xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-rotate"
46 
47 STATISTIC(NumNotRotatedDueToHeaderSize,
48           "Number of loops not rotated due to the header size");
49 STATISTIC(NumRotated, "Number of loops rotated");
50 
51 static cl::opt<bool>
52     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
53                 cl::desc("Allow loop rotation multiple times in order to reach "
54                          "a better latch exit"));
55 
56 namespace {
57 /// A simple loop rotation transformation.
58 class LoopRotate {
59   const unsigned MaxHeaderSize;
60   LoopInfo *LI;
61   const TargetTransformInfo *TTI;
62   AssumptionCache *AC;
63   DominatorTree *DT;
64   ScalarEvolution *SE;
65   MemorySSAUpdater *MSSAU;
66   const SimplifyQuery &SQ;
67   bool RotationOnly;
68   bool IsUtilMode;
69   bool PrepareForLTO;
70 
71 public:
72   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
73              const TargetTransformInfo *TTI, AssumptionCache *AC,
74              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
75              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
76              bool PrepareForLTO)
77       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
78         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
79         IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
80   bool processLoop(Loop *L);
81 
82 private:
83   bool rotateLoop(Loop *L, bool SimplifiedLatch);
84   bool simplifyLoopLatch(Loop *L);
85 };
86 } // end anonymous namespace
87 
88 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
89 /// previously exist in the map, and the value was inserted.
90 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
91   bool Inserted = VM.insert({K, V}).second;
92   assert(Inserted);
93   (void)Inserted;
94 }
95 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
96 /// old header into the preheader.  If there were uses of the values produced by
97 /// these instruction that were outside of the loop, we have to insert PHI nodes
98 /// to merge the two values.  Do this now.
99 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
100                                             BasicBlock *OrigPreheader,
101                                             ValueToValueMapTy &ValueMap,
102                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
103   // Remove PHI node entries that are no longer live.
104   BasicBlock::iterator I, E = OrigHeader->end();
105   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
106     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
107 
108   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
109   // as necessary.
110   SSAUpdater SSA(InsertedPHIs);
111   for (I = OrigHeader->begin(); I != E; ++I) {
112     Value *OrigHeaderVal = &*I;
113 
114     // If there are no uses of the value (e.g. because it returns void), there
115     // is nothing to rewrite.
116     if (OrigHeaderVal->use_empty())
117       continue;
118 
119     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
120 
121     // The value now exits in two versions: the initial value in the preheader
122     // and the loop "next" value in the original header.
123     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
124     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
125     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
126 
127     // Visit each use of the OrigHeader instruction.
128     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
129                              UE = OrigHeaderVal->use_end();
130          UI != UE;) {
131       // Grab the use before incrementing the iterator.
132       Use &U = *UI;
133 
134       // Increment the iterator before removing the use from the list.
135       ++UI;
136 
137       // SSAUpdater can't handle a non-PHI use in the same block as an
138       // earlier def. We can easily handle those cases manually.
139       Instruction *UserInst = cast<Instruction>(U.getUser());
140       if (!isa<PHINode>(UserInst)) {
141         BasicBlock *UserBB = UserInst->getParent();
142 
143         // The original users in the OrigHeader are already using the
144         // original definitions.
145         if (UserBB == OrigHeader)
146           continue;
147 
148         // Users in the OrigPreHeader need to use the value to which the
149         // original definitions are mapped.
150         if (UserBB == OrigPreheader) {
151           U = OrigPreHeaderVal;
152           continue;
153         }
154       }
155 
156       // Anything else can be handled by SSAUpdater.
157       SSA.RewriteUse(U);
158     }
159 
160     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
161     // intrinsics.
162     SmallVector<DbgValueInst *, 1> DbgValues;
163     llvm::findDbgValues(DbgValues, OrigHeaderVal);
164     for (auto &DbgValue : DbgValues) {
165       // The original users in the OrigHeader are already using the original
166       // definitions.
167       BasicBlock *UserBB = DbgValue->getParent();
168       if (UserBB == OrigHeader)
169         continue;
170 
171       // Users in the OrigPreHeader need to use the value to which the
172       // original definitions are mapped and anything else can be handled by
173       // the SSAUpdater. To avoid adding PHINodes, check if the value is
174       // available in UserBB, if not substitute undef.
175       Value *NewVal;
176       if (UserBB == OrigPreheader)
177         NewVal = OrigPreHeaderVal;
178       else if (SSA.HasValueForBlock(UserBB))
179         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
180       else
181         NewVal = UndefValue::get(OrigHeaderVal->getType());
182       DbgValue->setOperand(0,
183                            MetadataAsValue::get(OrigHeaderVal->getContext(),
184                                                 ValueAsMetadata::get(NewVal)));
185     }
186   }
187 }
188 
189 // Assuming both header and latch are exiting, look for a phi which is only
190 // used outside the loop (via a LCSSA phi) in the exit from the header.
191 // This means that rotating the loop can remove the phi.
192 static bool profitableToRotateLoopExitingLatch(Loop *L) {
193   BasicBlock *Header = L->getHeader();
194   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
195   assert(BI && BI->isConditional() && "need header with conditional exit");
196   BasicBlock *HeaderExit = BI->getSuccessor(0);
197   if (L->contains(HeaderExit))
198     HeaderExit = BI->getSuccessor(1);
199 
200   for (auto &Phi : Header->phis()) {
201     // Look for uses of this phi in the loop/via exits other than the header.
202     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
203           return cast<Instruction>(U)->getParent() != HeaderExit;
204         }))
205       continue;
206     return true;
207   }
208   return false;
209 }
210 
211 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
212 // and there is another exit from the loop which is non-deoptimizing.
213 // If we rotate latch to that exit our loop has a better chance of being fully
214 // canonical.
215 //
216 // It can give false positives in some rare cases.
217 static bool canRotateDeoptimizingLatchExit(Loop *L) {
218   BasicBlock *Latch = L->getLoopLatch();
219   assert(Latch && "need latch");
220   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
221   // Need normal exiting latch.
222   if (!BI || !BI->isConditional())
223     return false;
224 
225   BasicBlock *Exit = BI->getSuccessor(1);
226   if (L->contains(Exit))
227     Exit = BI->getSuccessor(0);
228 
229   // Latch exit is non-deoptimizing, no need to rotate.
230   if (!Exit->getPostdominatingDeoptimizeCall())
231     return false;
232 
233   SmallVector<BasicBlock *, 4> Exits;
234   L->getUniqueExitBlocks(Exits);
235   if (!Exits.empty()) {
236     // There is at least one non-deoptimizing exit.
237     //
238     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
239     // as it can conservatively return false for deoptimizing exits with
240     // complex enough control flow down to deoptimize call.
241     //
242     // That means here we can report success for a case where
243     // all exits are deoptimizing but one of them has complex enough
244     // control flow (e.g. with loops).
245     //
246     // That should be a very rare case and false positives for this function
247     // have compile-time effect only.
248     return any_of(Exits, [](const BasicBlock *BB) {
249       return !BB->getPostdominatingDeoptimizeCall();
250     });
251   }
252   return false;
253 }
254 
255 /// Rotate loop LP. Return true if the loop is rotated.
256 ///
257 /// \param SimplifiedLatch is true if the latch was just folded into the final
258 /// loop exit. In this case we may want to rotate even though the new latch is
259 /// now an exiting branch. This rotation would have happened had the latch not
260 /// been simplified. However, if SimplifiedLatch is false, then we avoid
261 /// rotating loops in which the latch exits to avoid excessive or endless
262 /// rotation. LoopRotate should be repeatable and converge to a canonical
263 /// form. This property is satisfied because simplifying the loop latch can only
264 /// happen once across multiple invocations of the LoopRotate pass.
265 ///
266 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
267 /// so to reach a suitable (non-deoptimizing) exit.
268 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
269   // If the loop has only one block then there is not much to rotate.
270   if (L->getBlocks().size() == 1)
271     return false;
272 
273   bool Rotated = false;
274   do {
275     BasicBlock *OrigHeader = L->getHeader();
276     BasicBlock *OrigLatch = L->getLoopLatch();
277 
278     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
279     if (!BI || BI->isUnconditional())
280       return Rotated;
281 
282     // If the loop header is not one of the loop exiting blocks then
283     // either this loop is already rotated or it is not
284     // suitable for loop rotation transformations.
285     if (!L->isLoopExiting(OrigHeader))
286       return Rotated;
287 
288     // If the loop latch already contains a branch that leaves the loop then the
289     // loop is already rotated.
290     if (!OrigLatch)
291       return Rotated;
292 
293     // Rotate if either the loop latch does *not* exit the loop, or if the loop
294     // latch was just simplified. Or if we think it will be profitable.
295     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
296         !profitableToRotateLoopExitingLatch(L) &&
297         !canRotateDeoptimizingLatchExit(L))
298       return Rotated;
299 
300     // Check size of original header and reject loop if it is very big or we can't
301     // duplicate blocks inside it.
302     {
303       SmallPtrSet<const Value *, 32> EphValues;
304       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
305 
306       CodeMetrics Metrics;
307       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
308       if (Metrics.notDuplicatable) {
309         LLVM_DEBUG(
310                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
311                    << " instructions: ";
312                    L->dump());
313         return Rotated;
314       }
315       if (Metrics.convergent) {
316         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
317                    "instructions: ";
318                    L->dump());
319         return Rotated;
320       }
321       if (Metrics.NumInsts > MaxHeaderSize) {
322         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
323                           << Metrics.NumInsts
324                           << " instructions, which is more than the threshold ("
325                           << MaxHeaderSize << " instructions): ";
326                    L->dump());
327         ++NumNotRotatedDueToHeaderSize;
328         return Rotated;
329       }
330 
331       // When preparing for LTO, avoid rotating loops with calls that could be
332       // inlined during the LTO stage.
333       if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
334         return Rotated;
335     }
336 
337     // Now, this loop is suitable for rotation.
338     BasicBlock *OrigPreheader = L->getLoopPreheader();
339 
340     // If the loop could not be converted to canonical form, it must have an
341     // indirectbr in it, just give up.
342     if (!OrigPreheader || !L->hasDedicatedExits())
343       return Rotated;
344 
345     // Anything ScalarEvolution may know about this loop or the PHI nodes
346     // in its header will soon be invalidated. We should also invalidate
347     // all outer loops because insertion and deletion of blocks that happens
348     // during the rotation may violate invariants related to backedge taken
349     // infos in them.
350     if (SE)
351       SE->forgetTopmostLoop(L);
352 
353     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
354     if (MSSAU && VerifyMemorySSA)
355       MSSAU->getMemorySSA()->verifyMemorySSA();
356 
357     // Find new Loop header. NewHeader is a Header's one and only successor
358     // that is inside loop.  Header's other successor is outside the
359     // loop.  Otherwise loop is not suitable for rotation.
360     BasicBlock *Exit = BI->getSuccessor(0);
361     BasicBlock *NewHeader = BI->getSuccessor(1);
362     if (L->contains(Exit))
363       std::swap(Exit, NewHeader);
364     assert(NewHeader && "Unable to determine new loop header");
365     assert(L->contains(NewHeader) && !L->contains(Exit) &&
366            "Unable to determine loop header and exit blocks");
367 
368     // This code assumes that the new header has exactly one predecessor.
369     // Remove any single-entry PHI nodes in it.
370     assert(NewHeader->getSinglePredecessor() &&
371            "New header doesn't have one pred!");
372     FoldSingleEntryPHINodes(NewHeader);
373 
374     // Begin by walking OrigHeader and populating ValueMap with an entry for
375     // each Instruction.
376     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
377     ValueToValueMapTy ValueMap, ValueMapMSSA;
378 
379     // For PHI nodes, the value available in OldPreHeader is just the
380     // incoming value from OldPreHeader.
381     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
382       InsertNewValueIntoMap(ValueMap, PN,
383                             PN->getIncomingValueForBlock(OrigPreheader));
384 
385     // For the rest of the instructions, either hoist to the OrigPreheader if
386     // possible or create a clone in the OldPreHeader if not.
387     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
388 
389     // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
390     using DbgIntrinsicHash =
391       std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
392     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
393       return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
394     };
395     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
396     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
397          I != E; ++I) {
398       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
399         DbgIntrinsics.insert(makeHash(DII));
400       else
401         break;
402     }
403 
404     // Remember the local noalias scope declarations in the header. After the
405     // rotation, they must be duplicated and the scope must be cloned. This
406     // avoids unwanted interaction across iterations.
407     SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
408     for (Instruction &I : *OrigHeader)
409       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
410         NoAliasDeclInstructions.push_back(Decl);
411 
412     while (I != E) {
413       Instruction *Inst = &*I++;
414 
415       // If the instruction's operands are invariant and it doesn't read or write
416       // memory, then it is safe to hoist.  Doing this doesn't change the order of
417       // execution in the preheader, but does prevent the instruction from
418       // executing in each iteration of the loop.  This means it is safe to hoist
419       // something that might trap, but isn't safe to hoist something that reads
420       // memory (without proving that the loop doesn't write).
421       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
422           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
423           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
424         Inst->moveBefore(LoopEntryBranch);
425         continue;
426       }
427 
428       // Otherwise, create a duplicate of the instruction.
429       Instruction *C = Inst->clone();
430 
431       // Eagerly remap the operands of the instruction.
432       RemapInstruction(C, ValueMap,
433                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
434 
435       // Avoid inserting the same intrinsic twice.
436       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
437         if (DbgIntrinsics.count(makeHash(DII))) {
438           C->deleteValue();
439           continue;
440         }
441 
442       // With the operands remapped, see if the instruction constant folds or is
443       // otherwise simplifyable.  This commonly occurs because the entry from PHI
444       // nodes allows icmps and other instructions to fold.
445       Value *V = SimplifyInstruction(C, SQ);
446       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
447         // If so, then delete the temporary instruction and stick the folded value
448         // in the map.
449         InsertNewValueIntoMap(ValueMap, Inst, V);
450         if (!C->mayHaveSideEffects()) {
451           C->deleteValue();
452           C = nullptr;
453         }
454       } else {
455         InsertNewValueIntoMap(ValueMap, Inst, C);
456       }
457       if (C) {
458         // Otherwise, stick the new instruction into the new block!
459         C->setName(Inst->getName());
460         C->insertBefore(LoopEntryBranch);
461 
462         if (auto *II = dyn_cast<IntrinsicInst>(C))
463           if (II->getIntrinsicID() == Intrinsic::assume)
464             AC->registerAssumption(II);
465         // MemorySSA cares whether the cloned instruction was inserted or not, and
466         // not whether it can be remapped to a simplified value.
467         if (MSSAU)
468           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
469       }
470     }
471 
472     if (!NoAliasDeclInstructions.empty()) {
473       // There are noalias scope declarations:
474       // (general):
475       // Original:    OrigPre              { OrigHeader NewHeader ... Latch }
476       // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
477       //
478       // with D: llvm.experimental.noalias.scope.decl,
479       //      U: !noalias or !alias.scope depending on D
480       //       ... { D U1 U2 }   can transform into:
481       // (0) : ... { D U1 U2 }        // no relevant rotation for this part
482       // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader
483       // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
484       //
485       // We now want to transform:
486       // (1) -> : ... D' { D U1 U2 D'' }
487       // (2) -> : ... D' U1' { D U2 D'' U1'' }
488       // D: original llvm.experimental.noalias.scope.decl
489       // D', U1': duplicate with replaced scopes
490       // D'', U1'': different duplicate with replaced scopes
491       // This ensures a safe fallback to 'may_alias' introduced by the rotate,
492       // as U1'' and U1' scopes will not be compatible wrt to the local restrict
493 
494       // Clone the llvm.experimental.noalias.decl again for the NewHeader.
495       Instruction *NewHeaderInsertionPoint = &(*NewHeader->getFirstNonPHI());
496       for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
497         LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:"
498                           << *NAD << "\n");
499         Instruction *NewNAD = NAD->clone();
500         NewNAD->insertBefore(NewHeaderInsertionPoint);
501       }
502 
503       // Scopes must now be duplicated, once for OrigHeader and once for
504       // OrigPreHeader'.
505       {
506         auto &Context = NewHeader->getContext();
507 
508         SmallVector<MDNode *, 8> NoAliasDeclScopes;
509         for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
510           NoAliasDeclScopes.push_back(NAD->getScopeList());
511 
512         LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n");
513         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
514                                    "h.rot");
515         LLVM_DEBUG(OrigHeader->dump());
516 
517         // Keep the compile time impact low by only adapting the inserted block
518         // of instructions in the OrigPreHeader. This might result in slightly
519         // more aliasing between these instructions and those that were already
520         // present, but it will be much faster when the original PreHeader is
521         // large.
522         LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n");
523         auto *FirstDecl =
524             cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
525         auto *LastInst = &OrigPreheader->back();
526         cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
527                                    Context, "pre.rot");
528         LLVM_DEBUG(OrigPreheader->dump());
529 
530         LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n");
531         LLVM_DEBUG(NewHeader->dump());
532       }
533     }
534 
535     // Along with all the other instructions, we just cloned OrigHeader's
536     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
537     // successors by duplicating their incoming values for OrigHeader.
538     for (BasicBlock *SuccBB : successors(OrigHeader))
539       for (BasicBlock::iterator BI = SuccBB->begin();
540            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
541         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
542 
543     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
544     // OrigPreHeader's old terminator (the original branch into the loop), and
545     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
546     LoopEntryBranch->eraseFromParent();
547 
548     // Update MemorySSA before the rewrite call below changes the 1:1
549     // instruction:cloned_instruction_or_value mapping.
550     if (MSSAU) {
551       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
552       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
553                                           ValueMapMSSA);
554     }
555 
556     SmallVector<PHINode*, 2> InsertedPHIs;
557     // If there were any uses of instructions in the duplicated block outside the
558     // loop, update them, inserting PHI nodes as required
559     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
560                                     &InsertedPHIs);
561 
562     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
563     // previously had debug metadata attached. This keeps the debug info
564     // up-to-date in the loop body.
565     if (!InsertedPHIs.empty())
566       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
567 
568     // NewHeader is now the header of the loop.
569     L->moveToHeader(NewHeader);
570     assert(L->getHeader() == NewHeader && "Latch block is our new header");
571 
572     // Inform DT about changes to the CFG.
573     if (DT) {
574       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
575       // the DT about the removed edge to the OrigHeader (that got removed).
576       SmallVector<DominatorTree::UpdateType, 3> Updates;
577       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
578       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
579       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
580 
581       if (MSSAU) {
582         MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
583         if (VerifyMemorySSA)
584           MSSAU->getMemorySSA()->verifyMemorySSA();
585       } else {
586         DT->applyUpdates(Updates);
587       }
588     }
589 
590     // At this point, we've finished our major CFG changes.  As part of cloning
591     // the loop into the preheader we've simplified instructions and the
592     // duplicated conditional branch may now be branching on a constant.  If it is
593     // branching on a constant and if that constant means that we enter the loop,
594     // then we fold away the cond branch to an uncond branch.  This simplifies the
595     // loop in cases important for nested loops, and it also means we don't have
596     // to split as many edges.
597     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
598     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
599     if (!isa<ConstantInt>(PHBI->getCondition()) ||
600         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
601         NewHeader) {
602       // The conditional branch can't be folded, handle the general case.
603       // Split edges as necessary to preserve LoopSimplify form.
604 
605       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
606       // thus is not a preheader anymore.
607       // Split the edge to form a real preheader.
608       BasicBlock *NewPH = SplitCriticalEdge(
609                                             OrigPreheader, NewHeader,
610                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
611       NewPH->setName(NewHeader->getName() + ".lr.ph");
612 
613       // Preserve canonical loop form, which means that 'Exit' should have only
614       // one predecessor. Note that Exit could be an exit block for multiple
615       // nested loops, causing both of the edges to now be critical and need to
616       // be split.
617       SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
618       bool SplitLatchEdge = false;
619       for (BasicBlock *ExitPred : ExitPreds) {
620         // We only need to split loop exit edges.
621         Loop *PredLoop = LI->getLoopFor(ExitPred);
622         if (!PredLoop || PredLoop->contains(Exit) ||
623             ExitPred->getTerminator()->isIndirectTerminator())
624           continue;
625         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
626         BasicBlock *ExitSplit = SplitCriticalEdge(
627                                                   ExitPred, Exit,
628                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
629         ExitSplit->moveBefore(Exit);
630       }
631       assert(SplitLatchEdge &&
632              "Despite splitting all preds, failed to split latch exit?");
633     } else {
634       // We can fold the conditional branch in the preheader, this makes things
635       // simpler. The first step is to remove the extra edge to the Exit block.
636       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
637       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
638       NewBI->setDebugLoc(PHBI->getDebugLoc());
639       PHBI->eraseFromParent();
640 
641       // With our CFG finalized, update DomTree if it is available.
642       if (DT) DT->deleteEdge(OrigPreheader, Exit);
643 
644       // Update MSSA too, if available.
645       if (MSSAU)
646         MSSAU->removeEdge(OrigPreheader, Exit);
647     }
648 
649     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
650     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
651 
652     if (MSSAU && VerifyMemorySSA)
653       MSSAU->getMemorySSA()->verifyMemorySSA();
654 
655     // Now that the CFG and DomTree are in a consistent state again, try to merge
656     // the OrigHeader block into OrigLatch.  This will succeed if they are
657     // connected by an unconditional branch.  This is just a cleanup so the
658     // emitted code isn't too gross in this common case.
659     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
660     BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
661     bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
662     if (DidMerge)
663       RemoveRedundantDbgInstrs(PredBB);
664 
665     if (MSSAU && VerifyMemorySSA)
666       MSSAU->getMemorySSA()->verifyMemorySSA();
667 
668     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
669 
670     ++NumRotated;
671 
672     Rotated = true;
673     SimplifiedLatch = false;
674 
675     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
676     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
677     // TODO: if it becomes a performance bottleneck extend rotation algorithm
678     // to handle multiple rotations in one go.
679   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
680 
681 
682   return true;
683 }
684 
685 /// Determine whether the instructions in this range may be safely and cheaply
686 /// speculated. This is not an important enough situation to develop complex
687 /// heuristics. We handle a single arithmetic instruction along with any type
688 /// conversions.
689 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
690                                   BasicBlock::iterator End, Loop *L) {
691   bool seenIncrement = false;
692   bool MultiExitLoop = false;
693 
694   if (!L->getExitingBlock())
695     MultiExitLoop = true;
696 
697   for (BasicBlock::iterator I = Begin; I != End; ++I) {
698 
699     if (!isSafeToSpeculativelyExecute(&*I))
700       return false;
701 
702     if (isa<DbgInfoIntrinsic>(I))
703       continue;
704 
705     switch (I->getOpcode()) {
706     default:
707       return false;
708     case Instruction::GetElementPtr:
709       // GEPs are cheap if all indices are constant.
710       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
711         return false;
712       // fall-thru to increment case
713       LLVM_FALLTHROUGH;
714     case Instruction::Add:
715     case Instruction::Sub:
716     case Instruction::And:
717     case Instruction::Or:
718     case Instruction::Xor:
719     case Instruction::Shl:
720     case Instruction::LShr:
721     case Instruction::AShr: {
722       Value *IVOpnd =
723           !isa<Constant>(I->getOperand(0))
724               ? I->getOperand(0)
725               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
726       if (!IVOpnd)
727         return false;
728 
729       // If increment operand is used outside of the loop, this speculation
730       // could cause extra live range interference.
731       if (MultiExitLoop) {
732         for (User *UseI : IVOpnd->users()) {
733           auto *UserInst = cast<Instruction>(UseI);
734           if (!L->contains(UserInst))
735             return false;
736         }
737       }
738 
739       if (seenIncrement)
740         return false;
741       seenIncrement = true;
742       break;
743     }
744     case Instruction::Trunc:
745     case Instruction::ZExt:
746     case Instruction::SExt:
747       // ignore type conversions
748       break;
749     }
750   }
751   return true;
752 }
753 
754 /// Fold the loop tail into the loop exit by speculating the loop tail
755 /// instructions. Typically, this is a single post-increment. In the case of a
756 /// simple 2-block loop, hoisting the increment can be much better than
757 /// duplicating the entire loop header. In the case of loops with early exits,
758 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
759 /// canonical form so downstream passes can handle it.
760 ///
761 /// I don't believe this invalidates SCEV.
762 bool LoopRotate::simplifyLoopLatch(Loop *L) {
763   BasicBlock *Latch = L->getLoopLatch();
764   if (!Latch || Latch->hasAddressTaken())
765     return false;
766 
767   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
768   if (!Jmp || !Jmp->isUnconditional())
769     return false;
770 
771   BasicBlock *LastExit = Latch->getSinglePredecessor();
772   if (!LastExit || !L->isLoopExiting(LastExit))
773     return false;
774 
775   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
776   if (!BI)
777     return false;
778 
779   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
780     return false;
781 
782   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
783                     << LastExit->getName() << "\n");
784 
785   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
786   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
787                             /*PredecessorWithTwoSuccessors=*/true);
788 
789   if (MSSAU && VerifyMemorySSA)
790     MSSAU->getMemorySSA()->verifyMemorySSA();
791 
792   return true;
793 }
794 
795 /// Rotate \c L, and return true if any modification was made.
796 bool LoopRotate::processLoop(Loop *L) {
797   // Save the loop metadata.
798   MDNode *LoopMD = L->getLoopID();
799 
800   bool SimplifiedLatch = false;
801 
802   // Simplify the loop latch before attempting to rotate the header
803   // upward. Rotation may not be needed if the loop tail can be folded into the
804   // loop exit.
805   if (!RotationOnly)
806     SimplifiedLatch = simplifyLoopLatch(L);
807 
808   bool MadeChange = rotateLoop(L, SimplifiedLatch);
809   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
810          "Loop latch should be exiting after loop-rotate.");
811 
812   // Restore the loop metadata.
813   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
814   if ((MadeChange || SimplifiedLatch) && LoopMD)
815     L->setLoopID(LoopMD);
816 
817   return MadeChange || SimplifiedLatch;
818 }
819 
820 
821 /// The utility to convert a loop into a loop with bottom test.
822 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
823                         AssumptionCache *AC, DominatorTree *DT,
824                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
825                         const SimplifyQuery &SQ, bool RotationOnly = true,
826                         unsigned Threshold = unsigned(-1),
827                         bool IsUtilMode = true, bool PrepareForLTO) {
828   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
829                 IsUtilMode, PrepareForLTO);
830   return LR.processLoop(L);
831 }
832