xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/CodeMetrics.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/MemorySSA.h"
21 #include "llvm/Analysis/MemorySSAUpdater.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Cloning.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SSAUpdater.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "loop-rotate"
39 
40 STATISTIC(NumNotRotatedDueToHeaderSize,
41           "Number of loops not rotated due to the header size");
42 STATISTIC(NumInstrsHoisted,
43           "Number of instructions hoisted into loop preheader");
44 STATISTIC(NumInstrsDuplicated,
45           "Number of instructions cloned into loop preheader");
46 STATISTIC(NumRotated, "Number of loops rotated");
47 
48 static cl::opt<bool>
49     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
50                 cl::desc("Allow loop rotation multiple times in order to reach "
51                          "a better latch exit"));
52 
53 namespace {
54 /// A simple loop rotation transformation.
55 class LoopRotate {
56   const unsigned MaxHeaderSize;
57   LoopInfo *LI;
58   const TargetTransformInfo *TTI;
59   AssumptionCache *AC;
60   DominatorTree *DT;
61   ScalarEvolution *SE;
62   MemorySSAUpdater *MSSAU;
63   const SimplifyQuery &SQ;
64   bool RotationOnly;
65   bool IsUtilMode;
66   bool PrepareForLTO;
67 
68 public:
69   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
70              const TargetTransformInfo *TTI, AssumptionCache *AC,
71              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
72              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
73              bool PrepareForLTO)
74       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
75         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
76         IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
77   bool processLoop(Loop *L);
78 
79 private:
80   bool rotateLoop(Loop *L, bool SimplifiedLatch);
81   bool simplifyLoopLatch(Loop *L);
82 };
83 } // end anonymous namespace
84 
85 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
86 /// previously exist in the map, and the value was inserted.
87 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
88   bool Inserted = VM.insert({K, V}).second;
89   assert(Inserted);
90   (void)Inserted;
91 }
92 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
93 /// old header into the preheader.  If there were uses of the values produced by
94 /// these instruction that were outside of the loop, we have to insert PHI nodes
95 /// to merge the two values.  Do this now.
96 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
97                                             BasicBlock *OrigPreheader,
98                                             ValueToValueMapTy &ValueMap,
99                                             ScalarEvolution *SE,
100                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
101   // Remove PHI node entries that are no longer live.
102   BasicBlock::iterator I, E = OrigHeader->end();
103   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
104     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
105 
106   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
107   // as necessary.
108   SSAUpdater SSA(InsertedPHIs);
109   for (I = OrigHeader->begin(); I != E; ++I) {
110     Value *OrigHeaderVal = &*I;
111 
112     // If there are no uses of the value (e.g. because it returns void), there
113     // is nothing to rewrite.
114     if (OrigHeaderVal->use_empty())
115       continue;
116 
117     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
118 
119     // The value now exits in two versions: the initial value in the preheader
120     // and the loop "next" value in the original header.
121     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
122     // Force re-computation of OrigHeaderVal, as some users now need to use the
123     // new PHI node.
124     if (SE)
125       SE->forgetValue(OrigHeaderVal);
126     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
127     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
128 
129     // Visit each use of the OrigHeader instruction.
130     for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) {
131       // SSAUpdater can't handle a non-PHI use in the same block as an
132       // earlier def. We can easily handle those cases manually.
133       Instruction *UserInst = cast<Instruction>(U.getUser());
134       if (!isa<PHINode>(UserInst)) {
135         BasicBlock *UserBB = UserInst->getParent();
136 
137         // The original users in the OrigHeader are already using the
138         // original definitions.
139         if (UserBB == OrigHeader)
140           continue;
141 
142         // Users in the OrigPreHeader need to use the value to which the
143         // original definitions are mapped.
144         if (UserBB == OrigPreheader) {
145           U = OrigPreHeaderVal;
146           continue;
147         }
148       }
149 
150       // Anything else can be handled by SSAUpdater.
151       SSA.RewriteUse(U);
152     }
153 
154     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
155     // intrinsics.
156     SmallVector<DbgValueInst *, 1> DbgValues;
157     llvm::findDbgValues(DbgValues, OrigHeaderVal);
158     for (auto &DbgValue : DbgValues) {
159       // The original users in the OrigHeader are already using the original
160       // definitions.
161       BasicBlock *UserBB = DbgValue->getParent();
162       if (UserBB == OrigHeader)
163         continue;
164 
165       // Users in the OrigPreHeader need to use the value to which the
166       // original definitions are mapped and anything else can be handled by
167       // the SSAUpdater. To avoid adding PHINodes, check if the value is
168       // available in UserBB, if not substitute undef.
169       Value *NewVal;
170       if (UserBB == OrigPreheader)
171         NewVal = OrigPreHeaderVal;
172       else if (SSA.HasValueForBlock(UserBB))
173         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
174       else
175         NewVal = UndefValue::get(OrigHeaderVal->getType());
176       DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
177     }
178   }
179 }
180 
181 // Assuming both header and latch are exiting, look for a phi which is only
182 // used outside the loop (via a LCSSA phi) in the exit from the header.
183 // This means that rotating the loop can remove the phi.
184 static bool profitableToRotateLoopExitingLatch(Loop *L) {
185   BasicBlock *Header = L->getHeader();
186   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
187   assert(BI && BI->isConditional() && "need header with conditional exit");
188   BasicBlock *HeaderExit = BI->getSuccessor(0);
189   if (L->contains(HeaderExit))
190     HeaderExit = BI->getSuccessor(1);
191 
192   for (auto &Phi : Header->phis()) {
193     // Look for uses of this phi in the loop/via exits other than the header.
194     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
195           return cast<Instruction>(U)->getParent() != HeaderExit;
196         }))
197       continue;
198     return true;
199   }
200   return false;
201 }
202 
203 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
204 // and there is another exit from the loop which is non-deoptimizing.
205 // If we rotate latch to that exit our loop has a better chance of being fully
206 // canonical.
207 //
208 // It can give false positives in some rare cases.
209 static bool canRotateDeoptimizingLatchExit(Loop *L) {
210   BasicBlock *Latch = L->getLoopLatch();
211   assert(Latch && "need latch");
212   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
213   // Need normal exiting latch.
214   if (!BI || !BI->isConditional())
215     return false;
216 
217   BasicBlock *Exit = BI->getSuccessor(1);
218   if (L->contains(Exit))
219     Exit = BI->getSuccessor(0);
220 
221   // Latch exit is non-deoptimizing, no need to rotate.
222   if (!Exit->getPostdominatingDeoptimizeCall())
223     return false;
224 
225   SmallVector<BasicBlock *, 4> Exits;
226   L->getUniqueExitBlocks(Exits);
227   if (!Exits.empty()) {
228     // There is at least one non-deoptimizing exit.
229     //
230     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
231     // as it can conservatively return false for deoptimizing exits with
232     // complex enough control flow down to deoptimize call.
233     //
234     // That means here we can report success for a case where
235     // all exits are deoptimizing but one of them has complex enough
236     // control flow (e.g. with loops).
237     //
238     // That should be a very rare case and false positives for this function
239     // have compile-time effect only.
240     return any_of(Exits, [](const BasicBlock *BB) {
241       return !BB->getPostdominatingDeoptimizeCall();
242     });
243   }
244   return false;
245 }
246 
247 /// Rotate loop LP. Return true if the loop is rotated.
248 ///
249 /// \param SimplifiedLatch is true if the latch was just folded into the final
250 /// loop exit. In this case we may want to rotate even though the new latch is
251 /// now an exiting branch. This rotation would have happened had the latch not
252 /// been simplified. However, if SimplifiedLatch is false, then we avoid
253 /// rotating loops in which the latch exits to avoid excessive or endless
254 /// rotation. LoopRotate should be repeatable and converge to a canonical
255 /// form. This property is satisfied because simplifying the loop latch can only
256 /// happen once across multiple invocations of the LoopRotate pass.
257 ///
258 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
259 /// so to reach a suitable (non-deoptimizing) exit.
260 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
261   // If the loop has only one block then there is not much to rotate.
262   if (L->getBlocks().size() == 1)
263     return false;
264 
265   bool Rotated = false;
266   do {
267     BasicBlock *OrigHeader = L->getHeader();
268     BasicBlock *OrigLatch = L->getLoopLatch();
269 
270     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
271     if (!BI || BI->isUnconditional())
272       return Rotated;
273 
274     // If the loop header is not one of the loop exiting blocks then
275     // either this loop is already rotated or it is not
276     // suitable for loop rotation transformations.
277     if (!L->isLoopExiting(OrigHeader))
278       return Rotated;
279 
280     // If the loop latch already contains a branch that leaves the loop then the
281     // loop is already rotated.
282     if (!OrigLatch)
283       return Rotated;
284 
285     // Rotate if either the loop latch does *not* exit the loop, or if the loop
286     // latch was just simplified. Or if we think it will be profitable.
287     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
288         !profitableToRotateLoopExitingLatch(L) &&
289         !canRotateDeoptimizingLatchExit(L))
290       return Rotated;
291 
292     // Check size of original header and reject loop if it is very big or we can't
293     // duplicate blocks inside it.
294     {
295       SmallPtrSet<const Value *, 32> EphValues;
296       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
297 
298       CodeMetrics Metrics;
299       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
300       if (Metrics.notDuplicatable) {
301         LLVM_DEBUG(
302                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
303                    << " instructions: ";
304                    L->dump());
305         return Rotated;
306       }
307       if (Metrics.convergent) {
308         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
309                    "instructions: ";
310                    L->dump());
311         return Rotated;
312       }
313       if (!Metrics.NumInsts.isValid()) {
314         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions"
315                    " with invalid cost: ";
316                    L->dump());
317         return Rotated;
318       }
319       if (Metrics.NumInsts > MaxHeaderSize) {
320         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
321                           << Metrics.NumInsts
322                           << " instructions, which is more than the threshold ("
323                           << MaxHeaderSize << " instructions): ";
324                    L->dump());
325         ++NumNotRotatedDueToHeaderSize;
326         return Rotated;
327       }
328 
329       // When preparing for LTO, avoid rotating loops with calls that could be
330       // inlined during the LTO stage.
331       if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
332         return Rotated;
333     }
334 
335     // Now, this loop is suitable for rotation.
336     BasicBlock *OrigPreheader = L->getLoopPreheader();
337 
338     // If the loop could not be converted to canonical form, it must have an
339     // indirectbr in it, just give up.
340     if (!OrigPreheader || !L->hasDedicatedExits())
341       return Rotated;
342 
343     // Anything ScalarEvolution may know about this loop or the PHI nodes
344     // in its header will soon be invalidated. We should also invalidate
345     // all outer loops because insertion and deletion of blocks that happens
346     // during the rotation may violate invariants related to backedge taken
347     // infos in them.
348     if (SE) {
349       SE->forgetTopmostLoop(L);
350       // We may hoist some instructions out of loop. In case if they were cached
351       // as "loop variant" or "loop computable", these caches must be dropped.
352       // We also may fold basic blocks, so cached block dispositions also need
353       // to be dropped.
354       SE->forgetBlockAndLoopDispositions();
355     }
356 
357     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
358     if (MSSAU && VerifyMemorySSA)
359       MSSAU->getMemorySSA()->verifyMemorySSA();
360 
361     // Find new Loop header. NewHeader is a Header's one and only successor
362     // that is inside loop.  Header's other successor is outside the
363     // loop.  Otherwise loop is not suitable for rotation.
364     BasicBlock *Exit = BI->getSuccessor(0);
365     BasicBlock *NewHeader = BI->getSuccessor(1);
366     if (L->contains(Exit))
367       std::swap(Exit, NewHeader);
368     assert(NewHeader && "Unable to determine new loop header");
369     assert(L->contains(NewHeader) && !L->contains(Exit) &&
370            "Unable to determine loop header and exit blocks");
371 
372     // This code assumes that the new header has exactly one predecessor.
373     // Remove any single-entry PHI nodes in it.
374     assert(NewHeader->getSinglePredecessor() &&
375            "New header doesn't have one pred!");
376     FoldSingleEntryPHINodes(NewHeader);
377 
378     // Begin by walking OrigHeader and populating ValueMap with an entry for
379     // each Instruction.
380     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
381     ValueToValueMapTy ValueMap, ValueMapMSSA;
382 
383     // For PHI nodes, the value available in OldPreHeader is just the
384     // incoming value from OldPreHeader.
385     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
386       InsertNewValueIntoMap(ValueMap, PN,
387                             PN->getIncomingValueForBlock(OrigPreheader));
388 
389     // For the rest of the instructions, either hoist to the OrigPreheader if
390     // possible or create a clone in the OldPreHeader if not.
391     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
392 
393     // Record all debug intrinsics preceding LoopEntryBranch to avoid
394     // duplication.
395     using DbgIntrinsicHash =
396         std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
397     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
398       auto VarLocOps = D->location_ops();
399       return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
400                D->getVariable()},
401               D->getExpression()};
402     };
403     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
404     for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) {
405       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
406         DbgIntrinsics.insert(makeHash(DII));
407       else
408         break;
409     }
410 
411     // Remember the local noalias scope declarations in the header. After the
412     // rotation, they must be duplicated and the scope must be cloned. This
413     // avoids unwanted interaction across iterations.
414     SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
415     for (Instruction &I : *OrigHeader)
416       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
417         NoAliasDeclInstructions.push_back(Decl);
418 
419     while (I != E) {
420       Instruction *Inst = &*I++;
421 
422       // If the instruction's operands are invariant and it doesn't read or write
423       // memory, then it is safe to hoist.  Doing this doesn't change the order of
424       // execution in the preheader, but does prevent the instruction from
425       // executing in each iteration of the loop.  This means it is safe to hoist
426       // something that might trap, but isn't safe to hoist something that reads
427       // memory (without proving that the loop doesn't write).
428       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
429           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
430           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
431         Inst->moveBefore(LoopEntryBranch);
432         ++NumInstrsHoisted;
433         continue;
434       }
435 
436       // Otherwise, create a duplicate of the instruction.
437       Instruction *C = Inst->clone();
438       ++NumInstrsDuplicated;
439 
440       // Eagerly remap the operands of the instruction.
441       RemapInstruction(C, ValueMap,
442                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
443 
444       // Avoid inserting the same intrinsic twice.
445       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
446         if (DbgIntrinsics.count(makeHash(DII))) {
447           C->deleteValue();
448           continue;
449         }
450 
451       // With the operands remapped, see if the instruction constant folds or is
452       // otherwise simplifyable.  This commonly occurs because the entry from PHI
453       // nodes allows icmps and other instructions to fold.
454       Value *V = simplifyInstruction(C, SQ);
455       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
456         // If so, then delete the temporary instruction and stick the folded value
457         // in the map.
458         InsertNewValueIntoMap(ValueMap, Inst, V);
459         if (!C->mayHaveSideEffects()) {
460           C->deleteValue();
461           C = nullptr;
462         }
463       } else {
464         InsertNewValueIntoMap(ValueMap, Inst, C);
465       }
466       if (C) {
467         // Otherwise, stick the new instruction into the new block!
468         C->setName(Inst->getName());
469         C->insertBefore(LoopEntryBranch);
470 
471         if (auto *II = dyn_cast<AssumeInst>(C))
472           AC->registerAssumption(II);
473         // MemorySSA cares whether the cloned instruction was inserted or not, and
474         // not whether it can be remapped to a simplified value.
475         if (MSSAU)
476           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
477       }
478     }
479 
480     if (!NoAliasDeclInstructions.empty()) {
481       // There are noalias scope declarations:
482       // (general):
483       // Original:    OrigPre              { OrigHeader NewHeader ... Latch }
484       // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
485       //
486       // with D: llvm.experimental.noalias.scope.decl,
487       //      U: !noalias or !alias.scope depending on D
488       //       ... { D U1 U2 }   can transform into:
489       // (0) : ... { D U1 U2 }        // no relevant rotation for this part
490       // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader
491       // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
492       //
493       // We now want to transform:
494       // (1) -> : ... D' { D U1 U2 D'' }
495       // (2) -> : ... D' U1' { D U2 D'' U1'' }
496       // D: original llvm.experimental.noalias.scope.decl
497       // D', U1': duplicate with replaced scopes
498       // D'', U1'': different duplicate with replaced scopes
499       // This ensures a safe fallback to 'may_alias' introduced by the rotate,
500       // as U1'' and U1' scopes will not be compatible wrt to the local restrict
501 
502       // Clone the llvm.experimental.noalias.decl again for the NewHeader.
503       Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI());
504       for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
505         LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:"
506                           << *NAD << "\n");
507         Instruction *NewNAD = NAD->clone();
508         NewNAD->insertBefore(NewHeaderInsertionPoint);
509       }
510 
511       // Scopes must now be duplicated, once for OrigHeader and once for
512       // OrigPreHeader'.
513       {
514         auto &Context = NewHeader->getContext();
515 
516         SmallVector<MDNode *, 8> NoAliasDeclScopes;
517         for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
518           NoAliasDeclScopes.push_back(NAD->getScopeList());
519 
520         LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n");
521         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
522                                    "h.rot");
523         LLVM_DEBUG(OrigHeader->dump());
524 
525         // Keep the compile time impact low by only adapting the inserted block
526         // of instructions in the OrigPreHeader. This might result in slightly
527         // more aliasing between these instructions and those that were already
528         // present, but it will be much faster when the original PreHeader is
529         // large.
530         LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n");
531         auto *FirstDecl =
532             cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
533         auto *LastInst = &OrigPreheader->back();
534         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
535                                    Context, "pre.rot");
536         LLVM_DEBUG(OrigPreheader->dump());
537 
538         LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n");
539         LLVM_DEBUG(NewHeader->dump());
540       }
541     }
542 
543     // Along with all the other instructions, we just cloned OrigHeader's
544     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
545     // successors by duplicating their incoming values for OrigHeader.
546     for (BasicBlock *SuccBB : successors(OrigHeader))
547       for (BasicBlock::iterator BI = SuccBB->begin();
548            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
549         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
550 
551     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
552     // OrigPreHeader's old terminator (the original branch into the loop), and
553     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
554     LoopEntryBranch->eraseFromParent();
555 
556     // Update MemorySSA before the rewrite call below changes the 1:1
557     // instruction:cloned_instruction_or_value mapping.
558     if (MSSAU) {
559       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
560       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
561                                           ValueMapMSSA);
562     }
563 
564     SmallVector<PHINode*, 2> InsertedPHIs;
565     // If there were any uses of instructions in the duplicated block outside the
566     // loop, update them, inserting PHI nodes as required
567     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE,
568                                     &InsertedPHIs);
569 
570     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
571     // previously had debug metadata attached. This keeps the debug info
572     // up-to-date in the loop body.
573     if (!InsertedPHIs.empty())
574       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
575 
576     // NewHeader is now the header of the loop.
577     L->moveToHeader(NewHeader);
578     assert(L->getHeader() == NewHeader && "Latch block is our new header");
579 
580     // Inform DT about changes to the CFG.
581     if (DT) {
582       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
583       // the DT about the removed edge to the OrigHeader (that got removed).
584       SmallVector<DominatorTree::UpdateType, 3> Updates;
585       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
586       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
587       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
588 
589       if (MSSAU) {
590         MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
591         if (VerifyMemorySSA)
592           MSSAU->getMemorySSA()->verifyMemorySSA();
593       } else {
594         DT->applyUpdates(Updates);
595       }
596     }
597 
598     // At this point, we've finished our major CFG changes.  As part of cloning
599     // the loop into the preheader we've simplified instructions and the
600     // duplicated conditional branch may now be branching on a constant.  If it is
601     // branching on a constant and if that constant means that we enter the loop,
602     // then we fold away the cond branch to an uncond branch.  This simplifies the
603     // loop in cases important for nested loops, and it also means we don't have
604     // to split as many edges.
605     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
606     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
607     if (!isa<ConstantInt>(PHBI->getCondition()) ||
608         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
609         NewHeader) {
610       // The conditional branch can't be folded, handle the general case.
611       // Split edges as necessary to preserve LoopSimplify form.
612 
613       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
614       // thus is not a preheader anymore.
615       // Split the edge to form a real preheader.
616       BasicBlock *NewPH = SplitCriticalEdge(
617                                             OrigPreheader, NewHeader,
618                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
619       NewPH->setName(NewHeader->getName() + ".lr.ph");
620 
621       // Preserve canonical loop form, which means that 'Exit' should have only
622       // one predecessor. Note that Exit could be an exit block for multiple
623       // nested loops, causing both of the edges to now be critical and need to
624       // be split.
625       SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit));
626       bool SplitLatchEdge = false;
627       for (BasicBlock *ExitPred : ExitPreds) {
628         // We only need to split loop exit edges.
629         Loop *PredLoop = LI->getLoopFor(ExitPred);
630         if (!PredLoop || PredLoop->contains(Exit) ||
631             isa<IndirectBrInst>(ExitPred->getTerminator()))
632           continue;
633         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
634         BasicBlock *ExitSplit = SplitCriticalEdge(
635                                                   ExitPred, Exit,
636                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
637         ExitSplit->moveBefore(Exit);
638       }
639       assert(SplitLatchEdge &&
640              "Despite splitting all preds, failed to split latch exit?");
641       (void)SplitLatchEdge;
642     } else {
643       // We can fold the conditional branch in the preheader, this makes things
644       // simpler. The first step is to remove the extra edge to the Exit block.
645       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
646       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
647       NewBI->setDebugLoc(PHBI->getDebugLoc());
648       PHBI->eraseFromParent();
649 
650       // With our CFG finalized, update DomTree if it is available.
651       if (DT) DT->deleteEdge(OrigPreheader, Exit);
652 
653       // Update MSSA too, if available.
654       if (MSSAU)
655         MSSAU->removeEdge(OrigPreheader, Exit);
656     }
657 
658     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
659     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
660 
661     if (MSSAU && VerifyMemorySSA)
662       MSSAU->getMemorySSA()->verifyMemorySSA();
663 
664     // Now that the CFG and DomTree are in a consistent state again, try to merge
665     // the OrigHeader block into OrigLatch.  This will succeed if they are
666     // connected by an unconditional branch.  This is just a cleanup so the
667     // emitted code isn't too gross in this common case.
668     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
669     BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
670     bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
671     if (DidMerge)
672       RemoveRedundantDbgInstrs(PredBB);
673 
674     if (MSSAU && VerifyMemorySSA)
675       MSSAU->getMemorySSA()->verifyMemorySSA();
676 
677     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
678 
679     ++NumRotated;
680 
681     Rotated = true;
682     SimplifiedLatch = false;
683 
684     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
685     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
686     // TODO: if it becomes a performance bottleneck extend rotation algorithm
687     // to handle multiple rotations in one go.
688   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
689 
690 
691   return true;
692 }
693 
694 /// Determine whether the instructions in this range may be safely and cheaply
695 /// speculated. This is not an important enough situation to develop complex
696 /// heuristics. We handle a single arithmetic instruction along with any type
697 /// conversions.
698 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
699                                   BasicBlock::iterator End, Loop *L) {
700   bool seenIncrement = false;
701   bool MultiExitLoop = false;
702 
703   if (!L->getExitingBlock())
704     MultiExitLoop = true;
705 
706   for (BasicBlock::iterator I = Begin; I != End; ++I) {
707 
708     if (!isSafeToSpeculativelyExecute(&*I))
709       return false;
710 
711     if (isa<DbgInfoIntrinsic>(I))
712       continue;
713 
714     switch (I->getOpcode()) {
715     default:
716       return false;
717     case Instruction::GetElementPtr:
718       // GEPs are cheap if all indices are constant.
719       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
720         return false;
721       // fall-thru to increment case
722       [[fallthrough]];
723     case Instruction::Add:
724     case Instruction::Sub:
725     case Instruction::And:
726     case Instruction::Or:
727     case Instruction::Xor:
728     case Instruction::Shl:
729     case Instruction::LShr:
730     case Instruction::AShr: {
731       Value *IVOpnd =
732           !isa<Constant>(I->getOperand(0))
733               ? I->getOperand(0)
734               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
735       if (!IVOpnd)
736         return false;
737 
738       // If increment operand is used outside of the loop, this speculation
739       // could cause extra live range interference.
740       if (MultiExitLoop) {
741         for (User *UseI : IVOpnd->users()) {
742           auto *UserInst = cast<Instruction>(UseI);
743           if (!L->contains(UserInst))
744             return false;
745         }
746       }
747 
748       if (seenIncrement)
749         return false;
750       seenIncrement = true;
751       break;
752     }
753     case Instruction::Trunc:
754     case Instruction::ZExt:
755     case Instruction::SExt:
756       // ignore type conversions
757       break;
758     }
759   }
760   return true;
761 }
762 
763 /// Fold the loop tail into the loop exit by speculating the loop tail
764 /// instructions. Typically, this is a single post-increment. In the case of a
765 /// simple 2-block loop, hoisting the increment can be much better than
766 /// duplicating the entire loop header. In the case of loops with early exits,
767 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
768 /// canonical form so downstream passes can handle it.
769 ///
770 /// I don't believe this invalidates SCEV.
771 bool LoopRotate::simplifyLoopLatch(Loop *L) {
772   BasicBlock *Latch = L->getLoopLatch();
773   if (!Latch || Latch->hasAddressTaken())
774     return false;
775 
776   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
777   if (!Jmp || !Jmp->isUnconditional())
778     return false;
779 
780   BasicBlock *LastExit = Latch->getSinglePredecessor();
781   if (!LastExit || !L->isLoopExiting(LastExit))
782     return false;
783 
784   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
785   if (!BI)
786     return false;
787 
788   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
789     return false;
790 
791   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
792                     << LastExit->getName() << "\n");
793 
794   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
795   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
796                             /*PredecessorWithTwoSuccessors=*/true);
797 
798     if (SE) {
799       // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache.
800       SE->forgetBlockAndLoopDispositions();
801     }
802 
803   if (MSSAU && VerifyMemorySSA)
804     MSSAU->getMemorySSA()->verifyMemorySSA();
805 
806   return true;
807 }
808 
809 /// Rotate \c L, and return true if any modification was made.
810 bool LoopRotate::processLoop(Loop *L) {
811   // Save the loop metadata.
812   MDNode *LoopMD = L->getLoopID();
813 
814   bool SimplifiedLatch = false;
815 
816   // Simplify the loop latch before attempting to rotate the header
817   // upward. Rotation may not be needed if the loop tail can be folded into the
818   // loop exit.
819   if (!RotationOnly)
820     SimplifiedLatch = simplifyLoopLatch(L);
821 
822   bool MadeChange = rotateLoop(L, SimplifiedLatch);
823   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
824          "Loop latch should be exiting after loop-rotate.");
825 
826   // Restore the loop metadata.
827   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
828   if ((MadeChange || SimplifiedLatch) && LoopMD)
829     L->setLoopID(LoopMD);
830 
831   return MadeChange || SimplifiedLatch;
832 }
833 
834 
835 /// The utility to convert a loop into a loop with bottom test.
836 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
837                         AssumptionCache *AC, DominatorTree *DT,
838                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
839                         const SimplifyQuery &SQ, bool RotationOnly = true,
840                         unsigned Threshold = unsigned(-1),
841                         bool IsUtilMode = true, bool PrepareForLTO) {
842   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
843                 IsUtilMode, PrepareForLTO);
844   return LR.processLoop(L);
845 }
846