1 //===----------------- LoopRotationUtils.cpp -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides utilities to convert a loop into a loop with bottom test. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopRotationUtils.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/AssumptionCache.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/DebugInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/SSAUpdater.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "loop-rotate" 46 47 STATISTIC(NumNotRotatedDueToHeaderSize, 48 "Number of loops not rotated due to the header size"); 49 STATISTIC(NumInstrsHoisted, 50 "Number of instructions hoisted into loop preheader"); 51 STATISTIC(NumInstrsDuplicated, 52 "Number of instructions cloned into loop preheader"); 53 STATISTIC(NumRotated, "Number of loops rotated"); 54 55 static cl::opt<bool> 56 MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden, 57 cl::desc("Allow loop rotation multiple times in order to reach " 58 "a better latch exit")); 59 60 namespace { 61 /// A simple loop rotation transformation. 62 class LoopRotate { 63 const unsigned MaxHeaderSize; 64 LoopInfo *LI; 65 const TargetTransformInfo *TTI; 66 AssumptionCache *AC; 67 DominatorTree *DT; 68 ScalarEvolution *SE; 69 MemorySSAUpdater *MSSAU; 70 const SimplifyQuery &SQ; 71 bool RotationOnly; 72 bool IsUtilMode; 73 bool PrepareForLTO; 74 75 public: 76 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 77 const TargetTransformInfo *TTI, AssumptionCache *AC, 78 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 79 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, 80 bool PrepareForLTO) 81 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 82 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), 83 IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} 84 bool processLoop(Loop *L); 85 86 private: 87 bool rotateLoop(Loop *L, bool SimplifiedLatch); 88 bool simplifyLoopLatch(Loop *L); 89 }; 90 } // end anonymous namespace 91 92 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not 93 /// previously exist in the map, and the value was inserted. 94 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { 95 bool Inserted = VM.insert({K, V}).second; 96 assert(Inserted); 97 (void)Inserted; 98 } 99 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 100 /// old header into the preheader. If there were uses of the values produced by 101 /// these instruction that were outside of the loop, we have to insert PHI nodes 102 /// to merge the two values. Do this now. 103 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 104 BasicBlock *OrigPreheader, 105 ValueToValueMapTy &ValueMap, 106 SmallVectorImpl<PHINode*> *InsertedPHIs) { 107 // Remove PHI node entries that are no longer live. 108 BasicBlock::iterator I, E = OrigHeader->end(); 109 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 110 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 111 112 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 113 // as necessary. 114 SSAUpdater SSA(InsertedPHIs); 115 for (I = OrigHeader->begin(); I != E; ++I) { 116 Value *OrigHeaderVal = &*I; 117 118 // If there are no uses of the value (e.g. because it returns void), there 119 // is nothing to rewrite. 120 if (OrigHeaderVal->use_empty()) 121 continue; 122 123 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 124 125 // The value now exits in two versions: the initial value in the preheader 126 // and the loop "next" value in the original header. 127 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 128 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 129 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 130 131 // Visit each use of the OrigHeader instruction. 132 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 133 UE = OrigHeaderVal->use_end(); 134 UI != UE;) { 135 // Grab the use before incrementing the iterator. 136 Use &U = *UI; 137 138 // Increment the iterator before removing the use from the list. 139 ++UI; 140 141 // SSAUpdater can't handle a non-PHI use in the same block as an 142 // earlier def. We can easily handle those cases manually. 143 Instruction *UserInst = cast<Instruction>(U.getUser()); 144 if (!isa<PHINode>(UserInst)) { 145 BasicBlock *UserBB = UserInst->getParent(); 146 147 // The original users in the OrigHeader are already using the 148 // original definitions. 149 if (UserBB == OrigHeader) 150 continue; 151 152 // Users in the OrigPreHeader need to use the value to which the 153 // original definitions are mapped. 154 if (UserBB == OrigPreheader) { 155 U = OrigPreHeaderVal; 156 continue; 157 } 158 } 159 160 // Anything else can be handled by SSAUpdater. 161 SSA.RewriteUse(U); 162 } 163 164 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 165 // intrinsics. 166 SmallVector<DbgValueInst *, 1> DbgValues; 167 llvm::findDbgValues(DbgValues, OrigHeaderVal); 168 for (auto &DbgValue : DbgValues) { 169 // The original users in the OrigHeader are already using the original 170 // definitions. 171 BasicBlock *UserBB = DbgValue->getParent(); 172 if (UserBB == OrigHeader) 173 continue; 174 175 // Users in the OrigPreHeader need to use the value to which the 176 // original definitions are mapped and anything else can be handled by 177 // the SSAUpdater. To avoid adding PHINodes, check if the value is 178 // available in UserBB, if not substitute undef. 179 Value *NewVal; 180 if (UserBB == OrigPreheader) 181 NewVal = OrigPreHeaderVal; 182 else if (SSA.HasValueForBlock(UserBB)) 183 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 184 else 185 NewVal = UndefValue::get(OrigHeaderVal->getType()); 186 DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal); 187 } 188 } 189 } 190 191 // Assuming both header and latch are exiting, look for a phi which is only 192 // used outside the loop (via a LCSSA phi) in the exit from the header. 193 // This means that rotating the loop can remove the phi. 194 static bool profitableToRotateLoopExitingLatch(Loop *L) { 195 BasicBlock *Header = L->getHeader(); 196 BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator()); 197 assert(BI && BI->isConditional() && "need header with conditional exit"); 198 BasicBlock *HeaderExit = BI->getSuccessor(0); 199 if (L->contains(HeaderExit)) 200 HeaderExit = BI->getSuccessor(1); 201 202 for (auto &Phi : Header->phis()) { 203 // Look for uses of this phi in the loop/via exits other than the header. 204 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) { 205 return cast<Instruction>(U)->getParent() != HeaderExit; 206 })) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 // Check that latch exit is deoptimizing (which means - very unlikely to happen) 214 // and there is another exit from the loop which is non-deoptimizing. 215 // If we rotate latch to that exit our loop has a better chance of being fully 216 // canonical. 217 // 218 // It can give false positives in some rare cases. 219 static bool canRotateDeoptimizingLatchExit(Loop *L) { 220 BasicBlock *Latch = L->getLoopLatch(); 221 assert(Latch && "need latch"); 222 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 223 // Need normal exiting latch. 224 if (!BI || !BI->isConditional()) 225 return false; 226 227 BasicBlock *Exit = BI->getSuccessor(1); 228 if (L->contains(Exit)) 229 Exit = BI->getSuccessor(0); 230 231 // Latch exit is non-deoptimizing, no need to rotate. 232 if (!Exit->getPostdominatingDeoptimizeCall()) 233 return false; 234 235 SmallVector<BasicBlock *, 4> Exits; 236 L->getUniqueExitBlocks(Exits); 237 if (!Exits.empty()) { 238 // There is at least one non-deoptimizing exit. 239 // 240 // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, 241 // as it can conservatively return false for deoptimizing exits with 242 // complex enough control flow down to deoptimize call. 243 // 244 // That means here we can report success for a case where 245 // all exits are deoptimizing but one of them has complex enough 246 // control flow (e.g. with loops). 247 // 248 // That should be a very rare case and false positives for this function 249 // have compile-time effect only. 250 return any_of(Exits, [](const BasicBlock *BB) { 251 return !BB->getPostdominatingDeoptimizeCall(); 252 }); 253 } 254 return false; 255 } 256 257 /// Rotate loop LP. Return true if the loop is rotated. 258 /// 259 /// \param SimplifiedLatch is true if the latch was just folded into the final 260 /// loop exit. In this case we may want to rotate even though the new latch is 261 /// now an exiting branch. This rotation would have happened had the latch not 262 /// been simplified. However, if SimplifiedLatch is false, then we avoid 263 /// rotating loops in which the latch exits to avoid excessive or endless 264 /// rotation. LoopRotate should be repeatable and converge to a canonical 265 /// form. This property is satisfied because simplifying the loop latch can only 266 /// happen once across multiple invocations of the LoopRotate pass. 267 /// 268 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go 269 /// so to reach a suitable (non-deoptimizing) exit. 270 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 271 // If the loop has only one block then there is not much to rotate. 272 if (L->getBlocks().size() == 1) 273 return false; 274 275 bool Rotated = false; 276 do { 277 BasicBlock *OrigHeader = L->getHeader(); 278 BasicBlock *OrigLatch = L->getLoopLatch(); 279 280 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 281 if (!BI || BI->isUnconditional()) 282 return Rotated; 283 284 // If the loop header is not one of the loop exiting blocks then 285 // either this loop is already rotated or it is not 286 // suitable for loop rotation transformations. 287 if (!L->isLoopExiting(OrigHeader)) 288 return Rotated; 289 290 // If the loop latch already contains a branch that leaves the loop then the 291 // loop is already rotated. 292 if (!OrigLatch) 293 return Rotated; 294 295 // Rotate if either the loop latch does *not* exit the loop, or if the loop 296 // latch was just simplified. Or if we think it will be profitable. 297 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false && 298 !profitableToRotateLoopExitingLatch(L) && 299 !canRotateDeoptimizingLatchExit(L)) 300 return Rotated; 301 302 // Check size of original header and reject loop if it is very big or we can't 303 // duplicate blocks inside it. 304 { 305 SmallPtrSet<const Value *, 32> EphValues; 306 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 307 308 CodeMetrics Metrics; 309 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO); 310 if (Metrics.notDuplicatable) { 311 LLVM_DEBUG( 312 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 313 << " instructions: "; 314 L->dump()); 315 return Rotated; 316 } 317 if (Metrics.convergent) { 318 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 319 "instructions: "; 320 L->dump()); 321 return Rotated; 322 } 323 if (Metrics.NumInsts > MaxHeaderSize) { 324 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " 325 << Metrics.NumInsts 326 << " instructions, which is more than the threshold (" 327 << MaxHeaderSize << " instructions): "; 328 L->dump()); 329 ++NumNotRotatedDueToHeaderSize; 330 return Rotated; 331 } 332 333 // When preparing for LTO, avoid rotating loops with calls that could be 334 // inlined during the LTO stage. 335 if (PrepareForLTO && Metrics.NumInlineCandidates > 0) 336 return Rotated; 337 } 338 339 // Now, this loop is suitable for rotation. 340 BasicBlock *OrigPreheader = L->getLoopPreheader(); 341 342 // If the loop could not be converted to canonical form, it must have an 343 // indirectbr in it, just give up. 344 if (!OrigPreheader || !L->hasDedicatedExits()) 345 return Rotated; 346 347 // Anything ScalarEvolution may know about this loop or the PHI nodes 348 // in its header will soon be invalidated. We should also invalidate 349 // all outer loops because insertion and deletion of blocks that happens 350 // during the rotation may violate invariants related to backedge taken 351 // infos in them. 352 if (SE) 353 SE->forgetTopmostLoop(L); 354 355 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 356 if (MSSAU && VerifyMemorySSA) 357 MSSAU->getMemorySSA()->verifyMemorySSA(); 358 359 // Find new Loop header. NewHeader is a Header's one and only successor 360 // that is inside loop. Header's other successor is outside the 361 // loop. Otherwise loop is not suitable for rotation. 362 BasicBlock *Exit = BI->getSuccessor(0); 363 BasicBlock *NewHeader = BI->getSuccessor(1); 364 if (L->contains(Exit)) 365 std::swap(Exit, NewHeader); 366 assert(NewHeader && "Unable to determine new loop header"); 367 assert(L->contains(NewHeader) && !L->contains(Exit) && 368 "Unable to determine loop header and exit blocks"); 369 370 // This code assumes that the new header has exactly one predecessor. 371 // Remove any single-entry PHI nodes in it. 372 assert(NewHeader->getSinglePredecessor() && 373 "New header doesn't have one pred!"); 374 FoldSingleEntryPHINodes(NewHeader); 375 376 // Begin by walking OrigHeader and populating ValueMap with an entry for 377 // each Instruction. 378 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 379 ValueToValueMapTy ValueMap, ValueMapMSSA; 380 381 // For PHI nodes, the value available in OldPreHeader is just the 382 // incoming value from OldPreHeader. 383 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 384 InsertNewValueIntoMap(ValueMap, PN, 385 PN->getIncomingValueForBlock(OrigPreheader)); 386 387 // For the rest of the instructions, either hoist to the OrigPreheader if 388 // possible or create a clone in the OldPreHeader if not. 389 Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); 390 391 // Record all debug intrinsics preceding LoopEntryBranch to avoid 392 // duplication. 393 using DbgIntrinsicHash = 394 std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>; 395 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash { 396 auto VarLocOps = D->location_ops(); 397 return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()), 398 D->getVariable()}, 399 D->getExpression()}; 400 }; 401 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; 402 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend(); 403 I != E; ++I) { 404 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I)) 405 DbgIntrinsics.insert(makeHash(DII)); 406 else 407 break; 408 } 409 410 // Remember the local noalias scope declarations in the header. After the 411 // rotation, they must be duplicated and the scope must be cloned. This 412 // avoids unwanted interaction across iterations. 413 SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; 414 for (Instruction &I : *OrigHeader) 415 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 416 NoAliasDeclInstructions.push_back(Decl); 417 418 while (I != E) { 419 Instruction *Inst = &*I++; 420 421 // If the instruction's operands are invariant and it doesn't read or write 422 // memory, then it is safe to hoist. Doing this doesn't change the order of 423 // execution in the preheader, but does prevent the instruction from 424 // executing in each iteration of the loop. This means it is safe to hoist 425 // something that might trap, but isn't safe to hoist something that reads 426 // memory (without proving that the loop doesn't write). 427 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 428 !Inst->mayWriteToMemory() && !Inst->isTerminator() && 429 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 430 Inst->moveBefore(LoopEntryBranch); 431 ++NumInstrsHoisted; 432 continue; 433 } 434 435 // Otherwise, create a duplicate of the instruction. 436 Instruction *C = Inst->clone(); 437 ++NumInstrsDuplicated; 438 439 // Eagerly remap the operands of the instruction. 440 RemapInstruction(C, ValueMap, 441 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 442 443 // Avoid inserting the same intrinsic twice. 444 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C)) 445 if (DbgIntrinsics.count(makeHash(DII))) { 446 C->deleteValue(); 447 continue; 448 } 449 450 // With the operands remapped, see if the instruction constant folds or is 451 // otherwise simplifyable. This commonly occurs because the entry from PHI 452 // nodes allows icmps and other instructions to fold. 453 Value *V = SimplifyInstruction(C, SQ); 454 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 455 // If so, then delete the temporary instruction and stick the folded value 456 // in the map. 457 InsertNewValueIntoMap(ValueMap, Inst, V); 458 if (!C->mayHaveSideEffects()) { 459 C->deleteValue(); 460 C = nullptr; 461 } 462 } else { 463 InsertNewValueIntoMap(ValueMap, Inst, C); 464 } 465 if (C) { 466 // Otherwise, stick the new instruction into the new block! 467 C->setName(Inst->getName()); 468 C->insertBefore(LoopEntryBranch); 469 470 if (auto *II = dyn_cast<AssumeInst>(C)) 471 AC->registerAssumption(II); 472 // MemorySSA cares whether the cloned instruction was inserted or not, and 473 // not whether it can be remapped to a simplified value. 474 if (MSSAU) 475 InsertNewValueIntoMap(ValueMapMSSA, Inst, C); 476 } 477 } 478 479 if (!NoAliasDeclInstructions.empty()) { 480 // There are noalias scope declarations: 481 // (general): 482 // Original: OrigPre { OrigHeader NewHeader ... Latch } 483 // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } 484 // 485 // with D: llvm.experimental.noalias.scope.decl, 486 // U: !noalias or !alias.scope depending on D 487 // ... { D U1 U2 } can transform into: 488 // (0) : ... { D U1 U2 } // no relevant rotation for this part 489 // (1) : ... D' { U1 U2 D } // D is part of OrigHeader 490 // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader 491 // 492 // We now want to transform: 493 // (1) -> : ... D' { D U1 U2 D'' } 494 // (2) -> : ... D' U1' { D U2 D'' U1'' } 495 // D: original llvm.experimental.noalias.scope.decl 496 // D', U1': duplicate with replaced scopes 497 // D'', U1'': different duplicate with replaced scopes 498 // This ensures a safe fallback to 'may_alias' introduced by the rotate, 499 // as U1'' and U1' scopes will not be compatible wrt to the local restrict 500 501 // Clone the llvm.experimental.noalias.decl again for the NewHeader. 502 Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI()); 503 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { 504 LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:" 505 << *NAD << "\n"); 506 Instruction *NewNAD = NAD->clone(); 507 NewNAD->insertBefore(NewHeaderInsertionPoint); 508 } 509 510 // Scopes must now be duplicated, once for OrigHeader and once for 511 // OrigPreHeader'. 512 { 513 auto &Context = NewHeader->getContext(); 514 515 SmallVector<MDNode *, 8> NoAliasDeclScopes; 516 for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) 517 NoAliasDeclScopes.push_back(NAD->getScopeList()); 518 519 LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n"); 520 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context, 521 "h.rot"); 522 LLVM_DEBUG(OrigHeader->dump()); 523 524 // Keep the compile time impact low by only adapting the inserted block 525 // of instructions in the OrigPreHeader. This might result in slightly 526 // more aliasing between these instructions and those that were already 527 // present, but it will be much faster when the original PreHeader is 528 // large. 529 LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n"); 530 auto *FirstDecl = 531 cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]); 532 auto *LastInst = &OrigPreheader->back(); 533 cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst, 534 Context, "pre.rot"); 535 LLVM_DEBUG(OrigPreheader->dump()); 536 537 LLVM_DEBUG(dbgs() << " Updated NewHeader:\n"); 538 LLVM_DEBUG(NewHeader->dump()); 539 } 540 } 541 542 // Along with all the other instructions, we just cloned OrigHeader's 543 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 544 // successors by duplicating their incoming values for OrigHeader. 545 for (BasicBlock *SuccBB : successors(OrigHeader)) 546 for (BasicBlock::iterator BI = SuccBB->begin(); 547 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 548 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 549 550 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 551 // OrigPreHeader's old terminator (the original branch into the loop), and 552 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 553 LoopEntryBranch->eraseFromParent(); 554 555 // Update MemorySSA before the rewrite call below changes the 1:1 556 // instruction:cloned_instruction_or_value mapping. 557 if (MSSAU) { 558 InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader); 559 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, 560 ValueMapMSSA); 561 } 562 563 SmallVector<PHINode*, 2> InsertedPHIs; 564 // If there were any uses of instructions in the duplicated block outside the 565 // loop, update them, inserting PHI nodes as required 566 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 567 &InsertedPHIs); 568 569 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 570 // previously had debug metadata attached. This keeps the debug info 571 // up-to-date in the loop body. 572 if (!InsertedPHIs.empty()) 573 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs); 574 575 // NewHeader is now the header of the loop. 576 L->moveToHeader(NewHeader); 577 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 578 579 // Inform DT about changes to the CFG. 580 if (DT) { 581 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform 582 // the DT about the removed edge to the OrigHeader (that got removed). 583 SmallVector<DominatorTree::UpdateType, 3> Updates; 584 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit}); 585 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader}); 586 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader}); 587 588 if (MSSAU) { 589 MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true); 590 if (VerifyMemorySSA) 591 MSSAU->getMemorySSA()->verifyMemorySSA(); 592 } else { 593 DT->applyUpdates(Updates); 594 } 595 } 596 597 // At this point, we've finished our major CFG changes. As part of cloning 598 // the loop into the preheader we've simplified instructions and the 599 // duplicated conditional branch may now be branching on a constant. If it is 600 // branching on a constant and if that constant means that we enter the loop, 601 // then we fold away the cond branch to an uncond branch. This simplifies the 602 // loop in cases important for nested loops, and it also means we don't have 603 // to split as many edges. 604 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 605 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 606 if (!isa<ConstantInt>(PHBI->getCondition()) || 607 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 608 NewHeader) { 609 // The conditional branch can't be folded, handle the general case. 610 // Split edges as necessary to preserve LoopSimplify form. 611 612 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 613 // thus is not a preheader anymore. 614 // Split the edge to form a real preheader. 615 BasicBlock *NewPH = SplitCriticalEdge( 616 OrigPreheader, NewHeader, 617 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 618 NewPH->setName(NewHeader->getName() + ".lr.ph"); 619 620 // Preserve canonical loop form, which means that 'Exit' should have only 621 // one predecessor. Note that Exit could be an exit block for multiple 622 // nested loops, causing both of the edges to now be critical and need to 623 // be split. 624 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 625 bool SplitLatchEdge = false; 626 for (BasicBlock *ExitPred : ExitPreds) { 627 // We only need to split loop exit edges. 628 Loop *PredLoop = LI->getLoopFor(ExitPred); 629 if (!PredLoop || PredLoop->contains(Exit) || 630 ExitPred->getTerminator()->isIndirectTerminator()) 631 continue; 632 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 633 BasicBlock *ExitSplit = SplitCriticalEdge( 634 ExitPred, Exit, 635 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); 636 ExitSplit->moveBefore(Exit); 637 } 638 assert(SplitLatchEdge && 639 "Despite splitting all preds, failed to split latch exit?"); 640 (void)SplitLatchEdge; 641 } else { 642 // We can fold the conditional branch in the preheader, this makes things 643 // simpler. The first step is to remove the extra edge to the Exit block. 644 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 645 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 646 NewBI->setDebugLoc(PHBI->getDebugLoc()); 647 PHBI->eraseFromParent(); 648 649 // With our CFG finalized, update DomTree if it is available. 650 if (DT) DT->deleteEdge(OrigPreheader, Exit); 651 652 // Update MSSA too, if available. 653 if (MSSAU) 654 MSSAU->removeEdge(OrigPreheader, Exit); 655 } 656 657 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 658 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 659 660 if (MSSAU && VerifyMemorySSA) 661 MSSAU->getMemorySSA()->verifyMemorySSA(); 662 663 // Now that the CFG and DomTree are in a consistent state again, try to merge 664 // the OrigHeader block into OrigLatch. This will succeed if they are 665 // connected by an unconditional branch. This is just a cleanup so the 666 // emitted code isn't too gross in this common case. 667 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 668 BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); 669 bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU); 670 if (DidMerge) 671 RemoveRedundantDbgInstrs(PredBB); 672 673 if (MSSAU && VerifyMemorySSA) 674 MSSAU->getMemorySSA()->verifyMemorySSA(); 675 676 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 677 678 ++NumRotated; 679 680 Rotated = true; 681 SimplifiedLatch = false; 682 683 // Check that new latch is a deoptimizing exit and then repeat rotation if possible. 684 // Deoptimizing latch exit is not a generally typical case, so we just loop over. 685 // TODO: if it becomes a performance bottleneck extend rotation algorithm 686 // to handle multiple rotations in one go. 687 } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); 688 689 690 return true; 691 } 692 693 /// Determine whether the instructions in this range may be safely and cheaply 694 /// speculated. This is not an important enough situation to develop complex 695 /// heuristics. We handle a single arithmetic instruction along with any type 696 /// conversions. 697 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 698 BasicBlock::iterator End, Loop *L) { 699 bool seenIncrement = false; 700 bool MultiExitLoop = false; 701 702 if (!L->getExitingBlock()) 703 MultiExitLoop = true; 704 705 for (BasicBlock::iterator I = Begin; I != End; ++I) { 706 707 if (!isSafeToSpeculativelyExecute(&*I)) 708 return false; 709 710 if (isa<DbgInfoIntrinsic>(I)) 711 continue; 712 713 switch (I->getOpcode()) { 714 default: 715 return false; 716 case Instruction::GetElementPtr: 717 // GEPs are cheap if all indices are constant. 718 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 719 return false; 720 // fall-thru to increment case 721 LLVM_FALLTHROUGH; 722 case Instruction::Add: 723 case Instruction::Sub: 724 case Instruction::And: 725 case Instruction::Or: 726 case Instruction::Xor: 727 case Instruction::Shl: 728 case Instruction::LShr: 729 case Instruction::AShr: { 730 Value *IVOpnd = 731 !isa<Constant>(I->getOperand(0)) 732 ? I->getOperand(0) 733 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 734 if (!IVOpnd) 735 return false; 736 737 // If increment operand is used outside of the loop, this speculation 738 // could cause extra live range interference. 739 if (MultiExitLoop) { 740 for (User *UseI : IVOpnd->users()) { 741 auto *UserInst = cast<Instruction>(UseI); 742 if (!L->contains(UserInst)) 743 return false; 744 } 745 } 746 747 if (seenIncrement) 748 return false; 749 seenIncrement = true; 750 break; 751 } 752 case Instruction::Trunc: 753 case Instruction::ZExt: 754 case Instruction::SExt: 755 // ignore type conversions 756 break; 757 } 758 } 759 return true; 760 } 761 762 /// Fold the loop tail into the loop exit by speculating the loop tail 763 /// instructions. Typically, this is a single post-increment. In the case of a 764 /// simple 2-block loop, hoisting the increment can be much better than 765 /// duplicating the entire loop header. In the case of loops with early exits, 766 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 767 /// canonical form so downstream passes can handle it. 768 /// 769 /// I don't believe this invalidates SCEV. 770 bool LoopRotate::simplifyLoopLatch(Loop *L) { 771 BasicBlock *Latch = L->getLoopLatch(); 772 if (!Latch || Latch->hasAddressTaken()) 773 return false; 774 775 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 776 if (!Jmp || !Jmp->isUnconditional()) 777 return false; 778 779 BasicBlock *LastExit = Latch->getSinglePredecessor(); 780 if (!LastExit || !L->isLoopExiting(LastExit)) 781 return false; 782 783 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 784 if (!BI) 785 return false; 786 787 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 788 return false; 789 790 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 791 << LastExit->getName() << "\n"); 792 793 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 794 MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr, 795 /*PredecessorWithTwoSuccessors=*/true); 796 797 if (MSSAU && VerifyMemorySSA) 798 MSSAU->getMemorySSA()->verifyMemorySSA(); 799 800 return true; 801 } 802 803 /// Rotate \c L, and return true if any modification was made. 804 bool LoopRotate::processLoop(Loop *L) { 805 // Save the loop metadata. 806 MDNode *LoopMD = L->getLoopID(); 807 808 bool SimplifiedLatch = false; 809 810 // Simplify the loop latch before attempting to rotate the header 811 // upward. Rotation may not be needed if the loop tail can be folded into the 812 // loop exit. 813 if (!RotationOnly) 814 SimplifiedLatch = simplifyLoopLatch(L); 815 816 bool MadeChange = rotateLoop(L, SimplifiedLatch); 817 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 818 "Loop latch should be exiting after loop-rotate."); 819 820 // Restore the loop metadata. 821 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 822 if ((MadeChange || SimplifiedLatch) && LoopMD) 823 L->setLoopID(LoopMD); 824 825 return MadeChange || SimplifiedLatch; 826 } 827 828 829 /// The utility to convert a loop into a loop with bottom test. 830 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, 831 AssumptionCache *AC, DominatorTree *DT, 832 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 833 const SimplifyQuery &SQ, bool RotationOnly = true, 834 unsigned Threshold = unsigned(-1), 835 bool IsUtilMode = true, bool PrepareForLTO) { 836 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, 837 IsUtilMode, PrepareForLTO); 838 return LR.processLoop(L); 839 } 840