xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-rotate"
46 
47 STATISTIC(NumNotRotatedDueToHeaderSize,
48           "Number of loops not rotated due to the header size");
49 STATISTIC(NumInstrsHoisted,
50           "Number of instructions hoisted into loop preheader");
51 STATISTIC(NumInstrsDuplicated,
52           "Number of instructions cloned into loop preheader");
53 STATISTIC(NumRotated, "Number of loops rotated");
54 
55 static cl::opt<bool>
56     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
57                 cl::desc("Allow loop rotation multiple times in order to reach "
58                          "a better latch exit"));
59 
60 namespace {
61 /// A simple loop rotation transformation.
62 class LoopRotate {
63   const unsigned MaxHeaderSize;
64   LoopInfo *LI;
65   const TargetTransformInfo *TTI;
66   AssumptionCache *AC;
67   DominatorTree *DT;
68   ScalarEvolution *SE;
69   MemorySSAUpdater *MSSAU;
70   const SimplifyQuery &SQ;
71   bool RotationOnly;
72   bool IsUtilMode;
73   bool PrepareForLTO;
74 
75 public:
76   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
77              const TargetTransformInfo *TTI, AssumptionCache *AC,
78              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
79              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
80              bool PrepareForLTO)
81       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
82         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
83         IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
84   bool processLoop(Loop *L);
85 
86 private:
87   bool rotateLoop(Loop *L, bool SimplifiedLatch);
88   bool simplifyLoopLatch(Loop *L);
89 };
90 } // end anonymous namespace
91 
92 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
93 /// previously exist in the map, and the value was inserted.
94 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
95   bool Inserted = VM.insert({K, V}).second;
96   assert(Inserted);
97   (void)Inserted;
98 }
99 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
100 /// old header into the preheader.  If there were uses of the values produced by
101 /// these instruction that were outside of the loop, we have to insert PHI nodes
102 /// to merge the two values.  Do this now.
103 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
104                                             BasicBlock *OrigPreheader,
105                                             ValueToValueMapTy &ValueMap,
106                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
107   // Remove PHI node entries that are no longer live.
108   BasicBlock::iterator I, E = OrigHeader->end();
109   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
110     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
111 
112   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
113   // as necessary.
114   SSAUpdater SSA(InsertedPHIs);
115   for (I = OrigHeader->begin(); I != E; ++I) {
116     Value *OrigHeaderVal = &*I;
117 
118     // If there are no uses of the value (e.g. because it returns void), there
119     // is nothing to rewrite.
120     if (OrigHeaderVal->use_empty())
121       continue;
122 
123     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
124 
125     // The value now exits in two versions: the initial value in the preheader
126     // and the loop "next" value in the original header.
127     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
128     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
129     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
130 
131     // Visit each use of the OrigHeader instruction.
132     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
133                              UE = OrigHeaderVal->use_end();
134          UI != UE;) {
135       // Grab the use before incrementing the iterator.
136       Use &U = *UI;
137 
138       // Increment the iterator before removing the use from the list.
139       ++UI;
140 
141       // SSAUpdater can't handle a non-PHI use in the same block as an
142       // earlier def. We can easily handle those cases manually.
143       Instruction *UserInst = cast<Instruction>(U.getUser());
144       if (!isa<PHINode>(UserInst)) {
145         BasicBlock *UserBB = UserInst->getParent();
146 
147         // The original users in the OrigHeader are already using the
148         // original definitions.
149         if (UserBB == OrigHeader)
150           continue;
151 
152         // Users in the OrigPreHeader need to use the value to which the
153         // original definitions are mapped.
154         if (UserBB == OrigPreheader) {
155           U = OrigPreHeaderVal;
156           continue;
157         }
158       }
159 
160       // Anything else can be handled by SSAUpdater.
161       SSA.RewriteUse(U);
162     }
163 
164     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
165     // intrinsics.
166     SmallVector<DbgValueInst *, 1> DbgValues;
167     llvm::findDbgValues(DbgValues, OrigHeaderVal);
168     for (auto &DbgValue : DbgValues) {
169       // The original users in the OrigHeader are already using the original
170       // definitions.
171       BasicBlock *UserBB = DbgValue->getParent();
172       if (UserBB == OrigHeader)
173         continue;
174 
175       // Users in the OrigPreHeader need to use the value to which the
176       // original definitions are mapped and anything else can be handled by
177       // the SSAUpdater. To avoid adding PHINodes, check if the value is
178       // available in UserBB, if not substitute undef.
179       Value *NewVal;
180       if (UserBB == OrigPreheader)
181         NewVal = OrigPreHeaderVal;
182       else if (SSA.HasValueForBlock(UserBB))
183         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
184       else
185         NewVal = UndefValue::get(OrigHeaderVal->getType());
186       DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
187     }
188   }
189 }
190 
191 // Assuming both header and latch are exiting, look for a phi which is only
192 // used outside the loop (via a LCSSA phi) in the exit from the header.
193 // This means that rotating the loop can remove the phi.
194 static bool profitableToRotateLoopExitingLatch(Loop *L) {
195   BasicBlock *Header = L->getHeader();
196   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
197   assert(BI && BI->isConditional() && "need header with conditional exit");
198   BasicBlock *HeaderExit = BI->getSuccessor(0);
199   if (L->contains(HeaderExit))
200     HeaderExit = BI->getSuccessor(1);
201 
202   for (auto &Phi : Header->phis()) {
203     // Look for uses of this phi in the loop/via exits other than the header.
204     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
205           return cast<Instruction>(U)->getParent() != HeaderExit;
206         }))
207       continue;
208     return true;
209   }
210   return false;
211 }
212 
213 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
214 // and there is another exit from the loop which is non-deoptimizing.
215 // If we rotate latch to that exit our loop has a better chance of being fully
216 // canonical.
217 //
218 // It can give false positives in some rare cases.
219 static bool canRotateDeoptimizingLatchExit(Loop *L) {
220   BasicBlock *Latch = L->getLoopLatch();
221   assert(Latch && "need latch");
222   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
223   // Need normal exiting latch.
224   if (!BI || !BI->isConditional())
225     return false;
226 
227   BasicBlock *Exit = BI->getSuccessor(1);
228   if (L->contains(Exit))
229     Exit = BI->getSuccessor(0);
230 
231   // Latch exit is non-deoptimizing, no need to rotate.
232   if (!Exit->getPostdominatingDeoptimizeCall())
233     return false;
234 
235   SmallVector<BasicBlock *, 4> Exits;
236   L->getUniqueExitBlocks(Exits);
237   if (!Exits.empty()) {
238     // There is at least one non-deoptimizing exit.
239     //
240     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
241     // as it can conservatively return false for deoptimizing exits with
242     // complex enough control flow down to deoptimize call.
243     //
244     // That means here we can report success for a case where
245     // all exits are deoptimizing but one of them has complex enough
246     // control flow (e.g. with loops).
247     //
248     // That should be a very rare case and false positives for this function
249     // have compile-time effect only.
250     return any_of(Exits, [](const BasicBlock *BB) {
251       return !BB->getPostdominatingDeoptimizeCall();
252     });
253   }
254   return false;
255 }
256 
257 /// Rotate loop LP. Return true if the loop is rotated.
258 ///
259 /// \param SimplifiedLatch is true if the latch was just folded into the final
260 /// loop exit. In this case we may want to rotate even though the new latch is
261 /// now an exiting branch. This rotation would have happened had the latch not
262 /// been simplified. However, if SimplifiedLatch is false, then we avoid
263 /// rotating loops in which the latch exits to avoid excessive or endless
264 /// rotation. LoopRotate should be repeatable and converge to a canonical
265 /// form. This property is satisfied because simplifying the loop latch can only
266 /// happen once across multiple invocations of the LoopRotate pass.
267 ///
268 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
269 /// so to reach a suitable (non-deoptimizing) exit.
270 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
271   // If the loop has only one block then there is not much to rotate.
272   if (L->getBlocks().size() == 1)
273     return false;
274 
275   bool Rotated = false;
276   do {
277     BasicBlock *OrigHeader = L->getHeader();
278     BasicBlock *OrigLatch = L->getLoopLatch();
279 
280     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
281     if (!BI || BI->isUnconditional())
282       return Rotated;
283 
284     // If the loop header is not one of the loop exiting blocks then
285     // either this loop is already rotated or it is not
286     // suitable for loop rotation transformations.
287     if (!L->isLoopExiting(OrigHeader))
288       return Rotated;
289 
290     // If the loop latch already contains a branch that leaves the loop then the
291     // loop is already rotated.
292     if (!OrigLatch)
293       return Rotated;
294 
295     // Rotate if either the loop latch does *not* exit the loop, or if the loop
296     // latch was just simplified. Or if we think it will be profitable.
297     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
298         !profitableToRotateLoopExitingLatch(L) &&
299         !canRotateDeoptimizingLatchExit(L))
300       return Rotated;
301 
302     // Check size of original header and reject loop if it is very big or we can't
303     // duplicate blocks inside it.
304     {
305       SmallPtrSet<const Value *, 32> EphValues;
306       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
307 
308       CodeMetrics Metrics;
309       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
310       if (Metrics.notDuplicatable) {
311         LLVM_DEBUG(
312                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
313                    << " instructions: ";
314                    L->dump());
315         return Rotated;
316       }
317       if (Metrics.convergent) {
318         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
319                    "instructions: ";
320                    L->dump());
321         return Rotated;
322       }
323       if (Metrics.NumInsts > MaxHeaderSize) {
324         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
325                           << Metrics.NumInsts
326                           << " instructions, which is more than the threshold ("
327                           << MaxHeaderSize << " instructions): ";
328                    L->dump());
329         ++NumNotRotatedDueToHeaderSize;
330         return Rotated;
331       }
332 
333       // When preparing for LTO, avoid rotating loops with calls that could be
334       // inlined during the LTO stage.
335       if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
336         return Rotated;
337     }
338 
339     // Now, this loop is suitable for rotation.
340     BasicBlock *OrigPreheader = L->getLoopPreheader();
341 
342     // If the loop could not be converted to canonical form, it must have an
343     // indirectbr in it, just give up.
344     if (!OrigPreheader || !L->hasDedicatedExits())
345       return Rotated;
346 
347     // Anything ScalarEvolution may know about this loop or the PHI nodes
348     // in its header will soon be invalidated. We should also invalidate
349     // all outer loops because insertion and deletion of blocks that happens
350     // during the rotation may violate invariants related to backedge taken
351     // infos in them.
352     if (SE)
353       SE->forgetTopmostLoop(L);
354 
355     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
356     if (MSSAU && VerifyMemorySSA)
357       MSSAU->getMemorySSA()->verifyMemorySSA();
358 
359     // Find new Loop header. NewHeader is a Header's one and only successor
360     // that is inside loop.  Header's other successor is outside the
361     // loop.  Otherwise loop is not suitable for rotation.
362     BasicBlock *Exit = BI->getSuccessor(0);
363     BasicBlock *NewHeader = BI->getSuccessor(1);
364     if (L->contains(Exit))
365       std::swap(Exit, NewHeader);
366     assert(NewHeader && "Unable to determine new loop header");
367     assert(L->contains(NewHeader) && !L->contains(Exit) &&
368            "Unable to determine loop header and exit blocks");
369 
370     // This code assumes that the new header has exactly one predecessor.
371     // Remove any single-entry PHI nodes in it.
372     assert(NewHeader->getSinglePredecessor() &&
373            "New header doesn't have one pred!");
374     FoldSingleEntryPHINodes(NewHeader);
375 
376     // Begin by walking OrigHeader and populating ValueMap with an entry for
377     // each Instruction.
378     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
379     ValueToValueMapTy ValueMap, ValueMapMSSA;
380 
381     // For PHI nodes, the value available in OldPreHeader is just the
382     // incoming value from OldPreHeader.
383     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
384       InsertNewValueIntoMap(ValueMap, PN,
385                             PN->getIncomingValueForBlock(OrigPreheader));
386 
387     // For the rest of the instructions, either hoist to the OrigPreheader if
388     // possible or create a clone in the OldPreHeader if not.
389     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
390 
391     // Record all debug intrinsics preceding LoopEntryBranch to avoid
392     // duplication.
393     using DbgIntrinsicHash =
394         std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
395     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
396       auto VarLocOps = D->location_ops();
397       return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
398                D->getVariable()},
399               D->getExpression()};
400     };
401     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
402     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
403          I != E; ++I) {
404       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
405         DbgIntrinsics.insert(makeHash(DII));
406       else
407         break;
408     }
409 
410     // Remember the local noalias scope declarations in the header. After the
411     // rotation, they must be duplicated and the scope must be cloned. This
412     // avoids unwanted interaction across iterations.
413     SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
414     for (Instruction &I : *OrigHeader)
415       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
416         NoAliasDeclInstructions.push_back(Decl);
417 
418     while (I != E) {
419       Instruction *Inst = &*I++;
420 
421       // If the instruction's operands are invariant and it doesn't read or write
422       // memory, then it is safe to hoist.  Doing this doesn't change the order of
423       // execution in the preheader, but does prevent the instruction from
424       // executing in each iteration of the loop.  This means it is safe to hoist
425       // something that might trap, but isn't safe to hoist something that reads
426       // memory (without proving that the loop doesn't write).
427       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
428           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
429           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
430         Inst->moveBefore(LoopEntryBranch);
431         ++NumInstrsHoisted;
432         continue;
433       }
434 
435       // Otherwise, create a duplicate of the instruction.
436       Instruction *C = Inst->clone();
437       ++NumInstrsDuplicated;
438 
439       // Eagerly remap the operands of the instruction.
440       RemapInstruction(C, ValueMap,
441                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
442 
443       // Avoid inserting the same intrinsic twice.
444       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
445         if (DbgIntrinsics.count(makeHash(DII))) {
446           C->deleteValue();
447           continue;
448         }
449 
450       // With the operands remapped, see if the instruction constant folds or is
451       // otherwise simplifyable.  This commonly occurs because the entry from PHI
452       // nodes allows icmps and other instructions to fold.
453       Value *V = SimplifyInstruction(C, SQ);
454       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
455         // If so, then delete the temporary instruction and stick the folded value
456         // in the map.
457         InsertNewValueIntoMap(ValueMap, Inst, V);
458         if (!C->mayHaveSideEffects()) {
459           C->deleteValue();
460           C = nullptr;
461         }
462       } else {
463         InsertNewValueIntoMap(ValueMap, Inst, C);
464       }
465       if (C) {
466         // Otherwise, stick the new instruction into the new block!
467         C->setName(Inst->getName());
468         C->insertBefore(LoopEntryBranch);
469 
470         if (auto *II = dyn_cast<AssumeInst>(C))
471           AC->registerAssumption(II);
472         // MemorySSA cares whether the cloned instruction was inserted or not, and
473         // not whether it can be remapped to a simplified value.
474         if (MSSAU)
475           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
476       }
477     }
478 
479     if (!NoAliasDeclInstructions.empty()) {
480       // There are noalias scope declarations:
481       // (general):
482       // Original:    OrigPre              { OrigHeader NewHeader ... Latch }
483       // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
484       //
485       // with D: llvm.experimental.noalias.scope.decl,
486       //      U: !noalias or !alias.scope depending on D
487       //       ... { D U1 U2 }   can transform into:
488       // (0) : ... { D U1 U2 }        // no relevant rotation for this part
489       // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader
490       // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
491       //
492       // We now want to transform:
493       // (1) -> : ... D' { D U1 U2 D'' }
494       // (2) -> : ... D' U1' { D U2 D'' U1'' }
495       // D: original llvm.experimental.noalias.scope.decl
496       // D', U1': duplicate with replaced scopes
497       // D'', U1'': different duplicate with replaced scopes
498       // This ensures a safe fallback to 'may_alias' introduced by the rotate,
499       // as U1'' and U1' scopes will not be compatible wrt to the local restrict
500 
501       // Clone the llvm.experimental.noalias.decl again for the NewHeader.
502       Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI());
503       for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
504         LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:"
505                           << *NAD << "\n");
506         Instruction *NewNAD = NAD->clone();
507         NewNAD->insertBefore(NewHeaderInsertionPoint);
508       }
509 
510       // Scopes must now be duplicated, once for OrigHeader and once for
511       // OrigPreHeader'.
512       {
513         auto &Context = NewHeader->getContext();
514 
515         SmallVector<MDNode *, 8> NoAliasDeclScopes;
516         for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
517           NoAliasDeclScopes.push_back(NAD->getScopeList());
518 
519         LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n");
520         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
521                                    "h.rot");
522         LLVM_DEBUG(OrigHeader->dump());
523 
524         // Keep the compile time impact low by only adapting the inserted block
525         // of instructions in the OrigPreHeader. This might result in slightly
526         // more aliasing between these instructions and those that were already
527         // present, but it will be much faster when the original PreHeader is
528         // large.
529         LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n");
530         auto *FirstDecl =
531             cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
532         auto *LastInst = &OrigPreheader->back();
533         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
534                                    Context, "pre.rot");
535         LLVM_DEBUG(OrigPreheader->dump());
536 
537         LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n");
538         LLVM_DEBUG(NewHeader->dump());
539       }
540     }
541 
542     // Along with all the other instructions, we just cloned OrigHeader's
543     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
544     // successors by duplicating their incoming values for OrigHeader.
545     for (BasicBlock *SuccBB : successors(OrigHeader))
546       for (BasicBlock::iterator BI = SuccBB->begin();
547            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
548         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
549 
550     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
551     // OrigPreHeader's old terminator (the original branch into the loop), and
552     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
553     LoopEntryBranch->eraseFromParent();
554 
555     // Update MemorySSA before the rewrite call below changes the 1:1
556     // instruction:cloned_instruction_or_value mapping.
557     if (MSSAU) {
558       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
559       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
560                                           ValueMapMSSA);
561     }
562 
563     SmallVector<PHINode*, 2> InsertedPHIs;
564     // If there were any uses of instructions in the duplicated block outside the
565     // loop, update them, inserting PHI nodes as required
566     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
567                                     &InsertedPHIs);
568 
569     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
570     // previously had debug metadata attached. This keeps the debug info
571     // up-to-date in the loop body.
572     if (!InsertedPHIs.empty())
573       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
574 
575     // NewHeader is now the header of the loop.
576     L->moveToHeader(NewHeader);
577     assert(L->getHeader() == NewHeader && "Latch block is our new header");
578 
579     // Inform DT about changes to the CFG.
580     if (DT) {
581       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
582       // the DT about the removed edge to the OrigHeader (that got removed).
583       SmallVector<DominatorTree::UpdateType, 3> Updates;
584       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
585       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
586       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
587 
588       if (MSSAU) {
589         MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
590         if (VerifyMemorySSA)
591           MSSAU->getMemorySSA()->verifyMemorySSA();
592       } else {
593         DT->applyUpdates(Updates);
594       }
595     }
596 
597     // At this point, we've finished our major CFG changes.  As part of cloning
598     // the loop into the preheader we've simplified instructions and the
599     // duplicated conditional branch may now be branching on a constant.  If it is
600     // branching on a constant and if that constant means that we enter the loop,
601     // then we fold away the cond branch to an uncond branch.  This simplifies the
602     // loop in cases important for nested loops, and it also means we don't have
603     // to split as many edges.
604     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
605     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
606     if (!isa<ConstantInt>(PHBI->getCondition()) ||
607         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
608         NewHeader) {
609       // The conditional branch can't be folded, handle the general case.
610       // Split edges as necessary to preserve LoopSimplify form.
611 
612       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
613       // thus is not a preheader anymore.
614       // Split the edge to form a real preheader.
615       BasicBlock *NewPH = SplitCriticalEdge(
616                                             OrigPreheader, NewHeader,
617                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
618       NewPH->setName(NewHeader->getName() + ".lr.ph");
619 
620       // Preserve canonical loop form, which means that 'Exit' should have only
621       // one predecessor. Note that Exit could be an exit block for multiple
622       // nested loops, causing both of the edges to now be critical and need to
623       // be split.
624       SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
625       bool SplitLatchEdge = false;
626       for (BasicBlock *ExitPred : ExitPreds) {
627         // We only need to split loop exit edges.
628         Loop *PredLoop = LI->getLoopFor(ExitPred);
629         if (!PredLoop || PredLoop->contains(Exit) ||
630             ExitPred->getTerminator()->isIndirectTerminator())
631           continue;
632         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
633         BasicBlock *ExitSplit = SplitCriticalEdge(
634                                                   ExitPred, Exit,
635                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
636         ExitSplit->moveBefore(Exit);
637       }
638       assert(SplitLatchEdge &&
639              "Despite splitting all preds, failed to split latch exit?");
640       (void)SplitLatchEdge;
641     } else {
642       // We can fold the conditional branch in the preheader, this makes things
643       // simpler. The first step is to remove the extra edge to the Exit block.
644       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
645       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
646       NewBI->setDebugLoc(PHBI->getDebugLoc());
647       PHBI->eraseFromParent();
648 
649       // With our CFG finalized, update DomTree if it is available.
650       if (DT) DT->deleteEdge(OrigPreheader, Exit);
651 
652       // Update MSSA too, if available.
653       if (MSSAU)
654         MSSAU->removeEdge(OrigPreheader, Exit);
655     }
656 
657     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
658     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
659 
660     if (MSSAU && VerifyMemorySSA)
661       MSSAU->getMemorySSA()->verifyMemorySSA();
662 
663     // Now that the CFG and DomTree are in a consistent state again, try to merge
664     // the OrigHeader block into OrigLatch.  This will succeed if they are
665     // connected by an unconditional branch.  This is just a cleanup so the
666     // emitted code isn't too gross in this common case.
667     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
668     BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
669     bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
670     if (DidMerge)
671       RemoveRedundantDbgInstrs(PredBB);
672 
673     if (MSSAU && VerifyMemorySSA)
674       MSSAU->getMemorySSA()->verifyMemorySSA();
675 
676     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
677 
678     ++NumRotated;
679 
680     Rotated = true;
681     SimplifiedLatch = false;
682 
683     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
684     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
685     // TODO: if it becomes a performance bottleneck extend rotation algorithm
686     // to handle multiple rotations in one go.
687   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
688 
689 
690   return true;
691 }
692 
693 /// Determine whether the instructions in this range may be safely and cheaply
694 /// speculated. This is not an important enough situation to develop complex
695 /// heuristics. We handle a single arithmetic instruction along with any type
696 /// conversions.
697 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
698                                   BasicBlock::iterator End, Loop *L) {
699   bool seenIncrement = false;
700   bool MultiExitLoop = false;
701 
702   if (!L->getExitingBlock())
703     MultiExitLoop = true;
704 
705   for (BasicBlock::iterator I = Begin; I != End; ++I) {
706 
707     if (!isSafeToSpeculativelyExecute(&*I))
708       return false;
709 
710     if (isa<DbgInfoIntrinsic>(I))
711       continue;
712 
713     switch (I->getOpcode()) {
714     default:
715       return false;
716     case Instruction::GetElementPtr:
717       // GEPs are cheap if all indices are constant.
718       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
719         return false;
720       // fall-thru to increment case
721       LLVM_FALLTHROUGH;
722     case Instruction::Add:
723     case Instruction::Sub:
724     case Instruction::And:
725     case Instruction::Or:
726     case Instruction::Xor:
727     case Instruction::Shl:
728     case Instruction::LShr:
729     case Instruction::AShr: {
730       Value *IVOpnd =
731           !isa<Constant>(I->getOperand(0))
732               ? I->getOperand(0)
733               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
734       if (!IVOpnd)
735         return false;
736 
737       // If increment operand is used outside of the loop, this speculation
738       // could cause extra live range interference.
739       if (MultiExitLoop) {
740         for (User *UseI : IVOpnd->users()) {
741           auto *UserInst = cast<Instruction>(UseI);
742           if (!L->contains(UserInst))
743             return false;
744         }
745       }
746 
747       if (seenIncrement)
748         return false;
749       seenIncrement = true;
750       break;
751     }
752     case Instruction::Trunc:
753     case Instruction::ZExt:
754     case Instruction::SExt:
755       // ignore type conversions
756       break;
757     }
758   }
759   return true;
760 }
761 
762 /// Fold the loop tail into the loop exit by speculating the loop tail
763 /// instructions. Typically, this is a single post-increment. In the case of a
764 /// simple 2-block loop, hoisting the increment can be much better than
765 /// duplicating the entire loop header. In the case of loops with early exits,
766 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
767 /// canonical form so downstream passes can handle it.
768 ///
769 /// I don't believe this invalidates SCEV.
770 bool LoopRotate::simplifyLoopLatch(Loop *L) {
771   BasicBlock *Latch = L->getLoopLatch();
772   if (!Latch || Latch->hasAddressTaken())
773     return false;
774 
775   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
776   if (!Jmp || !Jmp->isUnconditional())
777     return false;
778 
779   BasicBlock *LastExit = Latch->getSinglePredecessor();
780   if (!LastExit || !L->isLoopExiting(LastExit))
781     return false;
782 
783   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
784   if (!BI)
785     return false;
786 
787   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
788     return false;
789 
790   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
791                     << LastExit->getName() << "\n");
792 
793   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
794   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
795                             /*PredecessorWithTwoSuccessors=*/true);
796 
797   if (MSSAU && VerifyMemorySSA)
798     MSSAU->getMemorySSA()->verifyMemorySSA();
799 
800   return true;
801 }
802 
803 /// Rotate \c L, and return true if any modification was made.
804 bool LoopRotate::processLoop(Loop *L) {
805   // Save the loop metadata.
806   MDNode *LoopMD = L->getLoopID();
807 
808   bool SimplifiedLatch = false;
809 
810   // Simplify the loop latch before attempting to rotate the header
811   // upward. Rotation may not be needed if the loop tail can be folded into the
812   // loop exit.
813   if (!RotationOnly)
814     SimplifiedLatch = simplifyLoopLatch(L);
815 
816   bool MadeChange = rotateLoop(L, SimplifiedLatch);
817   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
818          "Loop latch should be exiting after loop-rotate.");
819 
820   // Restore the loop metadata.
821   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
822   if ((MadeChange || SimplifiedLatch) && LoopMD)
823     L->setLoopID(LoopMD);
824 
825   return MadeChange || SimplifiedLatch;
826 }
827 
828 
829 /// The utility to convert a loop into a loop with bottom test.
830 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
831                         AssumptionCache *AC, DominatorTree *DT,
832                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
833                         const SimplifyQuery &SQ, bool RotationOnly = true,
834                         unsigned Threshold = unsigned(-1),
835                         bool IsUtilMode = true, bool PrepareForLTO) {
836   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
837                 IsUtilMode, PrepareForLTO);
838   return LR.processLoop(L);
839 }
840