1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Optional.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "loop-peel" 51 52 STATISTIC(NumPeeled, "Number of loops peeled"); 53 54 static cl::opt<unsigned> UnrollPeelCount( 55 "unroll-peel-count", cl::Hidden, 56 cl::desc("Set the unroll peeling count, for testing purposes")); 57 58 static cl::opt<bool> 59 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 60 cl::desc("Allows loops to be peeled when the dynamic " 61 "trip count is known to be low.")); 62 63 static cl::opt<bool> 64 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 65 cl::init(false), cl::Hidden, 66 cl::desc("Allows loop nests to be peeled.")); 67 68 static cl::opt<unsigned> UnrollPeelMaxCount( 69 "unroll-peel-max-count", cl::init(7), cl::Hidden, 70 cl::desc("Max average trip count which will cause loop peeling.")); 71 72 static cl::opt<unsigned> UnrollForcePeelCount( 73 "unroll-force-peel-count", cl::init(0), cl::Hidden, 74 cl::desc("Force a peel count regardless of profiling information.")); 75 76 static cl::opt<bool> UnrollPeelMultiDeoptExit( 77 "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden, 78 cl::desc("Allow peeling of loops with multiple deopt exits.")); 79 80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 81 82 // Designates that a Phi is estimated to become invariant after an "infinite" 83 // number of loop iterations (i.e. only may become an invariant if the loop is 84 // fully unrolled). 85 static const unsigned InfiniteIterationsToInvariance = 86 std::numeric_limits<unsigned>::max(); 87 88 // Check whether we are capable of peeling this loop. 89 bool llvm::canPeel(Loop *L) { 90 // Make sure the loop is in simplified form 91 if (!L->isLoopSimplifyForm()) 92 return false; 93 94 if (UnrollPeelMultiDeoptExit) { 95 SmallVector<BasicBlock *, 4> Exits; 96 L->getUniqueNonLatchExitBlocks(Exits); 97 98 if (!Exits.empty()) { 99 // Latch's terminator is a conditional branch, Latch is exiting and 100 // all non Latch exits ends up with deoptimize. 101 const BasicBlock *Latch = L->getLoopLatch(); 102 const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator()); 103 return T && T->isConditional() && L->isLoopExiting(Latch) && 104 all_of(Exits, [](const BasicBlock *BB) { 105 return BB->getTerminatingDeoptimizeCall(); 106 }); 107 } 108 } 109 110 // Only peel loops that contain a single exit 111 if (!L->getExitingBlock() || !L->getUniqueExitBlock()) 112 return false; 113 114 // Don't try to peel loops where the latch is not the exiting block. 115 // This can be an indication of two different things: 116 // 1) The loop is not rotated. 117 // 2) The loop contains irreducible control flow that involves the latch. 118 const BasicBlock *Latch = L->getLoopLatch(); 119 if (Latch != L->getExitingBlock()) 120 return false; 121 122 // Peeling is only supported if the latch is a branch. 123 if (!isa<BranchInst>(Latch->getTerminator())) 124 return false; 125 126 return true; 127 } 128 129 // This function calculates the number of iterations after which the given Phi 130 // becomes an invariant. The pre-calculated values are memorized in the map. The 131 // function (shortcut is I) is calculated according to the following definition: 132 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 133 // If %y is a loop invariant, then I(%x) = 1. 134 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 135 // Otherwise, I(%x) is infinite. 136 // TODO: Actually if %y is an expression that depends only on Phi %z and some 137 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 138 // looks like: 139 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 140 // %y = phi(0, 5), 141 // %a = %y + 1. 142 static unsigned calculateIterationsToInvariance( 143 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 144 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { 145 assert(Phi->getParent() == L->getHeader() && 146 "Non-loop Phi should not be checked for turning into invariant."); 147 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 148 // If we already know the answer, take it from the map. 149 auto I = IterationsToInvariance.find(Phi); 150 if (I != IterationsToInvariance.end()) 151 return I->second; 152 153 // Otherwise we need to analyze the input from the back edge. 154 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 155 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 156 // cycles can never stop on an invariant. 157 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; 158 unsigned ToInvariance = InfiniteIterationsToInvariance; 159 160 if (L->isLoopInvariant(Input)) 161 ToInvariance = 1u; 162 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 163 // Only consider Phis in header block. 164 if (IncPhi->getParent() != L->getHeader()) 165 return InfiniteIterationsToInvariance; 166 // If the input becomes an invariant after X iterations, then our Phi 167 // becomes an invariant after X + 1 iterations. 168 unsigned InputToInvariance = calculateIterationsToInvariance( 169 IncPhi, L, BackEdge, IterationsToInvariance); 170 if (InputToInvariance != InfiniteIterationsToInvariance) 171 ToInvariance = InputToInvariance + 1u; 172 } 173 174 // If we found that this Phi lies in an invariant chain, update the map. 175 if (ToInvariance != InfiniteIterationsToInvariance) 176 IterationsToInvariance[Phi] = ToInvariance; 177 return ToInvariance; 178 } 179 180 // Return the number of iterations to peel off that make conditions in the 181 // body true/false. For example, if we peel 2 iterations off the loop below, 182 // the condition i < 2 can be evaluated at compile time. 183 // for (i = 0; i < n; i++) 184 // if (i < 2) 185 // .. 186 // else 187 // .. 188 // } 189 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 190 ScalarEvolution &SE) { 191 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 192 unsigned DesiredPeelCount = 0; 193 194 for (auto *BB : L.blocks()) { 195 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 196 if (!BI || BI->isUnconditional()) 197 continue; 198 199 // Ignore loop exit condition. 200 if (L.getLoopLatch() == BB) 201 continue; 202 203 Value *Condition = BI->getCondition(); 204 Value *LeftVal, *RightVal; 205 CmpInst::Predicate Pred; 206 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 207 continue; 208 209 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 210 const SCEV *RightSCEV = SE.getSCEV(RightVal); 211 212 // Do not consider predicates that are known to be true or false 213 // independently of the loop iteration. 214 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) 215 continue; 216 217 // Check if we have a condition with one AddRec and one non AddRec 218 // expression. Normalize LeftSCEV to be the AddRec. 219 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 220 if (isa<SCEVAddRecExpr>(RightSCEV)) { 221 std::swap(LeftSCEV, RightSCEV); 222 Pred = ICmpInst::getSwappedPredicate(Pred); 223 } else 224 continue; 225 } 226 227 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 228 229 // Avoid huge SCEV computations in the loop below, make sure we only 230 // consider AddRecs of the loop we are trying to peel. 231 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 232 continue; 233 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 234 !SE.getMonotonicPredicateType(LeftAR, Pred)) 235 continue; 236 237 // Check if extending the current DesiredPeelCount lets us evaluate Pred 238 // or !Pred in the loop body statically. 239 unsigned NewPeelCount = DesiredPeelCount; 240 241 const SCEV *IterVal = LeftAR->evaluateAtIteration( 242 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 243 244 // If the original condition is not known, get the negated predicate 245 // (which holds on the else branch) and check if it is known. This allows 246 // us to peel of iterations that make the original condition false. 247 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 248 Pred = ICmpInst::getInversePredicate(Pred); 249 250 const SCEV *Step = LeftAR->getStepRecurrence(SE); 251 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 252 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 253 &NewPeelCount]() { 254 IterVal = NextIterVal; 255 NextIterVal = SE.getAddExpr(IterVal, Step); 256 NewPeelCount++; 257 }; 258 259 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 260 return NewPeelCount < MaxPeelCount; 261 }; 262 263 while (CanPeelOneMoreIteration() && 264 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 265 PeelOneMoreIteration(); 266 267 // With *that* peel count, does the predicate !Pred become known in the 268 // first iteration of the loop body after peeling? 269 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 270 RightSCEV)) 271 continue; // If not, give up. 272 273 // However, for equality comparisons, that isn't always sufficient to 274 // eliminate the comparsion in loop body, we may need to peel one more 275 // iteration. See if that makes !Pred become unknown again. 276 if (ICmpInst::isEquality(Pred) && 277 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 278 RightSCEV) && 279 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 280 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 281 if (!CanPeelOneMoreIteration()) 282 continue; // Need to peel one more iteration, but can't. Give up. 283 PeelOneMoreIteration(); // Great! 284 } 285 286 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 287 } 288 289 return DesiredPeelCount; 290 } 291 292 // Return the number of iterations we want to peel off. 293 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 294 TargetTransformInfo::PeelingPreferences &PP, 295 unsigned &TripCount, ScalarEvolution &SE, 296 unsigned Threshold) { 297 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 298 // Save the PP.PeelCount value set by the target in 299 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 300 unsigned TargetPeelCount = PP.PeelCount; 301 PP.PeelCount = 0; 302 if (!canPeel(L)) 303 return; 304 305 // Only try to peel innermost loops by default. 306 // The constraint can be relaxed by the target in TTI.getUnrollingPreferences 307 // or by the flag -unroll-allow-loop-nests-peeling. 308 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 309 return; 310 311 // If the user provided a peel count, use that. 312 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 313 if (UserPeelCount) { 314 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 315 << " iterations.\n"); 316 PP.PeelCount = UnrollForcePeelCount; 317 PP.PeelProfiledIterations = true; 318 return; 319 } 320 321 // Skip peeling if it's disabled. 322 if (!PP.AllowPeeling) 323 return; 324 325 unsigned AlreadyPeeled = 0; 326 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 327 AlreadyPeeled = *Peeled; 328 // Stop if we already peeled off the maximum number of iterations. 329 if (AlreadyPeeled >= UnrollPeelMaxCount) 330 return; 331 332 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 333 // iterations of the loop. For this we compute the number for iterations after 334 // which every Phi is guaranteed to become an invariant, and try to peel the 335 // maximum number of iterations among these values, thus turning all those 336 // Phis into invariants. 337 // First, check that we can peel at least one iteration. 338 if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) { 339 // Store the pre-calculated values here. 340 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; 341 // Now go through all Phis to calculate their the number of iterations they 342 // need to become invariants. 343 // Start the max computation with the UP.PeelCount value set by the target 344 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. 345 unsigned DesiredPeelCount = TargetPeelCount; 346 BasicBlock *BackEdge = L->getLoopLatch(); 347 assert(BackEdge && "Loop is not in simplified form?"); 348 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 349 PHINode *Phi = cast<PHINode>(&*BI); 350 unsigned ToInvariance = calculateIterationsToInvariance( 351 Phi, L, BackEdge, IterationsToInvariance); 352 if (ToInvariance != InfiniteIterationsToInvariance) 353 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); 354 } 355 356 // Pay respect to limitations implied by loop size and the max peel count. 357 unsigned MaxPeelCount = UnrollPeelMaxCount; 358 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 359 360 DesiredPeelCount = std::max(DesiredPeelCount, 361 countToEliminateCompares(*L, MaxPeelCount, SE)); 362 363 if (DesiredPeelCount > 0) { 364 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 365 // Consider max peel count limitation. 366 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 367 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 368 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 369 << " iteration(s) to turn" 370 << " some Phis into invariants.\n"); 371 PP.PeelCount = DesiredPeelCount; 372 PP.PeelProfiledIterations = false; 373 return; 374 } 375 } 376 } 377 378 // Bail if we know the statically calculated trip count. 379 // In this case we rather prefer partial unrolling. 380 if (TripCount) 381 return; 382 383 // Do not apply profile base peeling if it is disabled. 384 if (!PP.PeelProfiledIterations) 385 return; 386 // If we don't know the trip count, but have reason to believe the average 387 // trip count is low, peeling should be beneficial, since we will usually 388 // hit the peeled section. 389 // We only do this in the presence of profile information, since otherwise 390 // our estimates of the trip count are not reliable enough. 391 if (L->getHeader()->getParent()->hasProfileData()) { 392 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); 393 if (!PeelCount) 394 return; 395 396 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount 397 << "\n"); 398 399 if (*PeelCount) { 400 if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) && 401 (LoopSize * (*PeelCount + 1) <= Threshold)) { 402 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount 403 << " iterations.\n"); 404 PP.PeelCount = *PeelCount; 405 return; 406 } 407 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); 408 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 409 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 410 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) 411 << "\n"); 412 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 413 } 414 } 415 } 416 417 /// Update the branch weights of the latch of a peeled-off loop 418 /// iteration. 419 /// This sets the branch weights for the latch of the recently peeled off loop 420 /// iteration correctly. 421 /// Let F is a weight of the edge from latch to header. 422 /// Let E is a weight of the edge from latch to exit. 423 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 424 /// go to exit. 425 /// Then, Estimated TripCount = F / E. 426 /// For I-th (counting from 0) peeled off iteration we set the the weights for 427 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution, 428 /// The probability to go to exit 1/(TC-I) increases. At the same time 429 /// the estimated trip count of remaining loop reduces by I. 430 /// To avoid dealing with division rounding we can just multiple both part 431 /// of weights to E and use weight as (F - I * E, E). 432 /// 433 /// \param Header The copy of the header block that belongs to next iteration. 434 /// \param LatchBR The copy of the latch branch that belongs to this iteration. 435 /// \param[in,out] FallThroughWeight The weight of the edge from latch to 436 /// header before peeling (in) and after peeled off one iteration (out). 437 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 438 uint64_t ExitWeight, 439 uint64_t &FallThroughWeight) { 440 // FallThroughWeight is 0 means that there is no branch weights on original 441 // latch block or estimated trip count is zero. 442 if (!FallThroughWeight) 443 return; 444 445 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 446 MDBuilder MDB(LatchBR->getContext()); 447 MDNode *WeightNode = 448 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 449 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 450 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 451 FallThroughWeight = 452 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1; 453 } 454 455 /// Initialize the weights. 456 /// 457 /// \param Header The header block. 458 /// \param LatchBR The latch branch. 459 /// \param[out] ExitWeight The weight of the edge from Latch to Exit. 460 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header. 461 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 462 uint64_t &ExitWeight, 463 uint64_t &FallThroughWeight) { 464 uint64_t TrueWeight, FalseWeight; 465 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 466 return; 467 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 468 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; 469 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight; 470 } 471 472 /// Update the weights of original Latch block after peeling off all iterations. 473 /// 474 /// \param Header The header block. 475 /// \param LatchBR The latch branch. 476 /// \param ExitWeight The weight of the edge from Latch to Exit. 477 /// \param FallThroughWeight The weight of the edge from Latch to Header. 478 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 479 uint64_t ExitWeight, 480 uint64_t FallThroughWeight) { 481 // FallThroughWeight is 0 means that there is no branch weights on original 482 // latch block or estimated trip count is zero. 483 if (!FallThroughWeight) 484 return; 485 486 // Sets the branch weights on the loop exit. 487 MDBuilder MDB(LatchBR->getContext()); 488 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 489 MDNode *WeightNode = 490 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 491 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 492 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 493 } 494 495 /// Clones the body of the loop L, putting it between \p InsertTop and \p 496 /// InsertBot. 497 /// \param IterNumber The serial number of the iteration currently being 498 /// peeled off. 499 /// \param ExitEdges The exit edges of the original loop. 500 /// \param[out] NewBlocks A list of the blocks in the newly created clone 501 /// \param[out] VMap The value map between the loop and the new clone. 502 /// \param LoopBlocks A helper for DFS-traversal of the loop. 503 /// \param LVMap A value-map that maps instructions from the original loop to 504 /// instructions in the last peeled-off iteration. 505 static void cloneLoopBlocks( 506 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 507 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 508 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 509 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 510 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) { 511 BasicBlock *Header = L->getHeader(); 512 BasicBlock *Latch = L->getLoopLatch(); 513 BasicBlock *PreHeader = L->getLoopPreheader(); 514 515 Function *F = Header->getParent(); 516 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 517 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 518 Loop *ParentLoop = L->getParentLoop(); 519 520 // For each block in the original loop, create a new copy, 521 // and update the value map with the newly created values. 522 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 523 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 524 NewBlocks.push_back(NewBB); 525 526 // If an original block is an immediate child of the loop L, its copy 527 // is a child of a ParentLoop after peeling. If a block is a child of 528 // a nested loop, it is handled in the cloneLoop() call below. 529 if (ParentLoop && LI->getLoopFor(*BB) == L) 530 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 531 532 VMap[*BB] = NewBB; 533 534 // If dominator tree is available, insert nodes to represent cloned blocks. 535 if (DT) { 536 if (Header == *BB) 537 DT->addNewBlock(NewBB, InsertTop); 538 else { 539 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 540 // VMap must contain entry for IDom, as the iteration order is RPO. 541 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 542 } 543 } 544 } 545 546 { 547 // Identify what other metadata depends on the cloned version. After 548 // cloning, replace the metadata with the corrected version for both 549 // memory instructions and noalias intrinsics. 550 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); 551 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 552 Header->getContext(), Ext); 553 } 554 555 // Recursively create the new Loop objects for nested loops, if any, 556 // to preserve LoopInfo. 557 for (Loop *ChildLoop : *L) { 558 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 559 } 560 561 // Hook-up the control flow for the newly inserted blocks. 562 // The new header is hooked up directly to the "top", which is either 563 // the original loop preheader (for the first iteration) or the previous 564 // iteration's exiting block (for every other iteration) 565 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 566 567 // Similarly, for the latch: 568 // The original exiting edge is still hooked up to the loop exit. 569 // The backedge now goes to the "bottom", which is either the loop's real 570 // header (for the last peeled iteration) or the copied header of the next 571 // iteration (for every other iteration) 572 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 573 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); 574 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) 575 if (LatchBR->getSuccessor(idx) == Header) { 576 LatchBR->setSuccessor(idx, InsertBot); 577 break; 578 } 579 if (DT) 580 DT->changeImmediateDominator(InsertBot, NewLatch); 581 582 // The new copy of the loop body starts with a bunch of PHI nodes 583 // that pick an incoming value from either the preheader, or the previous 584 // loop iteration. Since this copy is no longer part of the loop, we 585 // resolve this statically: 586 // For the first iteration, we use the value from the preheader directly. 587 // For any other iteration, we replace the phi with the value generated by 588 // the immediately preceding clone of the loop body (which represents 589 // the previous iteration). 590 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 591 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 592 if (IterNumber == 0) { 593 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 594 } else { 595 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 596 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 597 if (LatchInst && L->contains(LatchInst)) 598 VMap[&*I] = LVMap[LatchInst]; 599 else 600 VMap[&*I] = LatchVal; 601 } 602 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 603 } 604 605 // Fix up the outgoing values - we need to add a value for the iteration 606 // we've just created. Note that this must happen *after* the incoming 607 // values are adjusted, since the value going out of the latch may also be 608 // a value coming into the header. 609 for (auto Edge : ExitEdges) 610 for (PHINode &PHI : Edge.second->phis()) { 611 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 612 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 613 if (LatchInst && L->contains(LatchInst)) 614 LatchVal = VMap[LatchVal]; 615 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 616 } 617 618 // LastValueMap is updated with the values for the current loop 619 // which are used the next time this function is called. 620 for (auto KV : VMap) 621 LVMap[KV.first] = KV.second; 622 } 623 624 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences( 625 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 626 Optional<bool> UserAllowPeeling, 627 Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) { 628 TargetTransformInfo::PeelingPreferences PP; 629 630 // Set the default values. 631 PP.PeelCount = 0; 632 PP.AllowPeeling = true; 633 PP.AllowLoopNestsPeeling = false; 634 PP.PeelProfiledIterations = true; 635 636 // Get the target specifc values. 637 TTI.getPeelingPreferences(L, SE, PP); 638 639 // User specified values using cl::opt. 640 if (UnrollingSpecficValues) { 641 if (UnrollPeelCount.getNumOccurrences() > 0) 642 PP.PeelCount = UnrollPeelCount; 643 if (UnrollAllowPeeling.getNumOccurrences() > 0) 644 PP.AllowPeeling = UnrollAllowPeeling; 645 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 646 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 647 } 648 649 // User specifed values provided by argument. 650 if (UserAllowPeeling.hasValue()) 651 PP.AllowPeeling = *UserAllowPeeling; 652 if (UserAllowProfileBasedPeeling.hasValue()) 653 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 654 655 return PP; 656 } 657 658 /// Peel off the first \p PeelCount iterations of loop \p L. 659 /// 660 /// Note that this does not peel them off as a single straight-line block. 661 /// Rather, each iteration is peeled off separately, and needs to check the 662 /// exit condition. 663 /// For loops that dynamically execute \p PeelCount iterations or less 664 /// this provides a benefit, since the peeled off iterations, which account 665 /// for the bulk of dynamic execution, can be further simplified by scalar 666 /// optimizations. 667 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 668 ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 669 bool PreserveLCSSA) { 670 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 671 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 672 673 LoopBlocksDFS LoopBlocks(L); 674 LoopBlocks.perform(LI); 675 676 BasicBlock *Header = L->getHeader(); 677 BasicBlock *PreHeader = L->getLoopPreheader(); 678 BasicBlock *Latch = L->getLoopLatch(); 679 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 680 L->getExitEdges(ExitEdges); 681 682 DenseMap<BasicBlock *, BasicBlock *> ExitIDom; 683 if (DT) { 684 // We'd like to determine the idom of exit block after peeling one 685 // iteration. 686 // Let Exit is exit block. 687 // Let ExitingSet - is a set of predecessors of Exit block. They are exiting 688 // blocks. 689 // Let Latch' and ExitingSet' are copies after a peeling. 690 // We'd like to find an idom'(Exit) - idom of Exit after peeling. 691 // It is an evident that idom'(Exit) will be the nearest common dominator 692 // of ExitingSet and ExitingSet'. 693 // idom(Exit) is a nearest common dominator of ExitingSet. 694 // idom(Exit)' is a nearest common dominator of ExitingSet'. 695 // Taking into account that we have a single Latch, Latch' will dominate 696 // Header and idom(Exit). 697 // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'. 698 // All these basic blocks are in the same loop, so what we find is 699 // (nearest common dominator of idom(Exit) and Latch)'. 700 // In the loop below we remember nearest common dominator of idom(Exit) and 701 // Latch to update idom of Exit later. 702 assert(L->hasDedicatedExits() && "No dedicated exits?"); 703 for (auto Edge : ExitEdges) { 704 if (ExitIDom.count(Edge.second)) 705 continue; 706 BasicBlock *BB = DT->findNearestCommonDominator( 707 DT->getNode(Edge.second)->getIDom()->getBlock(), Latch); 708 assert(L->contains(BB) && "IDom is not in a loop"); 709 ExitIDom[Edge.second] = BB; 710 } 711 } 712 713 Function *F = Header->getParent(); 714 715 // Set up all the necessary basic blocks. It is convenient to split the 716 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 717 // body, and a new preheader for the "real" loop. 718 719 // Peeling the first iteration transforms. 720 // 721 // PreHeader: 722 // ... 723 // Header: 724 // LoopBody 725 // If (cond) goto Header 726 // Exit: 727 // 728 // into 729 // 730 // InsertTop: 731 // LoopBody 732 // If (!cond) goto Exit 733 // InsertBot: 734 // NewPreHeader: 735 // ... 736 // Header: 737 // LoopBody 738 // If (cond) goto Header 739 // Exit: 740 // 741 // Each following iteration will split the current bottom anchor in two, 742 // and put the new copy of the loop body between these two blocks. That is, 743 // after peeling another iteration from the example above, we'll split 744 // InsertBot, and get: 745 // 746 // InsertTop: 747 // LoopBody 748 // If (!cond) goto Exit 749 // InsertBot: 750 // LoopBody 751 // If (!cond) goto Exit 752 // InsertBot.next: 753 // NewPreHeader: 754 // ... 755 // Header: 756 // LoopBody 757 // If (cond) goto Header 758 // Exit: 759 760 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); 761 BasicBlock *InsertBot = 762 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); 763 BasicBlock *NewPreHeader = 764 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 765 766 InsertTop->setName(Header->getName() + ".peel.begin"); 767 InsertBot->setName(Header->getName() + ".peel.next"); 768 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 769 770 ValueToValueMapTy LVMap; 771 772 // If we have branch weight information, we'll want to update it for the 773 // newly created branches. 774 BranchInst *LatchBR = 775 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); 776 uint64_t ExitWeight = 0, FallThroughWeight = 0; 777 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 778 779 // Identify what noalias metadata is inside the loop: if it is inside the 780 // loop, the associated metadata must be cloned for each iteration. 781 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 782 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 783 784 // For each peeled-off iteration, make a copy of the loop. 785 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 786 SmallVector<BasicBlock *, 8> NewBlocks; 787 ValueToValueMapTy VMap; 788 789 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 790 LoopBlocks, VMap, LVMap, DT, LI, 791 LoopLocalNoAliasDeclScopes); 792 793 // Remap to use values from the current iteration instead of the 794 // previous one. 795 remapInstructionsInBlocks(NewBlocks, VMap); 796 797 if (DT) { 798 // Latches of the cloned loops dominate over the loop exit, so idom of the 799 // latter is the first cloned loop body, as original PreHeader dominates 800 // the original loop body. 801 if (Iter == 0) 802 for (auto Exit : ExitIDom) 803 DT->changeImmediateDominator(Exit.first, 804 cast<BasicBlock>(LVMap[Exit.second])); 805 #ifdef EXPENSIVE_CHECKS 806 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 807 #endif 808 } 809 810 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); 811 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight); 812 // Remove Loop metadata from the latch branch instruction 813 // because it is not the Loop's latch branch anymore. 814 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); 815 816 InsertTop = InsertBot; 817 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 818 InsertBot->setName(Header->getName() + ".peel.next"); 819 820 F->getBasicBlockList().splice(InsertTop->getIterator(), 821 F->getBasicBlockList(), 822 NewBlocks[0]->getIterator(), F->end()); 823 } 824 825 // Now adjust the phi nodes in the loop header to get their initial values 826 // from the last peeled-off iteration instead of the preheader. 827 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 828 PHINode *PHI = cast<PHINode>(I); 829 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 830 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 831 if (LatchInst && L->contains(LatchInst)) 832 NewVal = LVMap[LatchInst]; 833 834 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 835 } 836 837 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 838 839 // Update Metadata for count of peeled off iterations. 840 unsigned AlreadyPeeled = 0; 841 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 842 AlreadyPeeled = *Peeled; 843 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 844 845 if (Loop *ParentLoop = L->getParentLoop()) 846 L = ParentLoop; 847 848 // We modified the loop, update SE. 849 SE->forgetTopmostLoop(L); 850 851 // Finally DomtTree must be correct. 852 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 853 854 // FIXME: Incrementally update loop-simplify 855 simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA); 856 857 NumPeeled++; 858 859 return true; 860 } 861