xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopIterator.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopSimplify.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <limits>
47 
48 using namespace llvm;
49 using namespace llvm::PatternMatch;
50 
51 #define DEBUG_TYPE "loop-peel"
52 
53 STATISTIC(NumPeeled, "Number of loops peeled");
54 
55 static cl::opt<unsigned> UnrollPeelCount(
56     "unroll-peel-count", cl::Hidden,
57     cl::desc("Set the unroll peeling count, for testing purposes"));
58 
59 static cl::opt<bool>
60     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
61                        cl::desc("Allows loops to be peeled when the dynamic "
62                                 "trip count is known to be low."));
63 
64 static cl::opt<bool>
65     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
66                                 cl::init(false), cl::Hidden,
67                                 cl::desc("Allows loop nests to be peeled."));
68 
69 static cl::opt<unsigned> UnrollPeelMaxCount(
70     "unroll-peel-max-count", cl::init(7), cl::Hidden,
71     cl::desc("Max average trip count which will cause loop peeling."));
72 
73 static cl::opt<unsigned> UnrollForcePeelCount(
74     "unroll-force-peel-count", cl::init(0), cl::Hidden,
75     cl::desc("Force a peel count regardless of profiling information."));
76 
77 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
78 
79 // Check whether we are capable of peeling this loop.
80 bool llvm::canPeel(Loop *L) {
81   // Make sure the loop is in simplified form
82   if (!L->isLoopSimplifyForm())
83     return false;
84 
85   // Don't try to peel loops where the latch is not the exiting block.
86   // This can be an indication of two different things:
87   // 1) The loop is not rotated.
88   // 2) The loop contains irreducible control flow that involves the latch.
89   const BasicBlock *Latch = L->getLoopLatch();
90   if (!L->isLoopExiting(Latch))
91     return false;
92 
93   // Peeling is only supported if the latch is a branch.
94   if (!isa<BranchInst>(Latch->getTerminator()))
95     return false;
96 
97   SmallVector<BasicBlock *, 4> Exits;
98   L->getUniqueNonLatchExitBlocks(Exits);
99   // The latch must either be the only exiting block or all non-latch exit
100   // blocks have either a deopt or unreachable terminator or compose a chain of
101   // blocks where the last one is either deopt or unreachable terminated. Both
102   // deopt and unreachable terminators are a strong indication they are not
103   // taken. Note that this is a profitability check, not a legality check. Also
104   // note that LoopPeeling currently can only update the branch weights of latch
105   // blocks and branch weights to blocks with deopt or unreachable do not need
106   // updating.
107   return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
108 }
109 
110 // This function calculates the number of iterations after which the given Phi
111 // becomes an invariant. The pre-calculated values are memorized in the map. The
112 // function (shortcut is I) is calculated according to the following definition:
113 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
114 //   If %y is a loop invariant, then I(%x) = 1.
115 //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
116 //   Otherwise, I(%x) is infinite.
117 // TODO: Actually if %y is an expression that depends only on Phi %z and some
118 //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
119 //       looks like:
120 //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
121 //         %y = phi(0, 5),
122 //         %a = %y + 1.
123 static Optional<unsigned> calculateIterationsToInvariance(
124     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
125     SmallDenseMap<PHINode *, Optional<unsigned> > &IterationsToInvariance) {
126   assert(Phi->getParent() == L->getHeader() &&
127          "Non-loop Phi should not be checked for turning into invariant.");
128   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
129   // If we already know the answer, take it from the map.
130   auto I = IterationsToInvariance.find(Phi);
131   if (I != IterationsToInvariance.end())
132     return I->second;
133 
134   // Otherwise we need to analyze the input from the back edge.
135   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
136   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
137   // cycles can never stop on an invariant.
138   IterationsToInvariance[Phi] = None;
139   Optional<unsigned> ToInvariance = None;
140 
141   if (L->isLoopInvariant(Input))
142     ToInvariance = 1u;
143   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
144     // Only consider Phis in header block.
145     if (IncPhi->getParent() != L->getHeader())
146       return None;
147     // If the input becomes an invariant after X iterations, then our Phi
148     // becomes an invariant after X + 1 iterations.
149     auto InputToInvariance = calculateIterationsToInvariance(
150         IncPhi, L, BackEdge, IterationsToInvariance);
151     if (InputToInvariance)
152       ToInvariance = *InputToInvariance + 1u;
153   }
154 
155   // If we found that this Phi lies in an invariant chain, update the map.
156   if (ToInvariance)
157     IterationsToInvariance[Phi] = ToInvariance;
158   return ToInvariance;
159 }
160 
161 // Try to find any invariant memory reads that will become dereferenceable in
162 // the remainder loop after peeling. The load must also be used (transitively)
163 // by an exit condition. Returns the number of iterations to peel off (at the
164 // moment either 0 or 1).
165 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
166                                                       DominatorTree &DT) {
167   // Skip loops with a single exiting block, because there should be no benefit
168   // for the heuristic below.
169   if (L.getExitingBlock())
170     return 0;
171 
172   // All non-latch exit blocks must have an UnreachableInst terminator.
173   // Otherwise the heuristic below may not be profitable.
174   SmallVector<BasicBlock *, 4> Exits;
175   L.getUniqueNonLatchExitBlocks(Exits);
176   if (any_of(Exits, [](const BasicBlock *BB) {
177         return !isa<UnreachableInst>(BB->getTerminator());
178       }))
179     return 0;
180 
181   // Now look for invariant loads that dominate the latch and are not known to
182   // be dereferenceable. If there are such loads and no writes, they will become
183   // dereferenceable in the loop if the first iteration is peeled off. Also
184   // collect the set of instructions controlled by such loads. Only peel if an
185   // exit condition uses (transitively) such a load.
186   BasicBlock *Header = L.getHeader();
187   BasicBlock *Latch = L.getLoopLatch();
188   SmallPtrSet<Value *, 8> LoadUsers;
189   const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
190   for (BasicBlock *BB : L.blocks()) {
191     for (Instruction &I : *BB) {
192       if (I.mayWriteToMemory())
193         return 0;
194 
195       auto Iter = LoadUsers.find(&I);
196       if (Iter != LoadUsers.end()) {
197         for (Value *U : I.users())
198           LoadUsers.insert(U);
199       }
200       // Do not look for reads in the header; they can already be hoisted
201       // without peeling.
202       if (BB == Header)
203         continue;
204       if (auto *LI = dyn_cast<LoadInst>(&I)) {
205         Value *Ptr = LI->getPointerOperand();
206         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
207             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, &DT))
208           for (Value *U : I.users())
209             LoadUsers.insert(U);
210       }
211     }
212   }
213   SmallVector<BasicBlock *> ExitingBlocks;
214   L.getExitingBlocks(ExitingBlocks);
215   if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
216         return LoadUsers.contains(Exiting->getTerminator());
217       }))
218     return 1;
219   return 0;
220 }
221 
222 // Return the number of iterations to peel off that make conditions in the
223 // body true/false. For example, if we peel 2 iterations off the loop below,
224 // the condition i < 2 can be evaluated at compile time.
225 //  for (i = 0; i < n; i++)
226 //    if (i < 2)
227 //      ..
228 //    else
229 //      ..
230 //   }
231 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
232                                          ScalarEvolution &SE) {
233   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
234   unsigned DesiredPeelCount = 0;
235 
236   for (auto *BB : L.blocks()) {
237     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
238     if (!BI || BI->isUnconditional())
239       continue;
240 
241     // Ignore loop exit condition.
242     if (L.getLoopLatch() == BB)
243       continue;
244 
245     Value *Condition = BI->getCondition();
246     Value *LeftVal, *RightVal;
247     CmpInst::Predicate Pred;
248     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
249       continue;
250 
251     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
252     const SCEV *RightSCEV = SE.getSCEV(RightVal);
253 
254     // Do not consider predicates that are known to be true or false
255     // independently of the loop iteration.
256     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
257       continue;
258 
259     // Check if we have a condition with one AddRec and one non AddRec
260     // expression. Normalize LeftSCEV to be the AddRec.
261     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
262       if (isa<SCEVAddRecExpr>(RightSCEV)) {
263         std::swap(LeftSCEV, RightSCEV);
264         Pred = ICmpInst::getSwappedPredicate(Pred);
265       } else
266         continue;
267     }
268 
269     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
270 
271     // Avoid huge SCEV computations in the loop below, make sure we only
272     // consider AddRecs of the loop we are trying to peel.
273     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
274       continue;
275     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
276         !SE.getMonotonicPredicateType(LeftAR, Pred))
277       continue;
278 
279     // Check if extending the current DesiredPeelCount lets us evaluate Pred
280     // or !Pred in the loop body statically.
281     unsigned NewPeelCount = DesiredPeelCount;
282 
283     const SCEV *IterVal = LeftAR->evaluateAtIteration(
284         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
285 
286     // If the original condition is not known, get the negated predicate
287     // (which holds on the else branch) and check if it is known. This allows
288     // us to peel of iterations that make the original condition false.
289     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
290       Pred = ICmpInst::getInversePredicate(Pred);
291 
292     const SCEV *Step = LeftAR->getStepRecurrence(SE);
293     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
294     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
295                                  &NewPeelCount]() {
296       IterVal = NextIterVal;
297       NextIterVal = SE.getAddExpr(IterVal, Step);
298       NewPeelCount++;
299     };
300 
301     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
302       return NewPeelCount < MaxPeelCount;
303     };
304 
305     while (CanPeelOneMoreIteration() &&
306            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
307       PeelOneMoreIteration();
308 
309     // With *that* peel count, does the predicate !Pred become known in the
310     // first iteration of the loop body after peeling?
311     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
312                              RightSCEV))
313       continue; // If not, give up.
314 
315     // However, for equality comparisons, that isn't always sufficient to
316     // eliminate the comparsion in loop body, we may need to peel one more
317     // iteration. See if that makes !Pred become unknown again.
318     if (ICmpInst::isEquality(Pred) &&
319         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
320                              RightSCEV) &&
321         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
322         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
323       if (!CanPeelOneMoreIteration())
324         continue; // Need to peel one more iteration, but can't. Give up.
325       PeelOneMoreIteration(); // Great!
326     }
327 
328     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
329   }
330 
331   return DesiredPeelCount;
332 }
333 
334 /// This "heuristic" exactly matches implicit behavior which used to exist
335 /// inside getLoopEstimatedTripCount.  It was added here to keep an
336 /// improvement inside that API from causing peeling to become more agressive.
337 /// This should probably be removed.
338 static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
339   BasicBlock *Latch = L->getLoopLatch();
340   if (!Latch)
341     return true;
342 
343   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
344   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
345     return true;
346 
347   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
348           LatchBR->getSuccessor(1) == L->getHeader()) &&
349          "At least one edge out of the latch must go to the header");
350 
351   SmallVector<BasicBlock *, 4> ExitBlocks;
352   L->getUniqueNonLatchExitBlocks(ExitBlocks);
353   return any_of(ExitBlocks, [](const BasicBlock *EB) {
354       return !EB->getTerminatingDeoptimizeCall();
355     });
356 }
357 
358 
359 // Return the number of iterations we want to peel off.
360 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
361                             TargetTransformInfo::PeelingPreferences &PP,
362                             unsigned TripCount, DominatorTree &DT,
363                             ScalarEvolution &SE, unsigned Threshold) {
364   assert(LoopSize > 0 && "Zero loop size is not allowed!");
365   // Save the PP.PeelCount value set by the target in
366   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
367   unsigned TargetPeelCount = PP.PeelCount;
368   PP.PeelCount = 0;
369   if (!canPeel(L))
370     return;
371 
372   // Only try to peel innermost loops by default.
373   // The constraint can be relaxed by the target in TTI.getPeelingPreferences
374   // or by the flag -unroll-allow-loop-nests-peeling.
375   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
376     return;
377 
378   // If the user provided a peel count, use that.
379   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
380   if (UserPeelCount) {
381     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
382                       << " iterations.\n");
383     PP.PeelCount = UnrollForcePeelCount;
384     PP.PeelProfiledIterations = true;
385     return;
386   }
387 
388   // Skip peeling if it's disabled.
389   if (!PP.AllowPeeling)
390     return;
391 
392   unsigned AlreadyPeeled = 0;
393   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
394     AlreadyPeeled = *Peeled;
395   // Stop if we already peeled off the maximum number of iterations.
396   if (AlreadyPeeled >= UnrollPeelMaxCount)
397     return;
398 
399   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
400   // iterations of the loop. For this we compute the number for iterations after
401   // which every Phi is guaranteed to become an invariant, and try to peel the
402   // maximum number of iterations among these values, thus turning all those
403   // Phis into invariants.
404   // First, check that we can peel at least one iteration.
405   if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) {
406     // Store the pre-calculated values here.
407     SmallDenseMap<PHINode *, Optional<unsigned> > IterationsToInvariance;
408     // Now go through all Phis to calculate their the number of iterations they
409     // need to become invariants.
410     // Start the max computation with the PP.PeelCount value set by the target
411     // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
412     unsigned DesiredPeelCount = TargetPeelCount;
413     BasicBlock *BackEdge = L->getLoopLatch();
414     assert(BackEdge && "Loop is not in simplified form?");
415     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
416       PHINode *Phi = cast<PHINode>(&*BI);
417       auto ToInvariance = calculateIterationsToInvariance(
418           Phi, L, BackEdge, IterationsToInvariance);
419       if (ToInvariance)
420         DesiredPeelCount = std::max(DesiredPeelCount, *ToInvariance);
421     }
422 
423     // Pay respect to limitations implied by loop size and the max peel count.
424     unsigned MaxPeelCount = UnrollPeelMaxCount;
425     MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
426 
427     DesiredPeelCount = std::max(DesiredPeelCount,
428                                 countToEliminateCompares(*L, MaxPeelCount, SE));
429 
430     if (DesiredPeelCount == 0)
431       DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT);
432 
433     if (DesiredPeelCount > 0) {
434       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
435       // Consider max peel count limitation.
436       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
437       if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
438         LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
439                           << " iteration(s) to turn"
440                           << " some Phis into invariants.\n");
441         PP.PeelCount = DesiredPeelCount;
442         PP.PeelProfiledIterations = false;
443         return;
444       }
445     }
446   }
447 
448   // Bail if we know the statically calculated trip count.
449   // In this case we rather prefer partial unrolling.
450   if (TripCount)
451     return;
452 
453   // Do not apply profile base peeling if it is disabled.
454   if (!PP.PeelProfiledIterations)
455     return;
456   // If we don't know the trip count, but have reason to believe the average
457   // trip count is low, peeling should be beneficial, since we will usually
458   // hit the peeled section.
459   // We only do this in the presence of profile information, since otherwise
460   // our estimates of the trip count are not reliable enough.
461   if (L->getHeader()->getParent()->hasProfileData()) {
462     if (violatesLegacyMultiExitLoopCheck(L))
463       return;
464     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
465     if (!PeelCount)
466       return;
467 
468     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
469                       << "\n");
470 
471     if (*PeelCount) {
472       if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
473           (LoopSize * (*PeelCount + 1) <= Threshold)) {
474         LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
475                           << " iterations.\n");
476         PP.PeelCount = *PeelCount;
477         return;
478       }
479       LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
480       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
481       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
482       LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
483                         << "\n");
484       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
485     }
486   }
487 }
488 
489 /// Update the branch weights of the latch of a peeled-off loop
490 /// iteration.
491 /// This sets the branch weights for the latch of the recently peeled off loop
492 /// iteration correctly.
493 /// Let F is a weight of the edge from latch to header.
494 /// Let E is a weight of the edge from latch to exit.
495 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
496 /// go to exit.
497 /// Then, Estimated TripCount = F / E.
498 /// For I-th (counting from 0) peeled off iteration we set the the weights for
499 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
500 /// The probability to go to exit 1/(TC-I) increases. At the same time
501 /// the estimated trip count of remaining loop reduces by I.
502 /// To avoid dealing with division rounding we can just multiple both part
503 /// of weights to E and use weight as (F - I * E, E).
504 ///
505 /// \param Header The copy of the header block that belongs to next iteration.
506 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
507 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
508 /// header before peeling (in) and after peeled off one iteration (out).
509 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
510                                 uint64_t ExitWeight,
511                                 uint64_t &FallThroughWeight) {
512   // FallThroughWeight is 0 means that there is no branch weights on original
513   // latch block or estimated trip count is zero.
514   if (!FallThroughWeight)
515     return;
516 
517   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
518   MDBuilder MDB(LatchBR->getContext());
519   MDNode *WeightNode =
520       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
521                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
522   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
523   FallThroughWeight =
524       FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
525 }
526 
527 /// Initialize the weights.
528 ///
529 /// \param Header The header block.
530 /// \param LatchBR The latch branch.
531 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
532 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
533 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
534                               uint64_t &ExitWeight,
535                               uint64_t &FallThroughWeight) {
536   uint64_t TrueWeight, FalseWeight;
537   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
538     return;
539   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
540   ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
541   FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
542 }
543 
544 /// Update the weights of original Latch block after peeling off all iterations.
545 ///
546 /// \param Header The header block.
547 /// \param LatchBR The latch branch.
548 /// \param ExitWeight The weight of the edge from Latch to Exit.
549 /// \param FallThroughWeight The weight of the edge from Latch to Header.
550 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
551                                uint64_t ExitWeight,
552                                uint64_t FallThroughWeight) {
553   // FallThroughWeight is 0 means that there is no branch weights on original
554   // latch block or estimated trip count is zero.
555   if (!FallThroughWeight)
556     return;
557 
558   // Sets the branch weights on the loop exit.
559   MDBuilder MDB(LatchBR->getContext());
560   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
561   MDNode *WeightNode =
562       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
563                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
564   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
565 }
566 
567 /// Clones the body of the loop L, putting it between \p InsertTop and \p
568 /// InsertBot.
569 /// \param IterNumber The serial number of the iteration currently being
570 /// peeled off.
571 /// \param ExitEdges The exit edges of the original loop.
572 /// \param[out] NewBlocks A list of the blocks in the newly created clone
573 /// \param[out] VMap The value map between the loop and the new clone.
574 /// \param LoopBlocks A helper for DFS-traversal of the loop.
575 /// \param LVMap A value-map that maps instructions from the original loop to
576 /// instructions in the last peeled-off iteration.
577 static void cloneLoopBlocks(
578     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
579     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
580     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
581     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
582     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) {
583   BasicBlock *Header = L->getHeader();
584   BasicBlock *Latch = L->getLoopLatch();
585   BasicBlock *PreHeader = L->getLoopPreheader();
586 
587   Function *F = Header->getParent();
588   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
589   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
590   Loop *ParentLoop = L->getParentLoop();
591 
592   // For each block in the original loop, create a new copy,
593   // and update the value map with the newly created values.
594   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
595     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
596     NewBlocks.push_back(NewBB);
597 
598     // If an original block is an immediate child of the loop L, its copy
599     // is a child of a ParentLoop after peeling. If a block is a child of
600     // a nested loop, it is handled in the cloneLoop() call below.
601     if (ParentLoop && LI->getLoopFor(*BB) == L)
602       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
603 
604     VMap[*BB] = NewBB;
605 
606     // If dominator tree is available, insert nodes to represent cloned blocks.
607     if (DT) {
608       if (Header == *BB)
609         DT->addNewBlock(NewBB, InsertTop);
610       else {
611         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
612         // VMap must contain entry for IDom, as the iteration order is RPO.
613         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
614       }
615     }
616   }
617 
618   {
619     // Identify what other metadata depends on the cloned version. After
620     // cloning, replace the metadata with the corrected version for both
621     // memory instructions and noalias intrinsics.
622     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
623     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
624                                Header->getContext(), Ext);
625   }
626 
627   // Recursively create the new Loop objects for nested loops, if any,
628   // to preserve LoopInfo.
629   for (Loop *ChildLoop : *L) {
630     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
631   }
632 
633   // Hook-up the control flow for the newly inserted blocks.
634   // The new header is hooked up directly to the "top", which is either
635   // the original loop preheader (for the first iteration) or the previous
636   // iteration's exiting block (for every other iteration)
637   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
638 
639   // Similarly, for the latch:
640   // The original exiting edge is still hooked up to the loop exit.
641   // The backedge now goes to the "bottom", which is either the loop's real
642   // header (for the last peeled iteration) or the copied header of the next
643   // iteration (for every other iteration)
644   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
645   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
646   for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
647     if (LatchBR->getSuccessor(idx) == Header) {
648       LatchBR->setSuccessor(idx, InsertBot);
649       break;
650     }
651   if (DT)
652     DT->changeImmediateDominator(InsertBot, NewLatch);
653 
654   // The new copy of the loop body starts with a bunch of PHI nodes
655   // that pick an incoming value from either the preheader, or the previous
656   // loop iteration. Since this copy is no longer part of the loop, we
657   // resolve this statically:
658   // For the first iteration, we use the value from the preheader directly.
659   // For any other iteration, we replace the phi with the value generated by
660   // the immediately preceding clone of the loop body (which represents
661   // the previous iteration).
662   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
663     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
664     if (IterNumber == 0) {
665       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
666     } else {
667       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
668       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
669       if (LatchInst && L->contains(LatchInst))
670         VMap[&*I] = LVMap[LatchInst];
671       else
672         VMap[&*I] = LatchVal;
673     }
674     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
675   }
676 
677   // Fix up the outgoing values - we need to add a value for the iteration
678   // we've just created. Note that this must happen *after* the incoming
679   // values are adjusted, since the value going out of the latch may also be
680   // a value coming into the header.
681   for (auto Edge : ExitEdges)
682     for (PHINode &PHI : Edge.second->phis()) {
683       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
684       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
685       if (LatchInst && L->contains(LatchInst))
686         LatchVal = VMap[LatchVal];
687       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
688     }
689 
690   // LastValueMap is updated with the values for the current loop
691   // which are used the next time this function is called.
692   for (auto KV : VMap)
693     LVMap[KV.first] = KV.second;
694 }
695 
696 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
697     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
698     Optional<bool> UserAllowPeeling,
699     Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
700   TargetTransformInfo::PeelingPreferences PP;
701 
702   // Set the default values.
703   PP.PeelCount = 0;
704   PP.AllowPeeling = true;
705   PP.AllowLoopNestsPeeling = false;
706   PP.PeelProfiledIterations = true;
707 
708   // Get the target specifc values.
709   TTI.getPeelingPreferences(L, SE, PP);
710 
711   // User specified values using cl::opt.
712   if (UnrollingSpecficValues) {
713     if (UnrollPeelCount.getNumOccurrences() > 0)
714       PP.PeelCount = UnrollPeelCount;
715     if (UnrollAllowPeeling.getNumOccurrences() > 0)
716       PP.AllowPeeling = UnrollAllowPeeling;
717     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
718       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
719   }
720 
721   // User specifed values provided by argument.
722   if (UserAllowPeeling.hasValue())
723     PP.AllowPeeling = *UserAllowPeeling;
724   if (UserAllowProfileBasedPeeling.hasValue())
725     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
726 
727   return PP;
728 }
729 
730 /// Peel off the first \p PeelCount iterations of loop \p L.
731 ///
732 /// Note that this does not peel them off as a single straight-line block.
733 /// Rather, each iteration is peeled off separately, and needs to check the
734 /// exit condition.
735 /// For loops that dynamically execute \p PeelCount iterations or less
736 /// this provides a benefit, since the peeled off iterations, which account
737 /// for the bulk of dynamic execution, can be further simplified by scalar
738 /// optimizations.
739 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
740                     ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
741                     bool PreserveLCSSA) {
742   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
743   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
744 
745   LoopBlocksDFS LoopBlocks(L);
746   LoopBlocks.perform(LI);
747 
748   BasicBlock *Header = L->getHeader();
749   BasicBlock *PreHeader = L->getLoopPreheader();
750   BasicBlock *Latch = L->getLoopLatch();
751   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
752   L->getExitEdges(ExitEdges);
753 
754   // Remember dominators of blocks we might reach through exits to change them
755   // later. Immediate dominator of such block might change, because we add more
756   // routes which can lead to the exit: we can reach it from the peeled
757   // iterations too.
758   DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
759   for (auto *BB : L->blocks()) {
760     auto *BBDomNode = DT.getNode(BB);
761     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
762     for (auto *ChildDomNode : BBDomNode->children()) {
763       auto *ChildBB = ChildDomNode->getBlock();
764       if (!L->contains(ChildBB))
765         ChildrenToUpdate.push_back(ChildBB);
766     }
767     // The new idom of the block will be the nearest common dominator
768     // of all copies of the previous idom. This is equivalent to the
769     // nearest common dominator of the previous idom and the first latch,
770     // which dominates all copies of the previous idom.
771     BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
772     for (auto *ChildBB : ChildrenToUpdate)
773       NonLoopBlocksIDom[ChildBB] = NewIDom;
774   }
775 
776   Function *F = Header->getParent();
777 
778   // Set up all the necessary basic blocks. It is convenient to split the
779   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
780   // body, and a new preheader for the "real" loop.
781 
782   // Peeling the first iteration transforms.
783   //
784   // PreHeader:
785   // ...
786   // Header:
787   //   LoopBody
788   //   If (cond) goto Header
789   // Exit:
790   //
791   // into
792   //
793   // InsertTop:
794   //   LoopBody
795   //   If (!cond) goto Exit
796   // InsertBot:
797   // NewPreHeader:
798   // ...
799   // Header:
800   //  LoopBody
801   //  If (cond) goto Header
802   // Exit:
803   //
804   // Each following iteration will split the current bottom anchor in two,
805   // and put the new copy of the loop body between these two blocks. That is,
806   // after peeling another iteration from the example above, we'll split
807   // InsertBot, and get:
808   //
809   // InsertTop:
810   //   LoopBody
811   //   If (!cond) goto Exit
812   // InsertBot:
813   //   LoopBody
814   //   If (!cond) goto Exit
815   // InsertBot.next:
816   // NewPreHeader:
817   // ...
818   // Header:
819   //  LoopBody
820   //  If (cond) goto Header
821   // Exit:
822 
823   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
824   BasicBlock *InsertBot =
825       SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
826   BasicBlock *NewPreHeader =
827       SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
828 
829   InsertTop->setName(Header->getName() + ".peel.begin");
830   InsertBot->setName(Header->getName() + ".peel.next");
831   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
832 
833   ValueToValueMapTy LVMap;
834 
835   // If we have branch weight information, we'll want to update it for the
836   // newly created branches.
837   BranchInst *LatchBR =
838       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
839   uint64_t ExitWeight = 0, FallThroughWeight = 0;
840   initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
841 
842   // Identify what noalias metadata is inside the loop: if it is inside the
843   // loop, the associated metadata must be cloned for each iteration.
844   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
845   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
846 
847   // For each peeled-off iteration, make a copy of the loop.
848   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
849     SmallVector<BasicBlock *, 8> NewBlocks;
850     ValueToValueMapTy VMap;
851 
852     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
853                     LoopBlocks, VMap, LVMap, &DT, LI,
854                     LoopLocalNoAliasDeclScopes);
855 
856     // Remap to use values from the current iteration instead of the
857     // previous one.
858     remapInstructionsInBlocks(NewBlocks, VMap);
859 
860     // Update IDoms of the blocks reachable through exits.
861     if (Iter == 0)
862       for (auto BBIDom : NonLoopBlocksIDom)
863         DT.changeImmediateDominator(BBIDom.first,
864                                      cast<BasicBlock>(LVMap[BBIDom.second]));
865 #ifdef EXPENSIVE_CHECKS
866     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
867 #endif
868 
869     auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
870     updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
871     // Remove Loop metadata from the latch branch instruction
872     // because it is not the Loop's latch branch anymore.
873     LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
874 
875     InsertTop = InsertBot;
876     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
877     InsertBot->setName(Header->getName() + ".peel.next");
878 
879     F->getBasicBlockList().splice(InsertTop->getIterator(),
880                                   F->getBasicBlockList(),
881                                   NewBlocks[0]->getIterator(), F->end());
882   }
883 
884   // Now adjust the phi nodes in the loop header to get their initial values
885   // from the last peeled-off iteration instead of the preheader.
886   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
887     PHINode *PHI = cast<PHINode>(I);
888     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
889     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
890     if (LatchInst && L->contains(LatchInst))
891       NewVal = LVMap[LatchInst];
892 
893     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
894   }
895 
896   fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
897 
898   // Update Metadata for count of peeled off iterations.
899   unsigned AlreadyPeeled = 0;
900   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
901     AlreadyPeeled = *Peeled;
902   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
903 
904   if (Loop *ParentLoop = L->getParentLoop())
905     L = ParentLoop;
906 
907   // We modified the loop, update SE.
908   SE->forgetTopmostLoop(L);
909 
910   // Finally DomtTree must be correct.
911   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
912 
913   // FIXME: Incrementally update loop-simplify
914   simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
915 
916   NumPeeled++;
917 
918   return true;
919 }
920