xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "loop-peel"
51 
52 STATISTIC(NumPeeled, "Number of loops peeled");
53 
54 static cl::opt<unsigned> UnrollPeelCount(
55     "unroll-peel-count", cl::Hidden,
56     cl::desc("Set the unroll peeling count, for testing purposes"));
57 
58 static cl::opt<bool>
59     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
60                        cl::desc("Allows loops to be peeled when the dynamic "
61                                 "trip count is known to be low."));
62 
63 static cl::opt<bool>
64     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
65                                 cl::init(false), cl::Hidden,
66                                 cl::desc("Allows loop nests to be peeled."));
67 
68 static cl::opt<unsigned> UnrollPeelMaxCount(
69     "unroll-peel-max-count", cl::init(7), cl::Hidden,
70     cl::desc("Max average trip count which will cause loop peeling."));
71 
72 static cl::opt<unsigned> UnrollForcePeelCount(
73     "unroll-force-peel-count", cl::init(0), cl::Hidden,
74     cl::desc("Force a peel count regardless of profiling information."));
75 
76 static cl::opt<bool> UnrollPeelMultiDeoptExit(
77     "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden,
78     cl::desc("Allow peeling of loops with multiple deopt exits."));
79 
80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
81 
82 // Designates that a Phi is estimated to become invariant after an "infinite"
83 // number of loop iterations (i.e. only may become an invariant if the loop is
84 // fully unrolled).
85 static const unsigned InfiniteIterationsToInvariance =
86     std::numeric_limits<unsigned>::max();
87 
88 // Check whether we are capable of peeling this loop.
89 bool llvm::canPeel(Loop *L) {
90   // Make sure the loop is in simplified form
91   if (!L->isLoopSimplifyForm())
92     return false;
93 
94   if (UnrollPeelMultiDeoptExit) {
95     SmallVector<BasicBlock *, 4> Exits;
96     L->getUniqueNonLatchExitBlocks(Exits);
97 
98     if (!Exits.empty()) {
99       // Latch's terminator is a conditional branch, Latch is exiting and
100       // all non Latch exits ends up with deoptimize.
101       const BasicBlock *Latch = L->getLoopLatch();
102       const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator());
103       return T && T->isConditional() && L->isLoopExiting(Latch) &&
104              all_of(Exits, [](const BasicBlock *BB) {
105                return BB->getTerminatingDeoptimizeCall();
106              });
107     }
108   }
109 
110   // Only peel loops that contain a single exit
111   if (!L->getExitingBlock() || !L->getUniqueExitBlock())
112     return false;
113 
114   // Don't try to peel loops where the latch is not the exiting block.
115   // This can be an indication of two different things:
116   // 1) The loop is not rotated.
117   // 2) The loop contains irreducible control flow that involves the latch.
118   const BasicBlock *Latch = L->getLoopLatch();
119   if (Latch != L->getExitingBlock())
120     return false;
121 
122   // Peeling is only supported if the latch is a branch.
123   if (!isa<BranchInst>(Latch->getTerminator()))
124     return false;
125 
126   return true;
127 }
128 
129 // This function calculates the number of iterations after which the given Phi
130 // becomes an invariant. The pre-calculated values are memorized in the map. The
131 // function (shortcut is I) is calculated according to the following definition:
132 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
133 //   If %y is a loop invariant, then I(%x) = 1.
134 //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
135 //   Otherwise, I(%x) is infinite.
136 // TODO: Actually if %y is an expression that depends only on Phi %z and some
137 //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
138 //       looks like:
139 //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
140 //         %y = phi(0, 5),
141 //         %a = %y + 1.
142 static unsigned calculateIterationsToInvariance(
143     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
144     SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
145   assert(Phi->getParent() == L->getHeader() &&
146          "Non-loop Phi should not be checked for turning into invariant.");
147   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
148   // If we already know the answer, take it from the map.
149   auto I = IterationsToInvariance.find(Phi);
150   if (I != IterationsToInvariance.end())
151     return I->second;
152 
153   // Otherwise we need to analyze the input from the back edge.
154   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
155   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
156   // cycles can never stop on an invariant.
157   IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
158   unsigned ToInvariance = InfiniteIterationsToInvariance;
159 
160   if (L->isLoopInvariant(Input))
161     ToInvariance = 1u;
162   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
163     // Only consider Phis in header block.
164     if (IncPhi->getParent() != L->getHeader())
165       return InfiniteIterationsToInvariance;
166     // If the input becomes an invariant after X iterations, then our Phi
167     // becomes an invariant after X + 1 iterations.
168     unsigned InputToInvariance = calculateIterationsToInvariance(
169         IncPhi, L, BackEdge, IterationsToInvariance);
170     if (InputToInvariance != InfiniteIterationsToInvariance)
171       ToInvariance = InputToInvariance + 1u;
172   }
173 
174   // If we found that this Phi lies in an invariant chain, update the map.
175   if (ToInvariance != InfiniteIterationsToInvariance)
176     IterationsToInvariance[Phi] = ToInvariance;
177   return ToInvariance;
178 }
179 
180 // Return the number of iterations to peel off that make conditions in the
181 // body true/false. For example, if we peel 2 iterations off the loop below,
182 // the condition i < 2 can be evaluated at compile time.
183 //  for (i = 0; i < n; i++)
184 //    if (i < 2)
185 //      ..
186 //    else
187 //      ..
188 //   }
189 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
190                                          ScalarEvolution &SE) {
191   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
192   unsigned DesiredPeelCount = 0;
193 
194   for (auto *BB : L.blocks()) {
195     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
196     if (!BI || BI->isUnconditional())
197       continue;
198 
199     // Ignore loop exit condition.
200     if (L.getLoopLatch() == BB)
201       continue;
202 
203     Value *Condition = BI->getCondition();
204     Value *LeftVal, *RightVal;
205     CmpInst::Predicate Pred;
206     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
207       continue;
208 
209     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
210     const SCEV *RightSCEV = SE.getSCEV(RightVal);
211 
212     // Do not consider predicates that are known to be true or false
213     // independently of the loop iteration.
214     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
215       continue;
216 
217     // Check if we have a condition with one AddRec and one non AddRec
218     // expression. Normalize LeftSCEV to be the AddRec.
219     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
220       if (isa<SCEVAddRecExpr>(RightSCEV)) {
221         std::swap(LeftSCEV, RightSCEV);
222         Pred = ICmpInst::getSwappedPredicate(Pred);
223       } else
224         continue;
225     }
226 
227     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
228 
229     // Avoid huge SCEV computations in the loop below, make sure we only
230     // consider AddRecs of the loop we are trying to peel.
231     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
232       continue;
233     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
234         !SE.getMonotonicPredicateType(LeftAR, Pred))
235       continue;
236 
237     // Check if extending the current DesiredPeelCount lets us evaluate Pred
238     // or !Pred in the loop body statically.
239     unsigned NewPeelCount = DesiredPeelCount;
240 
241     const SCEV *IterVal = LeftAR->evaluateAtIteration(
242         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
243 
244     // If the original condition is not known, get the negated predicate
245     // (which holds on the else branch) and check if it is known. This allows
246     // us to peel of iterations that make the original condition false.
247     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
248       Pred = ICmpInst::getInversePredicate(Pred);
249 
250     const SCEV *Step = LeftAR->getStepRecurrence(SE);
251     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
252     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
253                                  &NewPeelCount]() {
254       IterVal = NextIterVal;
255       NextIterVal = SE.getAddExpr(IterVal, Step);
256       NewPeelCount++;
257     };
258 
259     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
260       return NewPeelCount < MaxPeelCount;
261     };
262 
263     while (CanPeelOneMoreIteration() &&
264            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
265       PeelOneMoreIteration();
266 
267     // With *that* peel count, does the predicate !Pred become known in the
268     // first iteration of the loop body after peeling?
269     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
270                              RightSCEV))
271       continue; // If not, give up.
272 
273     // However, for equality comparisons, that isn't always sufficient to
274     // eliminate the comparsion in loop body, we may need to peel one more
275     // iteration. See if that makes !Pred become unknown again.
276     if (ICmpInst::isEquality(Pred) &&
277         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
278                              RightSCEV) &&
279         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
280         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
281       if (!CanPeelOneMoreIteration())
282         continue; // Need to peel one more iteration, but can't. Give up.
283       PeelOneMoreIteration(); // Great!
284     }
285 
286     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
287   }
288 
289   return DesiredPeelCount;
290 }
291 
292 // Return the number of iterations we want to peel off.
293 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
294                             TargetTransformInfo::PeelingPreferences &PP,
295                             unsigned &TripCount, ScalarEvolution &SE,
296                             unsigned Threshold) {
297   assert(LoopSize > 0 && "Zero loop size is not allowed!");
298   // Save the PP.PeelCount value set by the target in
299   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
300   unsigned TargetPeelCount = PP.PeelCount;
301   PP.PeelCount = 0;
302   if (!canPeel(L))
303     return;
304 
305   // Only try to peel innermost loops by default.
306   // The constraint can be relaxed by the target in TTI.getUnrollingPreferences
307   // or by the flag -unroll-allow-loop-nests-peeling.
308   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
309     return;
310 
311   // If the user provided a peel count, use that.
312   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
313   if (UserPeelCount) {
314     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
315                       << " iterations.\n");
316     PP.PeelCount = UnrollForcePeelCount;
317     PP.PeelProfiledIterations = true;
318     return;
319   }
320 
321   // Skip peeling if it's disabled.
322   if (!PP.AllowPeeling)
323     return;
324 
325   unsigned AlreadyPeeled = 0;
326   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
327     AlreadyPeeled = *Peeled;
328   // Stop if we already peeled off the maximum number of iterations.
329   if (AlreadyPeeled >= UnrollPeelMaxCount)
330     return;
331 
332   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
333   // iterations of the loop. For this we compute the number for iterations after
334   // which every Phi is guaranteed to become an invariant, and try to peel the
335   // maximum number of iterations among these values, thus turning all those
336   // Phis into invariants.
337   // First, check that we can peel at least one iteration.
338   if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) {
339     // Store the pre-calculated values here.
340     SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
341     // Now go through all Phis to calculate their the number of iterations they
342     // need to become invariants.
343     // Start the max computation with the UP.PeelCount value set by the target
344     // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
345     unsigned DesiredPeelCount = TargetPeelCount;
346     BasicBlock *BackEdge = L->getLoopLatch();
347     assert(BackEdge && "Loop is not in simplified form?");
348     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
349       PHINode *Phi = cast<PHINode>(&*BI);
350       unsigned ToInvariance = calculateIterationsToInvariance(
351           Phi, L, BackEdge, IterationsToInvariance);
352       if (ToInvariance != InfiniteIterationsToInvariance)
353         DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
354     }
355 
356     // Pay respect to limitations implied by loop size and the max peel count.
357     unsigned MaxPeelCount = UnrollPeelMaxCount;
358     MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
359 
360     DesiredPeelCount = std::max(DesiredPeelCount,
361                                 countToEliminateCompares(*L, MaxPeelCount, SE));
362 
363     if (DesiredPeelCount > 0) {
364       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
365       // Consider max peel count limitation.
366       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
367       if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
368         LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
369                           << " iteration(s) to turn"
370                           << " some Phis into invariants.\n");
371         PP.PeelCount = DesiredPeelCount;
372         PP.PeelProfiledIterations = false;
373         return;
374       }
375     }
376   }
377 
378   // Bail if we know the statically calculated trip count.
379   // In this case we rather prefer partial unrolling.
380   if (TripCount)
381     return;
382 
383   // Do not apply profile base peeling if it is disabled.
384   if (!PP.PeelProfiledIterations)
385     return;
386   // If we don't know the trip count, but have reason to believe the average
387   // trip count is low, peeling should be beneficial, since we will usually
388   // hit the peeled section.
389   // We only do this in the presence of profile information, since otherwise
390   // our estimates of the trip count are not reliable enough.
391   if (L->getHeader()->getParent()->hasProfileData()) {
392     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
393     if (!PeelCount)
394       return;
395 
396     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
397                       << "\n");
398 
399     if (*PeelCount) {
400       if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
401           (LoopSize * (*PeelCount + 1) <= Threshold)) {
402         LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
403                           << " iterations.\n");
404         PP.PeelCount = *PeelCount;
405         return;
406       }
407       LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
408       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
409       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
410       LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
411                         << "\n");
412       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
413     }
414   }
415 }
416 
417 /// Update the branch weights of the latch of a peeled-off loop
418 /// iteration.
419 /// This sets the branch weights for the latch of the recently peeled off loop
420 /// iteration correctly.
421 /// Let F is a weight of the edge from latch to header.
422 /// Let E is a weight of the edge from latch to exit.
423 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
424 /// go to exit.
425 /// Then, Estimated TripCount = F / E.
426 /// For I-th (counting from 0) peeled off iteration we set the the weights for
427 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
428 /// The probability to go to exit 1/(TC-I) increases. At the same time
429 /// the estimated trip count of remaining loop reduces by I.
430 /// To avoid dealing with division rounding we can just multiple both part
431 /// of weights to E and use weight as (F - I * E, E).
432 ///
433 /// \param Header The copy of the header block that belongs to next iteration.
434 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
435 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
436 /// header before peeling (in) and after peeled off one iteration (out).
437 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
438                                 uint64_t ExitWeight,
439                                 uint64_t &FallThroughWeight) {
440   // FallThroughWeight is 0 means that there is no branch weights on original
441   // latch block or estimated trip count is zero.
442   if (!FallThroughWeight)
443     return;
444 
445   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
446   MDBuilder MDB(LatchBR->getContext());
447   MDNode *WeightNode =
448       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
449                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
450   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
451   FallThroughWeight =
452       FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
453 }
454 
455 /// Initialize the weights.
456 ///
457 /// \param Header The header block.
458 /// \param LatchBR The latch branch.
459 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
460 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
461 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
462                               uint64_t &ExitWeight,
463                               uint64_t &FallThroughWeight) {
464   uint64_t TrueWeight, FalseWeight;
465   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
466     return;
467   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
468   ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
469   FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
470 }
471 
472 /// Update the weights of original Latch block after peeling off all iterations.
473 ///
474 /// \param Header The header block.
475 /// \param LatchBR The latch branch.
476 /// \param ExitWeight The weight of the edge from Latch to Exit.
477 /// \param FallThroughWeight The weight of the edge from Latch to Header.
478 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
479                                uint64_t ExitWeight,
480                                uint64_t FallThroughWeight) {
481   // FallThroughWeight is 0 means that there is no branch weights on original
482   // latch block or estimated trip count is zero.
483   if (!FallThroughWeight)
484     return;
485 
486   // Sets the branch weights on the loop exit.
487   MDBuilder MDB(LatchBR->getContext());
488   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
489   MDNode *WeightNode =
490       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
491                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
492   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
493 }
494 
495 /// Clones the body of the loop L, putting it between \p InsertTop and \p
496 /// InsertBot.
497 /// \param IterNumber The serial number of the iteration currently being
498 /// peeled off.
499 /// \param ExitEdges The exit edges of the original loop.
500 /// \param[out] NewBlocks A list of the blocks in the newly created clone
501 /// \param[out] VMap The value map between the loop and the new clone.
502 /// \param LoopBlocks A helper for DFS-traversal of the loop.
503 /// \param LVMap A value-map that maps instructions from the original loop to
504 /// instructions in the last peeled-off iteration.
505 static void cloneLoopBlocks(
506     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
507     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
508     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
509     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
510     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) {
511   BasicBlock *Header = L->getHeader();
512   BasicBlock *Latch = L->getLoopLatch();
513   BasicBlock *PreHeader = L->getLoopPreheader();
514 
515   Function *F = Header->getParent();
516   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
517   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
518   Loop *ParentLoop = L->getParentLoop();
519 
520   // For each block in the original loop, create a new copy,
521   // and update the value map with the newly created values.
522   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
523     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
524     NewBlocks.push_back(NewBB);
525 
526     // If an original block is an immediate child of the loop L, its copy
527     // is a child of a ParentLoop after peeling. If a block is a child of
528     // a nested loop, it is handled in the cloneLoop() call below.
529     if (ParentLoop && LI->getLoopFor(*BB) == L)
530       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
531 
532     VMap[*BB] = NewBB;
533 
534     // If dominator tree is available, insert nodes to represent cloned blocks.
535     if (DT) {
536       if (Header == *BB)
537         DT->addNewBlock(NewBB, InsertTop);
538       else {
539         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
540         // VMap must contain entry for IDom, as the iteration order is RPO.
541         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
542       }
543     }
544   }
545 
546   {
547     // Identify what other metadata depends on the cloned version. After
548     // cloning, replace the metadata with the corrected version for both
549     // memory instructions and noalias intrinsics.
550     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
551     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
552                                Header->getContext(), Ext);
553   }
554 
555   // Recursively create the new Loop objects for nested loops, if any,
556   // to preserve LoopInfo.
557   for (Loop *ChildLoop : *L) {
558     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
559   }
560 
561   // Hook-up the control flow for the newly inserted blocks.
562   // The new header is hooked up directly to the "top", which is either
563   // the original loop preheader (for the first iteration) or the previous
564   // iteration's exiting block (for every other iteration)
565   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
566 
567   // Similarly, for the latch:
568   // The original exiting edge is still hooked up to the loop exit.
569   // The backedge now goes to the "bottom", which is either the loop's real
570   // header (for the last peeled iteration) or the copied header of the next
571   // iteration (for every other iteration)
572   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
573   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
574   for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
575     if (LatchBR->getSuccessor(idx) == Header) {
576       LatchBR->setSuccessor(idx, InsertBot);
577       break;
578     }
579   if (DT)
580     DT->changeImmediateDominator(InsertBot, NewLatch);
581 
582   // The new copy of the loop body starts with a bunch of PHI nodes
583   // that pick an incoming value from either the preheader, or the previous
584   // loop iteration. Since this copy is no longer part of the loop, we
585   // resolve this statically:
586   // For the first iteration, we use the value from the preheader directly.
587   // For any other iteration, we replace the phi with the value generated by
588   // the immediately preceding clone of the loop body (which represents
589   // the previous iteration).
590   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
591     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
592     if (IterNumber == 0) {
593       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
594     } else {
595       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
596       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
597       if (LatchInst && L->contains(LatchInst))
598         VMap[&*I] = LVMap[LatchInst];
599       else
600         VMap[&*I] = LatchVal;
601     }
602     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
603   }
604 
605   // Fix up the outgoing values - we need to add a value for the iteration
606   // we've just created. Note that this must happen *after* the incoming
607   // values are adjusted, since the value going out of the latch may also be
608   // a value coming into the header.
609   for (auto Edge : ExitEdges)
610     for (PHINode &PHI : Edge.second->phis()) {
611       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
612       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
613       if (LatchInst && L->contains(LatchInst))
614         LatchVal = VMap[LatchVal];
615       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
616     }
617 
618   // LastValueMap is updated with the values for the current loop
619   // which are used the next time this function is called.
620   for (auto KV : VMap)
621     LVMap[KV.first] = KV.second;
622 }
623 
624 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
625     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
626     Optional<bool> UserAllowPeeling,
627     Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
628   TargetTransformInfo::PeelingPreferences PP;
629 
630   // Set the default values.
631   PP.PeelCount = 0;
632   PP.AllowPeeling = true;
633   PP.AllowLoopNestsPeeling = false;
634   PP.PeelProfiledIterations = true;
635 
636   // Get the target specifc values.
637   TTI.getPeelingPreferences(L, SE, PP);
638 
639   // User specified values using cl::opt.
640   if (UnrollingSpecficValues) {
641     if (UnrollPeelCount.getNumOccurrences() > 0)
642       PP.PeelCount = UnrollPeelCount;
643     if (UnrollAllowPeeling.getNumOccurrences() > 0)
644       PP.AllowPeeling = UnrollAllowPeeling;
645     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
646       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
647   }
648 
649   // User specifed values provided by argument.
650   if (UserAllowPeeling.hasValue())
651     PP.AllowPeeling = *UserAllowPeeling;
652   if (UserAllowProfileBasedPeeling.hasValue())
653     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
654 
655   return PP;
656 }
657 
658 /// Peel off the first \p PeelCount iterations of loop \p L.
659 ///
660 /// Note that this does not peel them off as a single straight-line block.
661 /// Rather, each iteration is peeled off separately, and needs to check the
662 /// exit condition.
663 /// For loops that dynamically execute \p PeelCount iterations or less
664 /// this provides a benefit, since the peeled off iterations, which account
665 /// for the bulk of dynamic execution, can be further simplified by scalar
666 /// optimizations.
667 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
668                     ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
669                     bool PreserveLCSSA) {
670   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
671   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
672 
673   LoopBlocksDFS LoopBlocks(L);
674   LoopBlocks.perform(LI);
675 
676   BasicBlock *Header = L->getHeader();
677   BasicBlock *PreHeader = L->getLoopPreheader();
678   BasicBlock *Latch = L->getLoopLatch();
679   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
680   L->getExitEdges(ExitEdges);
681 
682   DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
683   if (DT) {
684     // We'd like to determine the idom of exit block after peeling one
685     // iteration.
686     // Let Exit is exit block.
687     // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
688     // blocks.
689     // Let Latch' and ExitingSet' are copies after a peeling.
690     // We'd like to find an idom'(Exit) - idom of Exit after peeling.
691     // It is an evident that idom'(Exit) will be the nearest common dominator
692     // of ExitingSet and ExitingSet'.
693     // idom(Exit) is a nearest common dominator of ExitingSet.
694     // idom(Exit)' is a nearest common dominator of ExitingSet'.
695     // Taking into account that we have a single Latch, Latch' will dominate
696     // Header and idom(Exit).
697     // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
698     // All these basic blocks are in the same loop, so what we find is
699     // (nearest common dominator of idom(Exit) and Latch)'.
700     // In the loop below we remember nearest common dominator of idom(Exit) and
701     // Latch to update idom of Exit later.
702     assert(L->hasDedicatedExits() && "No dedicated exits?");
703     for (auto Edge : ExitEdges) {
704       if (ExitIDom.count(Edge.second))
705         continue;
706       BasicBlock *BB = DT->findNearestCommonDominator(
707           DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
708       assert(L->contains(BB) && "IDom is not in a loop");
709       ExitIDom[Edge.second] = BB;
710     }
711   }
712 
713   Function *F = Header->getParent();
714 
715   // Set up all the necessary basic blocks. It is convenient to split the
716   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
717   // body, and a new preheader for the "real" loop.
718 
719   // Peeling the first iteration transforms.
720   //
721   // PreHeader:
722   // ...
723   // Header:
724   //   LoopBody
725   //   If (cond) goto Header
726   // Exit:
727   //
728   // into
729   //
730   // InsertTop:
731   //   LoopBody
732   //   If (!cond) goto Exit
733   // InsertBot:
734   // NewPreHeader:
735   // ...
736   // Header:
737   //  LoopBody
738   //  If (cond) goto Header
739   // Exit:
740   //
741   // Each following iteration will split the current bottom anchor in two,
742   // and put the new copy of the loop body between these two blocks. That is,
743   // after peeling another iteration from the example above, we'll split
744   // InsertBot, and get:
745   //
746   // InsertTop:
747   //   LoopBody
748   //   If (!cond) goto Exit
749   // InsertBot:
750   //   LoopBody
751   //   If (!cond) goto Exit
752   // InsertBot.next:
753   // NewPreHeader:
754   // ...
755   // Header:
756   //  LoopBody
757   //  If (cond) goto Header
758   // Exit:
759 
760   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
761   BasicBlock *InsertBot =
762       SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
763   BasicBlock *NewPreHeader =
764       SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
765 
766   InsertTop->setName(Header->getName() + ".peel.begin");
767   InsertBot->setName(Header->getName() + ".peel.next");
768   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
769 
770   ValueToValueMapTy LVMap;
771 
772   // If we have branch weight information, we'll want to update it for the
773   // newly created branches.
774   BranchInst *LatchBR =
775       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
776   uint64_t ExitWeight = 0, FallThroughWeight = 0;
777   initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
778 
779   // Identify what noalias metadata is inside the loop: if it is inside the
780   // loop, the associated metadata must be cloned for each iteration.
781   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
782   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
783 
784   // For each peeled-off iteration, make a copy of the loop.
785   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
786     SmallVector<BasicBlock *, 8> NewBlocks;
787     ValueToValueMapTy VMap;
788 
789     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
790                     LoopBlocks, VMap, LVMap, DT, LI,
791                     LoopLocalNoAliasDeclScopes);
792 
793     // Remap to use values from the current iteration instead of the
794     // previous one.
795     remapInstructionsInBlocks(NewBlocks, VMap);
796 
797     if (DT) {
798       // Latches of the cloned loops dominate over the loop exit, so idom of the
799       // latter is the first cloned loop body, as original PreHeader dominates
800       // the original loop body.
801       if (Iter == 0)
802         for (auto Exit : ExitIDom)
803           DT->changeImmediateDominator(Exit.first,
804                                        cast<BasicBlock>(LVMap[Exit.second]));
805 #ifdef EXPENSIVE_CHECKS
806       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
807 #endif
808     }
809 
810     auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
811     updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
812     // Remove Loop metadata from the latch branch instruction
813     // because it is not the Loop's latch branch anymore.
814     LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
815 
816     InsertTop = InsertBot;
817     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
818     InsertBot->setName(Header->getName() + ".peel.next");
819 
820     F->getBasicBlockList().splice(InsertTop->getIterator(),
821                                   F->getBasicBlockList(),
822                                   NewBlocks[0]->getIterator(), F->end());
823   }
824 
825   // Now adjust the phi nodes in the loop header to get their initial values
826   // from the last peeled-off iteration instead of the preheader.
827   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
828     PHINode *PHI = cast<PHINode>(I);
829     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
830     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
831     if (LatchInst && L->contains(LatchInst))
832       NewVal = LVMap[LatchInst];
833 
834     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
835   }
836 
837   fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
838 
839   // Update Metadata for count of peeled off iterations.
840   unsigned AlreadyPeeled = 0;
841   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
842     AlreadyPeeled = *Peeled;
843   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
844 
845   if (Loop *ParentLoop = L->getParentLoop())
846     L = ParentLoop;
847 
848   // We modified the loop, update SE.
849   SE->forgetTopmostLoop(L);
850 
851   // Finally DomtTree must be correct.
852   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
853 
854   // FIXME: Incrementally update loop-simplify
855   simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
856 
857   NumPeeled++;
858 
859   return true;
860 }
861