xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp (revision b9128a37faafede823eb456aa65a11ac69997284)
1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/Loads.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/ProfDataUtils.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <optional>
45 
46 using namespace llvm;
47 using namespace llvm::PatternMatch;
48 
49 #define DEBUG_TYPE "loop-peel"
50 
51 STATISTIC(NumPeeled, "Number of loops peeled");
52 
53 static cl::opt<unsigned> UnrollPeelCount(
54     "unroll-peel-count", cl::Hidden,
55     cl::desc("Set the unroll peeling count, for testing purposes"));
56 
57 static cl::opt<bool>
58     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
59                        cl::desc("Allows loops to be peeled when the dynamic "
60                                 "trip count is known to be low."));
61 
62 static cl::opt<bool>
63     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
64                                 cl::init(false), cl::Hidden,
65                                 cl::desc("Allows loop nests to be peeled."));
66 
67 static cl::opt<unsigned> UnrollPeelMaxCount(
68     "unroll-peel-max-count", cl::init(7), cl::Hidden,
69     cl::desc("Max average trip count which will cause loop peeling."));
70 
71 static cl::opt<unsigned> UnrollForcePeelCount(
72     "unroll-force-peel-count", cl::init(0), cl::Hidden,
73     cl::desc("Force a peel count regardless of profiling information."));
74 
75 static cl::opt<bool> DisableAdvancedPeeling(
76     "disable-advanced-peeling", cl::init(false), cl::Hidden,
77     cl::desc(
78         "Disable advance peeling. Issues for convergent targets (D134803)."));
79 
80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
81 
82 // Check whether we are capable of peeling this loop.
83 bool llvm::canPeel(const Loop *L) {
84   // Make sure the loop is in simplified form
85   if (!L->isLoopSimplifyForm())
86     return false;
87   if (!DisableAdvancedPeeling)
88     return true;
89 
90   SmallVector<BasicBlock *, 4> Exits;
91   L->getUniqueNonLatchExitBlocks(Exits);
92   // The latch must either be the only exiting block or all non-latch exit
93   // blocks have either a deopt or unreachable terminator or compose a chain of
94   // blocks where the last one is either deopt or unreachable terminated. Both
95   // deopt and unreachable terminators are a strong indication they are not
96   // taken. Note that this is a profitability check, not a legality check. Also
97   // note that LoopPeeling currently can only update the branch weights of latch
98   // blocks and branch weights to blocks with deopt or unreachable do not need
99   // updating.
100   return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
101 }
102 
103 namespace {
104 
105 // As a loop is peeled, it may be the case that Phi nodes become
106 // loop-invariant (ie, known because there is only one choice).
107 // For example, consider the following function:
108 //   void g(int);
109 //   void binary() {
110 //     int x = 0;
111 //     int y = 0;
112 //     int a = 0;
113 //     for(int i = 0; i <100000; ++i) {
114 //       g(x);
115 //       x = y;
116 //       g(a);
117 //       y = a + 1;
118 //       a = 5;
119 //     }
120 //   }
121 // Peeling 3 iterations is beneficial because the values for x, y and a
122 // become known.  The IR for this loop looks something like the following:
123 //
124 //   %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
125 //   %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
126 //   %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
127 //   %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
128 //   ...
129 //   tail call void @_Z1gi(i32 signext %x)
130 //   tail call void @_Z1gi(i32 signext %a)
131 //   %add = add nuw nsw i32 %a, 1
132 //   %inc = add nuw nsw i32 %i, 1
133 //   %exitcond = icmp eq i32 %inc, 100000
134 //   br i1 %exitcond, label %for.cond.cleanup, label %for.body
135 //
136 // The arguments for the calls to g will become known after 3 iterations
137 // of the loop, because the phi nodes values become known after 3 iterations
138 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
139 // The first iteration has g(0), g(0); the second has g(0), g(5); the
140 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
141 // Now consider the phi nodes:
142 //   %a is a phi with constants so it is determined after iteration 1.
143 //   %y is a phi based on a constant and %a so it is determined on
144 //     the iteration after %a is determined, so iteration 2.
145 //   %x is a phi based on a constant and %y so it is determined on
146 //     the iteration after %y, so iteration 3.
147 //   %i is based on itself (and is an induction variable) so it is
148 //     never determined.
149 // This means that peeling off 3 iterations will result in being able to
150 // remove the phi nodes for %a, %y, and %x.  The arguments for the
151 // corresponding calls to g are determined and the code for computing
152 // x, y, and a can be removed.
153 //
154 // The PhiAnalyzer class calculates how many times a loop should be
155 // peeled based on the above analysis of the phi nodes in the loop while
156 // respecting the maximum specified.
157 class PhiAnalyzer {
158 public:
159   PhiAnalyzer(const Loop &L, unsigned MaxIterations);
160 
161   // Calculate the sufficient minimum number of iterations of the loop to peel
162   // such that phi instructions become determined (subject to allowable limits)
163   std::optional<unsigned> calculateIterationsToPeel();
164 
165 protected:
166   using PeelCounter = std::optional<unsigned>;
167   const PeelCounter Unknown = std::nullopt;
168 
169   // Add 1 respecting Unknown and return Unknown if result over MaxIterations
170   PeelCounter addOne(PeelCounter PC) const {
171     if (PC == Unknown)
172       return Unknown;
173     return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
174   }
175 
176   // Calculate the number of iterations after which the given value
177   // becomes an invariant.
178   PeelCounter calculate(const Value &);
179 
180   const Loop &L;
181   const unsigned MaxIterations;
182 
183   // Map of Values to number of iterations to invariance
184   SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
185 };
186 
187 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
188     : L(L), MaxIterations(MaxIterations) {
189   assert(canPeel(&L) && "loop is not suitable for peeling");
190   assert(MaxIterations > 0 && "no peeling is allowed?");
191 }
192 
193 // This function calculates the number of iterations after which the value
194 // becomes an invariant. The pre-calculated values are memorized in a map.
195 // N.B. This number will be Unknown or <= MaxIterations.
196 // The function is calculated according to the following definition:
197 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
198 //   F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
199 //   G(%y) = 0 if %y is a loop invariant
200 //   G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
201 //   G(%y) = TODO: if %y is an expression based on phis and loop invariants
202 //           The example looks like:
203 //           %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
204 //           %y = phi(0, 5)
205 //           %a = %y + 1
206 //   G(%y) = Unknown otherwise (including phi not in header block)
207 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
208   // If we already know the answer, take it from the map.
209   auto I = IterationsToInvariance.find(&V);
210   if (I != IterationsToInvariance.end())
211     return I->second;
212 
213   // Place Unknown to map to avoid infinite recursion. Such
214   // cycles can never stop on an invariant.
215   IterationsToInvariance[&V] = Unknown;
216 
217   if (L.isLoopInvariant(&V))
218     // Loop invariant so known at start.
219     return (IterationsToInvariance[&V] = 0);
220   if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
221     if (Phi->getParent() != L.getHeader()) {
222       // Phi is not in header block so Unknown.
223       assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
224       return Unknown;
225     }
226     // We need to analyze the input from the back edge and add 1.
227     Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
228     PeelCounter Iterations = calculate(*Input);
229     assert(IterationsToInvariance[Input] == Iterations &&
230            "unexpected value saved");
231     return (IterationsToInvariance[Phi] = addOne(Iterations));
232   }
233   if (const Instruction *I = dyn_cast<Instruction>(&V)) {
234     if (isa<CmpInst>(I) || I->isBinaryOp()) {
235       // Binary instructions get the max of the operands.
236       PeelCounter LHS = calculate(*I->getOperand(0));
237       if (LHS == Unknown)
238         return Unknown;
239       PeelCounter RHS = calculate(*I->getOperand(1));
240       if (RHS == Unknown)
241         return Unknown;
242       return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
243     }
244     if (I->isCast())
245       // Cast instructions get the value of the operand.
246       return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
247   }
248   // TODO: handle more expressions
249 
250   // Everything else is Unknown.
251   assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
252   return Unknown;
253 }
254 
255 std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
256   unsigned Iterations = 0;
257   for (auto &PHI : L.getHeader()->phis()) {
258     PeelCounter ToInvariance = calculate(PHI);
259     if (ToInvariance != Unknown) {
260       assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
261       Iterations = std::max(Iterations, *ToInvariance);
262       if (Iterations == MaxIterations)
263         break;
264     }
265   }
266   assert((Iterations <= MaxIterations) && "bad result in phi analysis");
267   return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
268 }
269 
270 } // unnamed namespace
271 
272 // Try to find any invariant memory reads that will become dereferenceable in
273 // the remainder loop after peeling. The load must also be used (transitively)
274 // by an exit condition. Returns the number of iterations to peel off (at the
275 // moment either 0 or 1).
276 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
277                                                       DominatorTree &DT,
278                                                       AssumptionCache *AC) {
279   // Skip loops with a single exiting block, because there should be no benefit
280   // for the heuristic below.
281   if (L.getExitingBlock())
282     return 0;
283 
284   // All non-latch exit blocks must have an UnreachableInst terminator.
285   // Otherwise the heuristic below may not be profitable.
286   SmallVector<BasicBlock *, 4> Exits;
287   L.getUniqueNonLatchExitBlocks(Exits);
288   if (any_of(Exits, [](const BasicBlock *BB) {
289         return !isa<UnreachableInst>(BB->getTerminator());
290       }))
291     return 0;
292 
293   // Now look for invariant loads that dominate the latch and are not known to
294   // be dereferenceable. If there are such loads and no writes, they will become
295   // dereferenceable in the loop if the first iteration is peeled off. Also
296   // collect the set of instructions controlled by such loads. Only peel if an
297   // exit condition uses (transitively) such a load.
298   BasicBlock *Header = L.getHeader();
299   BasicBlock *Latch = L.getLoopLatch();
300   SmallPtrSet<Value *, 8> LoadUsers;
301   const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
302   for (BasicBlock *BB : L.blocks()) {
303     for (Instruction &I : *BB) {
304       if (I.mayWriteToMemory())
305         return 0;
306 
307       auto Iter = LoadUsers.find(&I);
308       if (Iter != LoadUsers.end()) {
309         for (Value *U : I.users())
310           LoadUsers.insert(U);
311       }
312       // Do not look for reads in the header; they can already be hoisted
313       // without peeling.
314       if (BB == Header)
315         continue;
316       if (auto *LI = dyn_cast<LoadInst>(&I)) {
317         Value *Ptr = LI->getPointerOperand();
318         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
319             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
320           for (Value *U : I.users())
321             LoadUsers.insert(U);
322       }
323     }
324   }
325   SmallVector<BasicBlock *> ExitingBlocks;
326   L.getExitingBlocks(ExitingBlocks);
327   if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
328         return LoadUsers.contains(Exiting->getTerminator());
329       }))
330     return 1;
331   return 0;
332 }
333 
334 // Return the number of iterations to peel off that make conditions in the
335 // body true/false. For example, if we peel 2 iterations off the loop below,
336 // the condition i < 2 can be evaluated at compile time.
337 //  for (i = 0; i < n; i++)
338 //    if (i < 2)
339 //      ..
340 //    else
341 //      ..
342 //   }
343 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
344                                          ScalarEvolution &SE) {
345   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
346   unsigned DesiredPeelCount = 0;
347 
348   // Do not peel the entire loop.
349   const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L);
350   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE))
351     MaxPeelCount =
352         std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount);
353 
354   const unsigned MaxDepth = 4;
355   std::function<void(Value *, unsigned)> ComputePeelCount =
356       [&](Value *Condition, unsigned Depth) -> void {
357     if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth)
358       return;
359 
360     Value *LeftVal, *RightVal;
361     if (match(Condition, m_And(m_Value(LeftVal), m_Value(RightVal))) ||
362         match(Condition, m_Or(m_Value(LeftVal), m_Value(RightVal)))) {
363       ComputePeelCount(LeftVal, Depth + 1);
364       ComputePeelCount(RightVal, Depth + 1);
365       return;
366     }
367 
368     CmpInst::Predicate Pred;
369     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
370       return;
371 
372     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
373     const SCEV *RightSCEV = SE.getSCEV(RightVal);
374 
375     // Do not consider predicates that are known to be true or false
376     // independently of the loop iteration.
377     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
378       return;
379 
380     // Check if we have a condition with one AddRec and one non AddRec
381     // expression. Normalize LeftSCEV to be the AddRec.
382     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
383       if (isa<SCEVAddRecExpr>(RightSCEV)) {
384         std::swap(LeftSCEV, RightSCEV);
385         Pred = ICmpInst::getSwappedPredicate(Pred);
386       } else
387         return;
388     }
389 
390     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
391 
392     // Avoid huge SCEV computations in the loop below, make sure we only
393     // consider AddRecs of the loop we are trying to peel.
394     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
395       return;
396     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
397         !SE.getMonotonicPredicateType(LeftAR, Pred))
398       return;
399 
400     // Check if extending the current DesiredPeelCount lets us evaluate Pred
401     // or !Pred in the loop body statically.
402     unsigned NewPeelCount = DesiredPeelCount;
403 
404     const SCEV *IterVal = LeftAR->evaluateAtIteration(
405         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
406 
407     // If the original condition is not known, get the negated predicate
408     // (which holds on the else branch) and check if it is known. This allows
409     // us to peel of iterations that make the original condition false.
410     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
411       Pred = ICmpInst::getInversePredicate(Pred);
412 
413     const SCEV *Step = LeftAR->getStepRecurrence(SE);
414     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
415     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
416                                  &NewPeelCount]() {
417       IterVal = NextIterVal;
418       NextIterVal = SE.getAddExpr(IterVal, Step);
419       NewPeelCount++;
420     };
421 
422     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
423       return NewPeelCount < MaxPeelCount;
424     };
425 
426     while (CanPeelOneMoreIteration() &&
427            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
428       PeelOneMoreIteration();
429 
430     // With *that* peel count, does the predicate !Pred become known in the
431     // first iteration of the loop body after peeling?
432     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
433                              RightSCEV))
434       return; // If not, give up.
435 
436     // However, for equality comparisons, that isn't always sufficient to
437     // eliminate the comparsion in loop body, we may need to peel one more
438     // iteration. See if that makes !Pred become unknown again.
439     if (ICmpInst::isEquality(Pred) &&
440         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
441                              RightSCEV) &&
442         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
443         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
444       if (!CanPeelOneMoreIteration())
445         return; // Need to peel one more iteration, but can't. Give up.
446       PeelOneMoreIteration(); // Great!
447     }
448 
449     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
450   };
451 
452   for (BasicBlock *BB : L.blocks()) {
453     for (Instruction &I : *BB) {
454       if (SelectInst *SI = dyn_cast<SelectInst>(&I))
455         ComputePeelCount(SI->getCondition(), 0);
456     }
457 
458     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
459     if (!BI || BI->isUnconditional())
460       continue;
461 
462     // Ignore loop exit condition.
463     if (L.getLoopLatch() == BB)
464       continue;
465 
466     ComputePeelCount(BI->getCondition(), 0);
467   }
468 
469   return DesiredPeelCount;
470 }
471 
472 /// This "heuristic" exactly matches implicit behavior which used to exist
473 /// inside getLoopEstimatedTripCount.  It was added here to keep an
474 /// improvement inside that API from causing peeling to become more aggressive.
475 /// This should probably be removed.
476 static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
477   BasicBlock *Latch = L->getLoopLatch();
478   if (!Latch)
479     return true;
480 
481   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
482   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
483     return true;
484 
485   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
486           LatchBR->getSuccessor(1) == L->getHeader()) &&
487          "At least one edge out of the latch must go to the header");
488 
489   SmallVector<BasicBlock *, 4> ExitBlocks;
490   L->getUniqueNonLatchExitBlocks(ExitBlocks);
491   return any_of(ExitBlocks, [](const BasicBlock *EB) {
492       return !EB->getTerminatingDeoptimizeCall();
493     });
494 }
495 
496 
497 // Return the number of iterations we want to peel off.
498 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
499                             TargetTransformInfo::PeelingPreferences &PP,
500                             unsigned TripCount, DominatorTree &DT,
501                             ScalarEvolution &SE, AssumptionCache *AC,
502                             unsigned Threshold) {
503   assert(LoopSize > 0 && "Zero loop size is not allowed!");
504   // Save the PP.PeelCount value set by the target in
505   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
506   unsigned TargetPeelCount = PP.PeelCount;
507   PP.PeelCount = 0;
508   if (!canPeel(L))
509     return;
510 
511   // Only try to peel innermost loops by default.
512   // The constraint can be relaxed by the target in TTI.getPeelingPreferences
513   // or by the flag -unroll-allow-loop-nests-peeling.
514   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
515     return;
516 
517   // If the user provided a peel count, use that.
518   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
519   if (UserPeelCount) {
520     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
521                       << " iterations.\n");
522     PP.PeelCount = UnrollForcePeelCount;
523     PP.PeelProfiledIterations = true;
524     return;
525   }
526 
527   // Skip peeling if it's disabled.
528   if (!PP.AllowPeeling)
529     return;
530 
531   // Check that we can peel at least one iteration.
532   if (2 * LoopSize > Threshold)
533     return;
534 
535   unsigned AlreadyPeeled = 0;
536   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
537     AlreadyPeeled = *Peeled;
538   // Stop if we already peeled off the maximum number of iterations.
539   if (AlreadyPeeled >= UnrollPeelMaxCount)
540     return;
541 
542   // Pay respect to limitations implied by loop size and the max peel count.
543   unsigned MaxPeelCount = UnrollPeelMaxCount;
544   MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
545 
546   // Start the max computation with the PP.PeelCount value set by the target
547   // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
548   unsigned DesiredPeelCount = TargetPeelCount;
549 
550   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
551   // iterations of the loop. For this we compute the number for iterations after
552   // which every Phi is guaranteed to become an invariant, and try to peel the
553   // maximum number of iterations among these values, thus turning all those
554   // Phis into invariants.
555   if (MaxPeelCount > DesiredPeelCount) {
556     // Check how many iterations are useful for resolving Phis
557     auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
558     if (NumPeels)
559       DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
560   }
561 
562   DesiredPeelCount = std::max(DesiredPeelCount,
563                               countToEliminateCompares(*L, MaxPeelCount, SE));
564 
565   if (DesiredPeelCount == 0)
566     DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
567 
568   if (DesiredPeelCount > 0) {
569     DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
570     // Consider max peel count limitation.
571     assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
572     if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
573       LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
574                         << " iteration(s) to turn"
575                         << " some Phis into invariants.\n");
576       PP.PeelCount = DesiredPeelCount;
577       PP.PeelProfiledIterations = false;
578       return;
579     }
580   }
581 
582   // Bail if we know the statically calculated trip count.
583   // In this case we rather prefer partial unrolling.
584   if (TripCount)
585     return;
586 
587   // Do not apply profile base peeling if it is disabled.
588   if (!PP.PeelProfiledIterations)
589     return;
590   // If we don't know the trip count, but have reason to believe the average
591   // trip count is low, peeling should be beneficial, since we will usually
592   // hit the peeled section.
593   // We only do this in the presence of profile information, since otherwise
594   // our estimates of the trip count are not reliable enough.
595   if (L->getHeader()->getParent()->hasProfileData()) {
596     if (violatesLegacyMultiExitLoopCheck(L))
597       return;
598     std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
599     if (!EstimatedTripCount)
600       return;
601 
602     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
603                       << *EstimatedTripCount << "\n");
604 
605     if (*EstimatedTripCount) {
606       if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
607         unsigned PeelCount = *EstimatedTripCount;
608         LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
609         PP.PeelCount = PeelCount;
610         return;
611       }
612       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
613       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
614       LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
615       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
616       LLVM_DEBUG(dbgs() << "Max peel count by cost: "
617                         << (Threshold / LoopSize - 1) << "\n");
618     }
619   }
620 }
621 
622 struct WeightInfo {
623   // Weights for current iteration.
624   SmallVector<uint32_t> Weights;
625   // Weights to subtract after each iteration.
626   const SmallVector<uint32_t> SubWeights;
627 };
628 
629 /// Update the branch weights of an exiting block of a peeled-off loop
630 /// iteration.
631 /// Let F is a weight of the edge to continue (fallthrough) into the loop.
632 /// Let E is a weight of the edge to an exit.
633 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
634 /// go to exit.
635 /// Then, Estimated ExitCount = F / E.
636 /// For I-th (counting from 0) peeled off iteration we set the weights for
637 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
638 /// The probability to go to exit 1/(EC-I) increases. At the same time
639 /// the estimated exit count in the remainder loop reduces by I.
640 /// To avoid dealing with division rounding we can just multiple both part
641 /// of weights to E and use weight as (F - I * E, E).
642 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
643   setBranchWeights(*Term, Info.Weights);
644   for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
645     if (SubWeight != 0)
646       // Don't set the probability of taking the edge from latch to loop header
647       // to less than 1:1 ratio (meaning Weight should not be lower than
648       // SubWeight), as this could significantly reduce the loop's hotness,
649       // which would be incorrect in the case of underestimating the trip count.
650       Info.Weights[Idx] =
651           Info.Weights[Idx] > SubWeight
652               ? std::max(Info.Weights[Idx] - SubWeight, SubWeight)
653               : SubWeight;
654 }
655 
656 /// Initialize the weights for all exiting blocks.
657 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
658                               Loop *L) {
659   SmallVector<BasicBlock *> ExitingBlocks;
660   L->getExitingBlocks(ExitingBlocks);
661   for (BasicBlock *ExitingBlock : ExitingBlocks) {
662     Instruction *Term = ExitingBlock->getTerminator();
663     SmallVector<uint32_t> Weights;
664     if (!extractBranchWeights(*Term, Weights))
665       continue;
666 
667     // See the comment on updateBranchWeights() for an explanation of what we
668     // do here.
669     uint32_t FallThroughWeights = 0;
670     uint32_t ExitWeights = 0;
671     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
672       if (L->contains(Succ))
673         FallThroughWeights += Weight;
674       else
675         ExitWeights += Weight;
676     }
677 
678     // Don't try to update weights for degenerate case.
679     if (FallThroughWeights == 0)
680       continue;
681 
682     SmallVector<uint32_t> SubWeights;
683     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
684       if (!L->contains(Succ)) {
685         // Exit weights stay the same.
686         SubWeights.push_back(0);
687         continue;
688       }
689 
690       // Subtract exit weights on each iteration, distributed across all
691       // fallthrough edges.
692       double W = (double)Weight / (double)FallThroughWeights;
693       SubWeights.push_back((uint32_t)(ExitWeights * W));
694     }
695 
696     WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
697   }
698 }
699 
700 /// Clones the body of the loop L, putting it between \p InsertTop and \p
701 /// InsertBot.
702 /// \param IterNumber The serial number of the iteration currently being
703 /// peeled off.
704 /// \param ExitEdges The exit edges of the original loop.
705 /// \param[out] NewBlocks A list of the blocks in the newly created clone
706 /// \param[out] VMap The value map between the loop and the new clone.
707 /// \param LoopBlocks A helper for DFS-traversal of the loop.
708 /// \param LVMap A value-map that maps instructions from the original loop to
709 /// instructions in the last peeled-off iteration.
710 static void cloneLoopBlocks(
711     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
712     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
713     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
714     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
715     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
716     ScalarEvolution &SE) {
717   BasicBlock *Header = L->getHeader();
718   BasicBlock *Latch = L->getLoopLatch();
719   BasicBlock *PreHeader = L->getLoopPreheader();
720 
721   Function *F = Header->getParent();
722   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
723   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
724   Loop *ParentLoop = L->getParentLoop();
725 
726   // For each block in the original loop, create a new copy,
727   // and update the value map with the newly created values.
728   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
729     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
730     NewBlocks.push_back(NewBB);
731 
732     // If an original block is an immediate child of the loop L, its copy
733     // is a child of a ParentLoop after peeling. If a block is a child of
734     // a nested loop, it is handled in the cloneLoop() call below.
735     if (ParentLoop && LI->getLoopFor(*BB) == L)
736       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
737 
738     VMap[*BB] = NewBB;
739 
740     // If dominator tree is available, insert nodes to represent cloned blocks.
741     if (DT) {
742       if (Header == *BB)
743         DT->addNewBlock(NewBB, InsertTop);
744       else {
745         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
746         // VMap must contain entry for IDom, as the iteration order is RPO.
747         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
748       }
749     }
750   }
751 
752   {
753     // Identify what other metadata depends on the cloned version. After
754     // cloning, replace the metadata with the corrected version for both
755     // memory instructions and noalias intrinsics.
756     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
757     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
758                                Header->getContext(), Ext);
759   }
760 
761   // Recursively create the new Loop objects for nested loops, if any,
762   // to preserve LoopInfo.
763   for (Loop *ChildLoop : *L) {
764     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
765   }
766 
767   // Hook-up the control flow for the newly inserted blocks.
768   // The new header is hooked up directly to the "top", which is either
769   // the original loop preheader (for the first iteration) or the previous
770   // iteration's exiting block (for every other iteration)
771   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
772 
773   // Similarly, for the latch:
774   // The original exiting edge is still hooked up to the loop exit.
775   // The backedge now goes to the "bottom", which is either the loop's real
776   // header (for the last peeled iteration) or the copied header of the next
777   // iteration (for every other iteration)
778   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
779   auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
780   for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
781     if (LatchTerm->getSuccessor(idx) == Header) {
782       LatchTerm->setSuccessor(idx, InsertBot);
783       break;
784     }
785   if (DT)
786     DT->changeImmediateDominator(InsertBot, NewLatch);
787 
788   // The new copy of the loop body starts with a bunch of PHI nodes
789   // that pick an incoming value from either the preheader, or the previous
790   // loop iteration. Since this copy is no longer part of the loop, we
791   // resolve this statically:
792   // For the first iteration, we use the value from the preheader directly.
793   // For any other iteration, we replace the phi with the value generated by
794   // the immediately preceding clone of the loop body (which represents
795   // the previous iteration).
796   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
797     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
798     if (IterNumber == 0) {
799       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
800     } else {
801       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
802       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
803       if (LatchInst && L->contains(LatchInst))
804         VMap[&*I] = LVMap[LatchInst];
805       else
806         VMap[&*I] = LatchVal;
807     }
808     NewPHI->eraseFromParent();
809   }
810 
811   // Fix up the outgoing values - we need to add a value for the iteration
812   // we've just created. Note that this must happen *after* the incoming
813   // values are adjusted, since the value going out of the latch may also be
814   // a value coming into the header.
815   for (auto Edge : ExitEdges)
816     for (PHINode &PHI : Edge.second->phis()) {
817       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
818       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
819       if (LatchInst && L->contains(LatchInst))
820         LatchVal = VMap[LatchVal];
821       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
822       SE.forgetValue(&PHI);
823     }
824 
825   // LastValueMap is updated with the values for the current loop
826   // which are used the next time this function is called.
827   for (auto KV : VMap)
828     LVMap[KV.first] = KV.second;
829 }
830 
831 TargetTransformInfo::PeelingPreferences
832 llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
833                                const TargetTransformInfo &TTI,
834                                std::optional<bool> UserAllowPeeling,
835                                std::optional<bool> UserAllowProfileBasedPeeling,
836                                bool UnrollingSpecficValues) {
837   TargetTransformInfo::PeelingPreferences PP;
838 
839   // Set the default values.
840   PP.PeelCount = 0;
841   PP.AllowPeeling = true;
842   PP.AllowLoopNestsPeeling = false;
843   PP.PeelProfiledIterations = true;
844 
845   // Get the target specifc values.
846   TTI.getPeelingPreferences(L, SE, PP);
847 
848   // User specified values using cl::opt.
849   if (UnrollingSpecficValues) {
850     if (UnrollPeelCount.getNumOccurrences() > 0)
851       PP.PeelCount = UnrollPeelCount;
852     if (UnrollAllowPeeling.getNumOccurrences() > 0)
853       PP.AllowPeeling = UnrollAllowPeeling;
854     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
855       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
856   }
857 
858   // User specifed values provided by argument.
859   if (UserAllowPeeling)
860     PP.AllowPeeling = *UserAllowPeeling;
861   if (UserAllowProfileBasedPeeling)
862     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
863 
864   return PP;
865 }
866 
867 /// Peel off the first \p PeelCount iterations of loop \p L.
868 ///
869 /// Note that this does not peel them off as a single straight-line block.
870 /// Rather, each iteration is peeled off separately, and needs to check the
871 /// exit condition.
872 /// For loops that dynamically execute \p PeelCount iterations or less
873 /// this provides a benefit, since the peeled off iterations, which account
874 /// for the bulk of dynamic execution, can be further simplified by scalar
875 /// optimizations.
876 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
877                     ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
878                     bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
879   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
880   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
881 
882   LoopBlocksDFS LoopBlocks(L);
883   LoopBlocks.perform(LI);
884 
885   BasicBlock *Header = L->getHeader();
886   BasicBlock *PreHeader = L->getLoopPreheader();
887   BasicBlock *Latch = L->getLoopLatch();
888   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
889   L->getExitEdges(ExitEdges);
890 
891   // Remember dominators of blocks we might reach through exits to change them
892   // later. Immediate dominator of such block might change, because we add more
893   // routes which can lead to the exit: we can reach it from the peeled
894   // iterations too.
895   DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
896   for (auto *BB : L->blocks()) {
897     auto *BBDomNode = DT.getNode(BB);
898     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
899     for (auto *ChildDomNode : BBDomNode->children()) {
900       auto *ChildBB = ChildDomNode->getBlock();
901       if (!L->contains(ChildBB))
902         ChildrenToUpdate.push_back(ChildBB);
903     }
904     // The new idom of the block will be the nearest common dominator
905     // of all copies of the previous idom. This is equivalent to the
906     // nearest common dominator of the previous idom and the first latch,
907     // which dominates all copies of the previous idom.
908     BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
909     for (auto *ChildBB : ChildrenToUpdate)
910       NonLoopBlocksIDom[ChildBB] = NewIDom;
911   }
912 
913   Function *F = Header->getParent();
914 
915   // Set up all the necessary basic blocks. It is convenient to split the
916   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
917   // body, and a new preheader for the "real" loop.
918 
919   // Peeling the first iteration transforms.
920   //
921   // PreHeader:
922   // ...
923   // Header:
924   //   LoopBody
925   //   If (cond) goto Header
926   // Exit:
927   //
928   // into
929   //
930   // InsertTop:
931   //   LoopBody
932   //   If (!cond) goto Exit
933   // InsertBot:
934   // NewPreHeader:
935   // ...
936   // Header:
937   //  LoopBody
938   //  If (cond) goto Header
939   // Exit:
940   //
941   // Each following iteration will split the current bottom anchor in two,
942   // and put the new copy of the loop body between these two blocks. That is,
943   // after peeling another iteration from the example above, we'll split
944   // InsertBot, and get:
945   //
946   // InsertTop:
947   //   LoopBody
948   //   If (!cond) goto Exit
949   // InsertBot:
950   //   LoopBody
951   //   If (!cond) goto Exit
952   // InsertBot.next:
953   // NewPreHeader:
954   // ...
955   // Header:
956   //  LoopBody
957   //  If (cond) goto Header
958   // Exit:
959 
960   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
961   BasicBlock *InsertBot =
962       SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
963   BasicBlock *NewPreHeader =
964       SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
965 
966   InsertTop->setName(Header->getName() + ".peel.begin");
967   InsertBot->setName(Header->getName() + ".peel.next");
968   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
969 
970   Instruction *LatchTerm =
971       cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
972 
973   // If we have branch weight information, we'll want to update it for the
974   // newly created branches.
975   DenseMap<Instruction *, WeightInfo> Weights;
976   initBranchWeights(Weights, L);
977 
978   // Identify what noalias metadata is inside the loop: if it is inside the
979   // loop, the associated metadata must be cloned for each iteration.
980   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
981   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
982 
983   // For each peeled-off iteration, make a copy of the loop.
984   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
985     SmallVector<BasicBlock *, 8> NewBlocks;
986     ValueToValueMapTy VMap;
987 
988     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
989                     LoopBlocks, VMap, LVMap, &DT, LI,
990                     LoopLocalNoAliasDeclScopes, *SE);
991 
992     // Remap to use values from the current iteration instead of the
993     // previous one.
994     remapInstructionsInBlocks(NewBlocks, VMap);
995 
996     // Update IDoms of the blocks reachable through exits.
997     if (Iter == 0)
998       for (auto BBIDom : NonLoopBlocksIDom)
999         DT.changeImmediateDominator(BBIDom.first,
1000                                      cast<BasicBlock>(LVMap[BBIDom.second]));
1001 #ifdef EXPENSIVE_CHECKS
1002     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1003 #endif
1004 
1005     for (auto &[Term, Info] : Weights) {
1006       auto *TermCopy = cast<Instruction>(VMap[Term]);
1007       updateBranchWeights(TermCopy, Info);
1008     }
1009 
1010     // Remove Loop metadata from the latch branch instruction
1011     // because it is not the Loop's latch branch anymore.
1012     auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
1013     LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
1014 
1015     InsertTop = InsertBot;
1016     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
1017     InsertBot->setName(Header->getName() + ".peel.next");
1018 
1019     F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
1020               F->end());
1021   }
1022 
1023   // Now adjust the phi nodes in the loop header to get their initial values
1024   // from the last peeled-off iteration instead of the preheader.
1025   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
1026     PHINode *PHI = cast<PHINode>(I);
1027     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
1028     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
1029     if (LatchInst && L->contains(LatchInst))
1030       NewVal = LVMap[LatchInst];
1031 
1032     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
1033   }
1034 
1035   for (const auto &[Term, Info] : Weights) {
1036     setBranchWeights(*Term, Info.Weights);
1037   }
1038 
1039   // Update Metadata for count of peeled off iterations.
1040   unsigned AlreadyPeeled = 0;
1041   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
1042     AlreadyPeeled = *Peeled;
1043   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
1044 
1045   if (Loop *ParentLoop = L->getParentLoop())
1046     L = ParentLoop;
1047 
1048   // We modified the loop, update SE.
1049   SE->forgetTopmostLoop(L);
1050   SE->forgetBlockAndLoopDispositions();
1051 
1052 #ifdef EXPENSIVE_CHECKS
1053   // Finally DomtTree must be correct.
1054   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1055 #endif
1056 
1057   // FIXME: Incrementally update loop-simplify
1058   simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
1059 
1060   NumPeeled++;
1061 
1062   return true;
1063 }
1064