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, 833 IsUtilMode, PrepareForLTO); 834 return LR.processLoop(L); 835 } 836