xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/Loads.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/ProfDataUtils.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <optional>
45 
46 using namespace llvm;
47 using namespace llvm::PatternMatch;
48 
49 #define DEBUG_TYPE "loop-peel"
50 
51 STATISTIC(NumPeeled, "Number of loops peeled");
52 
53 static cl::opt<unsigned> UnrollPeelCount(
54     "unroll-peel-count", cl::Hidden,
55     cl::desc("Set the unroll peeling count, for testing purposes"));
56 
57 static cl::opt<bool>
58     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
59                        cl::desc("Allows loops to be peeled when the dynamic "
60                                 "trip count is known to be low."));
61 
62 static cl::opt<bool>
63     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
64                                 cl::init(false), cl::Hidden,
65                                 cl::desc("Allows loop nests to be peeled."));
66 
67 static cl::opt<unsigned> UnrollPeelMaxCount(
68     "unroll-peel-max-count", cl::init(7), cl::Hidden,
69     cl::desc("Max average trip count which will cause loop peeling."));
70 
71 static cl::opt<unsigned> UnrollForcePeelCount(
72     "unroll-force-peel-count", cl::init(0), cl::Hidden,
73     cl::desc("Force a peel count regardless of profiling information."));
74 
75 static cl::opt<bool> DisableAdvancedPeeling(
76     "disable-advanced-peeling", cl::init(false), cl::Hidden,
77     cl::desc(
78         "Disable advance peeling. Issues for convergent targets (D134803)."));
79 
80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
81 
82 // Check whether we are capable of peeling this loop.
83 bool llvm::canPeel(const Loop *L) {
84   // Make sure the loop is in simplified form
85   if (!L->isLoopSimplifyForm())
86     return false;
87   if (!DisableAdvancedPeeling)
88     return true;
89 
90   SmallVector<BasicBlock *, 4> Exits;
91   L->getUniqueNonLatchExitBlocks(Exits);
92   // The latch must either be the only exiting block or all non-latch exit
93   // blocks have either a deopt or unreachable terminator or compose a chain of
94   // blocks where the last one is either deopt or unreachable terminated. Both
95   // deopt and unreachable terminators are a strong indication they are not
96   // taken. Note that this is a profitability check, not a legality check. Also
97   // note that LoopPeeling currently can only update the branch weights of latch
98   // blocks and branch weights to blocks with deopt or unreachable do not need
99   // updating.
100   return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
101 }
102 
103 namespace {
104 
105 // As a loop is peeled, it may be the case that Phi nodes become
106 // loop-invariant (ie, known because there is only one choice).
107 // For example, consider the following function:
108 //   void g(int);
109 //   void binary() {
110 //     int x = 0;
111 //     int y = 0;
112 //     int a = 0;
113 //     for(int i = 0; i <100000; ++i) {
114 //       g(x);
115 //       x = y;
116 //       g(a);
117 //       y = a + 1;
118 //       a = 5;
119 //     }
120 //   }
121 // Peeling 3 iterations is beneficial because the values for x, y and a
122 // become known.  The IR for this loop looks something like the following:
123 //
124 //   %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
125 //   %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
126 //   %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
127 //   %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
128 //   ...
129 //   tail call void @_Z1gi(i32 signext %x)
130 //   tail call void @_Z1gi(i32 signext %a)
131 //   %add = add nuw nsw i32 %a, 1
132 //   %inc = add nuw nsw i32 %i, 1
133 //   %exitcond = icmp eq i32 %inc, 100000
134 //   br i1 %exitcond, label %for.cond.cleanup, label %for.body
135 //
136 // The arguments for the calls to g will become known after 3 iterations
137 // of the loop, because the phi nodes values become known after 3 iterations
138 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
139 // The first iteration has g(0), g(0); the second has g(0), g(5); the
140 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
141 // Now consider the phi nodes:
142 //   %a is a phi with constants so it is determined after iteration 1.
143 //   %y is a phi based on a constant and %a so it is determined on
144 //     the iteration after %a is determined, so iteration 2.
145 //   %x is a phi based on a constant and %y so it is determined on
146 //     the iteration after %y, so iteration 3.
147 //   %i is based on itself (and is an induction variable) so it is
148 //     never determined.
149 // This means that peeling off 3 iterations will result in being able to
150 // remove the phi nodes for %a, %y, and %x.  The arguments for the
151 // corresponding calls to g are determined and the code for computing
152 // x, y, and a can be removed.
153 //
154 // The PhiAnalyzer class calculates how many times a loop should be
155 // peeled based on the above analysis of the phi nodes in the loop while
156 // respecting the maximum specified.
157 class PhiAnalyzer {
158 public:
159   PhiAnalyzer(const Loop &L, unsigned MaxIterations);
160 
161   // Calculate the sufficient minimum number of iterations of the loop to peel
162   // such that phi instructions become determined (subject to allowable limits)
163   std::optional<unsigned> calculateIterationsToPeel();
164 
165 protected:
166   using PeelCounter = std::optional<unsigned>;
167   const PeelCounter Unknown = std::nullopt;
168 
169   // Add 1 respecting Unknown and return Unknown if result over MaxIterations
170   PeelCounter addOne(PeelCounter PC) const {
171     if (PC == Unknown)
172       return Unknown;
173     return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
174   }
175 
176   // Calculate the number of iterations after which the given value
177   // becomes an invariant.
178   PeelCounter calculate(const Value &);
179 
180   const Loop &L;
181   const unsigned MaxIterations;
182 
183   // Map of Values to number of iterations to invariance
184   SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
185 };
186 
187 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
188     : L(L), MaxIterations(MaxIterations) {
189   assert(canPeel(&L) && "loop is not suitable for peeling");
190   assert(MaxIterations > 0 && "no peeling is allowed?");
191 }
192 
193 // This function calculates the number of iterations after which the value
194 // becomes an invariant. The pre-calculated values are memorized in a map.
195 // N.B. This number will be Unknown or <= MaxIterations.
196 // The function is calculated according to the following definition:
197 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
198 //   F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
199 //   G(%y) = 0 if %y is a loop invariant
200 //   G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
201 //   G(%y) = TODO: if %y is an expression based on phis and loop invariants
202 //           The example looks like:
203 //           %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
204 //           %y = phi(0, 5)
205 //           %a = %y + 1
206 //   G(%y) = Unknown otherwise (including phi not in header block)
207 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
208   // If we already know the answer, take it from the map.
209   auto I = IterationsToInvariance.find(&V);
210   if (I != IterationsToInvariance.end())
211     return I->second;
212 
213   // Place Unknown to map to avoid infinite recursion. Such
214   // cycles can never stop on an invariant.
215   IterationsToInvariance[&V] = Unknown;
216 
217   if (L.isLoopInvariant(&V))
218     // Loop invariant so known at start.
219     return (IterationsToInvariance[&V] = 0);
220   if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
221     if (Phi->getParent() != L.getHeader()) {
222       // Phi is not in header block so Unknown.
223       assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
224       return Unknown;
225     }
226     // We need to analyze the input from the back edge and add 1.
227     Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
228     PeelCounter Iterations = calculate(*Input);
229     assert(IterationsToInvariance[Input] == Iterations &&
230            "unexpected value saved");
231     return (IterationsToInvariance[Phi] = addOne(Iterations));
232   }
233   if (const Instruction *I = dyn_cast<Instruction>(&V)) {
234     if (isa<CmpInst>(I) || I->isBinaryOp()) {
235       // Binary instructions get the max of the operands.
236       PeelCounter LHS = calculate(*I->getOperand(0));
237       if (LHS == Unknown)
238         return Unknown;
239       PeelCounter RHS = calculate(*I->getOperand(1));
240       if (RHS == Unknown)
241         return Unknown;
242       return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
243     }
244     if (I->isCast())
245       // Cast instructions get the value of the operand.
246       return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
247   }
248   // TODO: handle more expressions
249 
250   // Everything else is Unknown.
251   assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
252   return Unknown;
253 }
254 
255 std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
256   unsigned Iterations = 0;
257   for (auto &PHI : L.getHeader()->phis()) {
258     PeelCounter ToInvariance = calculate(PHI);
259     if (ToInvariance != Unknown) {
260       assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
261       Iterations = std::max(Iterations, *ToInvariance);
262       if (Iterations == MaxIterations)
263         break;
264     }
265   }
266   assert((Iterations <= MaxIterations) && "bad result in phi analysis");
267   return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
268 }
269 
270 } // unnamed namespace
271 
272 // Try to find any invariant memory reads that will become dereferenceable in
273 // the remainder loop after peeling. The load must also be used (transitively)
274 // by an exit condition. Returns the number of iterations to peel off (at the
275 // moment either 0 or 1).
276 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
277                                                       DominatorTree &DT,
278                                                       AssumptionCache *AC) {
279   // Skip loops with a single exiting block, because there should be no benefit
280   // for the heuristic below.
281   if (L.getExitingBlock())
282     return 0;
283 
284   // All non-latch exit blocks must have an UnreachableInst terminator.
285   // Otherwise the heuristic below may not be profitable.
286   SmallVector<BasicBlock *, 4> Exits;
287   L.getUniqueNonLatchExitBlocks(Exits);
288   if (any_of(Exits, [](const BasicBlock *BB) {
289         return !isa<UnreachableInst>(BB->getTerminator());
290       }))
291     return 0;
292 
293   // Now look for invariant loads that dominate the latch and are not known to
294   // be dereferenceable. If there are such loads and no writes, they will become
295   // dereferenceable in the loop if the first iteration is peeled off. Also
296   // collect the set of instructions controlled by such loads. Only peel if an
297   // exit condition uses (transitively) such a load.
298   BasicBlock *Header = L.getHeader();
299   BasicBlock *Latch = L.getLoopLatch();
300   SmallPtrSet<Value *, 8> LoadUsers;
301   const DataLayout &DL = L.getHeader()->getDataLayout();
302   for (BasicBlock *BB : L.blocks()) {
303     for (Instruction &I : *BB) {
304       if (I.mayWriteToMemory())
305         return 0;
306 
307       auto Iter = LoadUsers.find(&I);
308       if (Iter != LoadUsers.end()) {
309         for (Value *U : I.users())
310           LoadUsers.insert(U);
311       }
312       // Do not look for reads in the header; they can already be hoisted
313       // without peeling.
314       if (BB == Header)
315         continue;
316       if (auto *LI = dyn_cast<LoadInst>(&I)) {
317         Value *Ptr = LI->getPointerOperand();
318         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
319             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
320           for (Value *U : I.users())
321             LoadUsers.insert(U);
322       }
323     }
324   }
325   SmallVector<BasicBlock *> ExitingBlocks;
326   L.getExitingBlocks(ExitingBlocks);
327   if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
328         return LoadUsers.contains(Exiting->getTerminator());
329       }))
330     return 1;
331   return 0;
332 }
333 
334 // Return the number of iterations to peel off that make conditions in the
335 // body true/false. For example, if we peel 2 iterations off the loop below,
336 // the condition i < 2 can be evaluated at compile time.
337 //  for (i = 0; i < n; i++)
338 //    if (i < 2)
339 //      ..
340 //    else
341 //      ..
342 //   }
343 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
344                                          ScalarEvolution &SE) {
345   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
346   unsigned DesiredPeelCount = 0;
347 
348   // Do not peel the entire loop.
349   const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L);
350   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE))
351     MaxPeelCount =
352         std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount);
353 
354   // Increase PeelCount while (IterVal Pred BoundSCEV) condition is satisfied;
355   // return true if inversed condition become known before reaching the
356   // MaxPeelCount limit.
357   auto PeelWhilePredicateIsKnown =
358       [&](unsigned &PeelCount, const SCEV *&IterVal, const SCEV *BoundSCEV,
359           const SCEV *Step, ICmpInst::Predicate Pred) {
360         while (PeelCount < MaxPeelCount &&
361                SE.isKnownPredicate(Pred, IterVal, BoundSCEV)) {
362           IterVal = SE.getAddExpr(IterVal, Step);
363           ++PeelCount;
364         }
365         return SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
366                                    BoundSCEV);
367       };
368 
369   const unsigned MaxDepth = 4;
370   std::function<void(Value *, unsigned)> ComputePeelCount =
371       [&](Value *Condition, unsigned Depth) -> void {
372     if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth)
373       return;
374 
375     Value *LeftVal, *RightVal;
376     if (match(Condition, m_And(m_Value(LeftVal), m_Value(RightVal))) ||
377         match(Condition, m_Or(m_Value(LeftVal), m_Value(RightVal)))) {
378       ComputePeelCount(LeftVal, Depth + 1);
379       ComputePeelCount(RightVal, Depth + 1);
380       return;
381     }
382 
383     CmpInst::Predicate Pred;
384     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
385       return;
386 
387     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
388     const SCEV *RightSCEV = SE.getSCEV(RightVal);
389 
390     // Do not consider predicates that are known to be true or false
391     // independently of the loop iteration.
392     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
393       return;
394 
395     // Check if we have a condition with one AddRec and one non AddRec
396     // expression. Normalize LeftSCEV to be the AddRec.
397     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
398       if (isa<SCEVAddRecExpr>(RightSCEV)) {
399         std::swap(LeftSCEV, RightSCEV);
400         Pred = ICmpInst::getSwappedPredicate(Pred);
401       } else
402         return;
403     }
404 
405     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
406 
407     // Avoid huge SCEV computations in the loop below, make sure we only
408     // consider AddRecs of the loop we are trying to peel.
409     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
410       return;
411     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
412         !SE.getMonotonicPredicateType(LeftAR, Pred))
413       return;
414 
415     // Check if extending the current DesiredPeelCount lets us evaluate Pred
416     // or !Pred in the loop body statically.
417     unsigned NewPeelCount = DesiredPeelCount;
418 
419     const SCEV *IterVal = LeftAR->evaluateAtIteration(
420         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
421 
422     // If the original condition is not known, get the negated predicate
423     // (which holds on the else branch) and check if it is known. This allows
424     // us to peel of iterations that make the original condition false.
425     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
426       Pred = ICmpInst::getInversePredicate(Pred);
427 
428     const SCEV *Step = LeftAR->getStepRecurrence(SE);
429     if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, RightSCEV, Step,
430                                    Pred))
431       return;
432 
433     // However, for equality comparisons, that isn't always sufficient to
434     // eliminate the comparsion in loop body, we may need to peel one more
435     // iteration. See if that makes !Pred become unknown again.
436     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
437     if (ICmpInst::isEquality(Pred) &&
438         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
439                              RightSCEV) &&
440         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
441         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
442       if (NewPeelCount >= MaxPeelCount)
443         return; // Need to peel one more iteration, but can't. Give up.
444       ++NewPeelCount; // Great!
445     }
446 
447     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
448   };
449 
450   auto ComputePeelCountMinMax = [&](MinMaxIntrinsic *MinMax) {
451     if (!MinMax->getType()->isIntegerTy())
452       return;
453     Value *LHS = MinMax->getLHS(), *RHS = MinMax->getRHS();
454     const SCEV *BoundSCEV, *IterSCEV;
455     if (L.isLoopInvariant(LHS)) {
456       BoundSCEV = SE.getSCEV(LHS);
457       IterSCEV = SE.getSCEV(RHS);
458     } else if (L.isLoopInvariant(RHS)) {
459       BoundSCEV = SE.getSCEV(RHS);
460       IterSCEV = SE.getSCEV(LHS);
461     } else
462       return;
463     const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IterSCEV);
464     // For simplicity, we support only affine recurrences.
465     if (!AddRec || !AddRec->isAffine() || AddRec->getLoop() != &L)
466       return;
467     const SCEV *Step = AddRec->getStepRecurrence(SE);
468     bool IsSigned = MinMax->isSigned();
469     // To minimize number of peeled iterations, we use strict relational
470     // predicates here.
471     ICmpInst::Predicate Pred;
472     if (SE.isKnownPositive(Step))
473       Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
474     else if (SE.isKnownNegative(Step))
475       Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
476     else
477       return;
478     // Check that AddRec is not wrapping.
479     if (!(IsSigned ? AddRec->hasNoSignedWrap() : AddRec->hasNoUnsignedWrap()))
480       return;
481     unsigned NewPeelCount = DesiredPeelCount;
482     const SCEV *IterVal = AddRec->evaluateAtIteration(
483         SE.getConstant(AddRec->getType(), NewPeelCount), SE);
484     if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, BoundSCEV, Step,
485                                    Pred))
486       return;
487     DesiredPeelCount = NewPeelCount;
488   };
489 
490   for (BasicBlock *BB : L.blocks()) {
491     for (Instruction &I : *BB) {
492       if (SelectInst *SI = dyn_cast<SelectInst>(&I))
493         ComputePeelCount(SI->getCondition(), 0);
494       if (MinMaxIntrinsic *MinMax = dyn_cast<MinMaxIntrinsic>(&I))
495         ComputePeelCountMinMax(MinMax);
496     }
497 
498     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
499     if (!BI || BI->isUnconditional())
500       continue;
501 
502     // Ignore loop exit condition.
503     if (L.getLoopLatch() == BB)
504       continue;
505 
506     ComputePeelCount(BI->getCondition(), 0);
507   }
508 
509   return DesiredPeelCount;
510 }
511 
512 /// This "heuristic" exactly matches implicit behavior which used to exist
513 /// inside getLoopEstimatedTripCount.  It was added here to keep an
514 /// improvement inside that API from causing peeling to become more aggressive.
515 /// This should probably be removed.
516 static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
517   BasicBlock *Latch = L->getLoopLatch();
518   if (!Latch)
519     return true;
520 
521   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
522   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
523     return true;
524 
525   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
526           LatchBR->getSuccessor(1) == L->getHeader()) &&
527          "At least one edge out of the latch must go to the header");
528 
529   SmallVector<BasicBlock *, 4> ExitBlocks;
530   L->getUniqueNonLatchExitBlocks(ExitBlocks);
531   return any_of(ExitBlocks, [](const BasicBlock *EB) {
532       return !EB->getTerminatingDeoptimizeCall();
533     });
534 }
535 
536 
537 // Return the number of iterations we want to peel off.
538 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
539                             TargetTransformInfo::PeelingPreferences &PP,
540                             unsigned TripCount, DominatorTree &DT,
541                             ScalarEvolution &SE, AssumptionCache *AC,
542                             unsigned Threshold) {
543   assert(LoopSize > 0 && "Zero loop size is not allowed!");
544   // Save the PP.PeelCount value set by the target in
545   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
546   unsigned TargetPeelCount = PP.PeelCount;
547   PP.PeelCount = 0;
548   if (!canPeel(L))
549     return;
550 
551   // Only try to peel innermost loops by default.
552   // The constraint can be relaxed by the target in TTI.getPeelingPreferences
553   // or by the flag -unroll-allow-loop-nests-peeling.
554   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
555     return;
556 
557   // If the user provided a peel count, use that.
558   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
559   if (UserPeelCount) {
560     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
561                       << " iterations.\n");
562     PP.PeelCount = UnrollForcePeelCount;
563     PP.PeelProfiledIterations = true;
564     return;
565   }
566 
567   // Skip peeling if it's disabled.
568   if (!PP.AllowPeeling)
569     return;
570 
571   // Check that we can peel at least one iteration.
572   if (2 * LoopSize > Threshold)
573     return;
574 
575   unsigned AlreadyPeeled = 0;
576   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
577     AlreadyPeeled = *Peeled;
578   // Stop if we already peeled off the maximum number of iterations.
579   if (AlreadyPeeled >= UnrollPeelMaxCount)
580     return;
581 
582   // Pay respect to limitations implied by loop size and the max peel count.
583   unsigned MaxPeelCount = UnrollPeelMaxCount;
584   MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
585 
586   // Start the max computation with the PP.PeelCount value set by the target
587   // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
588   unsigned DesiredPeelCount = TargetPeelCount;
589 
590   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
591   // iterations of the loop. For this we compute the number for iterations after
592   // which every Phi is guaranteed to become an invariant, and try to peel the
593   // maximum number of iterations among these values, thus turning all those
594   // Phis into invariants.
595   if (MaxPeelCount > DesiredPeelCount) {
596     // Check how many iterations are useful for resolving Phis
597     auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
598     if (NumPeels)
599       DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
600   }
601 
602   DesiredPeelCount = std::max(DesiredPeelCount,
603                               countToEliminateCompares(*L, MaxPeelCount, SE));
604 
605   if (DesiredPeelCount == 0)
606     DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
607 
608   if (DesiredPeelCount > 0) {
609     DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
610     // Consider max peel count limitation.
611     assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
612     if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
613       LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
614                         << " iteration(s) to turn"
615                         << " some Phis into invariants.\n");
616       PP.PeelCount = DesiredPeelCount;
617       PP.PeelProfiledIterations = false;
618       return;
619     }
620   }
621 
622   // Bail if we know the statically calculated trip count.
623   // In this case we rather prefer partial unrolling.
624   if (TripCount)
625     return;
626 
627   // Do not apply profile base peeling if it is disabled.
628   if (!PP.PeelProfiledIterations)
629     return;
630   // If we don't know the trip count, but have reason to believe the average
631   // trip count is low, peeling should be beneficial, since we will usually
632   // hit the peeled section.
633   // We only do this in the presence of profile information, since otherwise
634   // our estimates of the trip count are not reliable enough.
635   if (L->getHeader()->getParent()->hasProfileData()) {
636     if (violatesLegacyMultiExitLoopCheck(L))
637       return;
638     std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
639     if (!EstimatedTripCount)
640       return;
641 
642     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
643                       << *EstimatedTripCount << "\n");
644 
645     if (*EstimatedTripCount) {
646       if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
647         unsigned PeelCount = *EstimatedTripCount;
648         LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
649         PP.PeelCount = PeelCount;
650         return;
651       }
652       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
653       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
654       LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
655       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
656       LLVM_DEBUG(dbgs() << "Max peel count by cost: "
657                         << (Threshold / LoopSize - 1) << "\n");
658     }
659   }
660 }
661 
662 struct WeightInfo {
663   // Weights for current iteration.
664   SmallVector<uint32_t> Weights;
665   // Weights to subtract after each iteration.
666   const SmallVector<uint32_t> SubWeights;
667 };
668 
669 /// Update the branch weights of an exiting block of a peeled-off loop
670 /// iteration.
671 /// Let F is a weight of the edge to continue (fallthrough) into the loop.
672 /// Let E is a weight of the edge to an exit.
673 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
674 /// go to exit.
675 /// Then, Estimated ExitCount = F / E.
676 /// For I-th (counting from 0) peeled off iteration we set the weights for
677 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
678 /// The probability to go to exit 1/(EC-I) increases. At the same time
679 /// the estimated exit count in the remainder loop reduces by I.
680 /// To avoid dealing with division rounding we can just multiple both part
681 /// of weights to E and use weight as (F - I * E, E).
682 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
683   setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false);
684   for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
685     if (SubWeight != 0)
686       // Don't set the probability of taking the edge from latch to loop header
687       // to less than 1:1 ratio (meaning Weight should not be lower than
688       // SubWeight), as this could significantly reduce the loop's hotness,
689       // which would be incorrect in the case of underestimating the trip count.
690       Info.Weights[Idx] =
691           Info.Weights[Idx] > SubWeight
692               ? std::max(Info.Weights[Idx] - SubWeight, SubWeight)
693               : SubWeight;
694 }
695 
696 /// Initialize the weights for all exiting blocks.
697 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
698                               Loop *L) {
699   SmallVector<BasicBlock *> ExitingBlocks;
700   L->getExitingBlocks(ExitingBlocks);
701   for (BasicBlock *ExitingBlock : ExitingBlocks) {
702     Instruction *Term = ExitingBlock->getTerminator();
703     SmallVector<uint32_t> Weights;
704     if (!extractBranchWeights(*Term, Weights))
705       continue;
706 
707     // See the comment on updateBranchWeights() for an explanation of what we
708     // do here.
709     uint32_t FallThroughWeights = 0;
710     uint32_t ExitWeights = 0;
711     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
712       if (L->contains(Succ))
713         FallThroughWeights += Weight;
714       else
715         ExitWeights += Weight;
716     }
717 
718     // Don't try to update weights for degenerate case.
719     if (FallThroughWeights == 0)
720       continue;
721 
722     SmallVector<uint32_t> SubWeights;
723     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
724       if (!L->contains(Succ)) {
725         // Exit weights stay the same.
726         SubWeights.push_back(0);
727         continue;
728       }
729 
730       // Subtract exit weights on each iteration, distributed across all
731       // fallthrough edges.
732       double W = (double)Weight / (double)FallThroughWeights;
733       SubWeights.push_back((uint32_t)(ExitWeights * W));
734     }
735 
736     WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
737   }
738 }
739 
740 /// Clones the body of the loop L, putting it between \p InsertTop and \p
741 /// InsertBot.
742 /// \param IterNumber The serial number of the iteration currently being
743 /// peeled off.
744 /// \param ExitEdges The exit edges of the original loop.
745 /// \param[out] NewBlocks A list of the blocks in the newly created clone
746 /// \param[out] VMap The value map between the loop and the new clone.
747 /// \param LoopBlocks A helper for DFS-traversal of the loop.
748 /// \param LVMap A value-map that maps instructions from the original loop to
749 /// instructions in the last peeled-off iteration.
750 static void cloneLoopBlocks(
751     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
752     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
753     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
754     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
755     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
756     ScalarEvolution &SE) {
757   BasicBlock *Header = L->getHeader();
758   BasicBlock *Latch = L->getLoopLatch();
759   BasicBlock *PreHeader = L->getLoopPreheader();
760 
761   Function *F = Header->getParent();
762   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
763   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
764   Loop *ParentLoop = L->getParentLoop();
765 
766   // For each block in the original loop, create a new copy,
767   // and update the value map with the newly created values.
768   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
769     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
770     NewBlocks.push_back(NewBB);
771 
772     // If an original block is an immediate child of the loop L, its copy
773     // is a child of a ParentLoop after peeling. If a block is a child of
774     // a nested loop, it is handled in the cloneLoop() call below.
775     if (ParentLoop && LI->getLoopFor(*BB) == L)
776       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
777 
778     VMap[*BB] = NewBB;
779 
780     // If dominator tree is available, insert nodes to represent cloned blocks.
781     if (DT) {
782       if (Header == *BB)
783         DT->addNewBlock(NewBB, InsertTop);
784       else {
785         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
786         // VMap must contain entry for IDom, as the iteration order is RPO.
787         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
788       }
789     }
790   }
791 
792   {
793     // Identify what other metadata depends on the cloned version. After
794     // cloning, replace the metadata with the corrected version for both
795     // memory instructions and noalias intrinsics.
796     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
797     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
798                                Header->getContext(), Ext);
799   }
800 
801   // Recursively create the new Loop objects for nested loops, if any,
802   // to preserve LoopInfo.
803   for (Loop *ChildLoop : *L) {
804     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
805   }
806 
807   // Hook-up the control flow for the newly inserted blocks.
808   // The new header is hooked up directly to the "top", which is either
809   // the original loop preheader (for the first iteration) or the previous
810   // iteration's exiting block (for every other iteration)
811   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
812 
813   // Similarly, for the latch:
814   // The original exiting edge is still hooked up to the loop exit.
815   // The backedge now goes to the "bottom", which is either the loop's real
816   // header (for the last peeled iteration) or the copied header of the next
817   // iteration (for every other iteration)
818   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
819   auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
820   for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
821     if (LatchTerm->getSuccessor(idx) == Header) {
822       LatchTerm->setSuccessor(idx, InsertBot);
823       break;
824     }
825   if (DT)
826     DT->changeImmediateDominator(InsertBot, NewLatch);
827 
828   // The new copy of the loop body starts with a bunch of PHI nodes
829   // that pick an incoming value from either the preheader, or the previous
830   // loop iteration. Since this copy is no longer part of the loop, we
831   // resolve this statically:
832   // For the first iteration, we use the value from the preheader directly.
833   // For any other iteration, we replace the phi with the value generated by
834   // the immediately preceding clone of the loop body (which represents
835   // the previous iteration).
836   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
837     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
838     if (IterNumber == 0) {
839       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
840     } else {
841       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
842       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
843       if (LatchInst && L->contains(LatchInst))
844         VMap[&*I] = LVMap[LatchInst];
845       else
846         VMap[&*I] = LatchVal;
847     }
848     NewPHI->eraseFromParent();
849   }
850 
851   // Fix up the outgoing values - we need to add a value for the iteration
852   // we've just created. Note that this must happen *after* the incoming
853   // values are adjusted, since the value going out of the latch may also be
854   // a value coming into the header.
855   for (auto Edge : ExitEdges)
856     for (PHINode &PHI : Edge.second->phis()) {
857       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
858       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
859       if (LatchInst && L->contains(LatchInst))
860         LatchVal = VMap[LatchVal];
861       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
862       SE.forgetLcssaPhiWithNewPredecessor(L, &PHI);
863     }
864 
865   // LastValueMap is updated with the values for the current loop
866   // which are used the next time this function is called.
867   for (auto KV : VMap)
868     LVMap[KV.first] = KV.second;
869 }
870 
871 TargetTransformInfo::PeelingPreferences
872 llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
873                                const TargetTransformInfo &TTI,
874                                std::optional<bool> UserAllowPeeling,
875                                std::optional<bool> UserAllowProfileBasedPeeling,
876                                bool UnrollingSpecficValues) {
877   TargetTransformInfo::PeelingPreferences PP;
878 
879   // Set the default values.
880   PP.PeelCount = 0;
881   PP.AllowPeeling = true;
882   PP.AllowLoopNestsPeeling = false;
883   PP.PeelProfiledIterations = true;
884 
885   // Get the target specifc values.
886   TTI.getPeelingPreferences(L, SE, PP);
887 
888   // User specified values using cl::opt.
889   if (UnrollingSpecficValues) {
890     if (UnrollPeelCount.getNumOccurrences() > 0)
891       PP.PeelCount = UnrollPeelCount;
892     if (UnrollAllowPeeling.getNumOccurrences() > 0)
893       PP.AllowPeeling = UnrollAllowPeeling;
894     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
895       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
896   }
897 
898   // User specifed values provided by argument.
899   if (UserAllowPeeling)
900     PP.AllowPeeling = *UserAllowPeeling;
901   if (UserAllowProfileBasedPeeling)
902     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
903 
904   return PP;
905 }
906 
907 /// Peel off the first \p PeelCount iterations of loop \p L.
908 ///
909 /// Note that this does not peel them off as a single straight-line block.
910 /// Rather, each iteration is peeled off separately, and needs to check the
911 /// exit condition.
912 /// For loops that dynamically execute \p PeelCount iterations or less
913 /// this provides a benefit, since the peeled off iterations, which account
914 /// for the bulk of dynamic execution, can be further simplified by scalar
915 /// optimizations.
916 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
917                     ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
918                     bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
919   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
920   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
921 
922   LoopBlocksDFS LoopBlocks(L);
923   LoopBlocks.perform(LI);
924 
925   BasicBlock *Header = L->getHeader();
926   BasicBlock *PreHeader = L->getLoopPreheader();
927   BasicBlock *Latch = L->getLoopLatch();
928   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
929   L->getExitEdges(ExitEdges);
930 
931   // Remember dominators of blocks we might reach through exits to change them
932   // later. Immediate dominator of such block might change, because we add more
933   // routes which can lead to the exit: we can reach it from the peeled
934   // iterations too.
935   DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
936   for (auto *BB : L->blocks()) {
937     auto *BBDomNode = DT.getNode(BB);
938     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
939     for (auto *ChildDomNode : BBDomNode->children()) {
940       auto *ChildBB = ChildDomNode->getBlock();
941       if (!L->contains(ChildBB))
942         ChildrenToUpdate.push_back(ChildBB);
943     }
944     // The new idom of the block will be the nearest common dominator
945     // of all copies of the previous idom. This is equivalent to the
946     // nearest common dominator of the previous idom and the first latch,
947     // which dominates all copies of the previous idom.
948     BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
949     for (auto *ChildBB : ChildrenToUpdate)
950       NonLoopBlocksIDom[ChildBB] = NewIDom;
951   }
952 
953   Function *F = Header->getParent();
954 
955   // Set up all the necessary basic blocks. It is convenient to split the
956   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
957   // body, and a new preheader for the "real" loop.
958 
959   // Peeling the first iteration transforms.
960   //
961   // PreHeader:
962   // ...
963   // Header:
964   //   LoopBody
965   //   If (cond) goto Header
966   // Exit:
967   //
968   // into
969   //
970   // InsertTop:
971   //   LoopBody
972   //   If (!cond) goto Exit
973   // InsertBot:
974   // NewPreHeader:
975   // ...
976   // Header:
977   //  LoopBody
978   //  If (cond) goto Header
979   // Exit:
980   //
981   // Each following iteration will split the current bottom anchor in two,
982   // and put the new copy of the loop body between these two blocks. That is,
983   // after peeling another iteration from the example above, we'll split
984   // InsertBot, and get:
985   //
986   // InsertTop:
987   //   LoopBody
988   //   If (!cond) goto Exit
989   // InsertBot:
990   //   LoopBody
991   //   If (!cond) goto Exit
992   // InsertBot.next:
993   // NewPreHeader:
994   // ...
995   // Header:
996   //  LoopBody
997   //  If (cond) goto Header
998   // Exit:
999 
1000   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
1001   BasicBlock *InsertBot =
1002       SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
1003   BasicBlock *NewPreHeader =
1004       SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
1005 
1006   InsertTop->setName(Header->getName() + ".peel.begin");
1007   InsertBot->setName(Header->getName() + ".peel.next");
1008   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
1009 
1010   Instruction *LatchTerm =
1011       cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
1012 
1013   // If we have branch weight information, we'll want to update it for the
1014   // newly created branches.
1015   DenseMap<Instruction *, WeightInfo> Weights;
1016   initBranchWeights(Weights, L);
1017 
1018   // Identify what noalias metadata is inside the loop: if it is inside the
1019   // loop, the associated metadata must be cloned for each iteration.
1020   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
1021   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
1022 
1023   // For each peeled-off iteration, make a copy of the loop.
1024   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
1025     SmallVector<BasicBlock *, 8> NewBlocks;
1026     ValueToValueMapTy VMap;
1027 
1028     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
1029                     LoopBlocks, VMap, LVMap, &DT, LI,
1030                     LoopLocalNoAliasDeclScopes, *SE);
1031 
1032     // Remap to use values from the current iteration instead of the
1033     // previous one.
1034     remapInstructionsInBlocks(NewBlocks, VMap);
1035 
1036     // Update IDoms of the blocks reachable through exits.
1037     if (Iter == 0)
1038       for (auto BBIDom : NonLoopBlocksIDom)
1039         DT.changeImmediateDominator(BBIDom.first,
1040                                      cast<BasicBlock>(LVMap[BBIDom.second]));
1041 #ifdef EXPENSIVE_CHECKS
1042     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1043 #endif
1044 
1045     for (auto &[Term, Info] : Weights) {
1046       auto *TermCopy = cast<Instruction>(VMap[Term]);
1047       updateBranchWeights(TermCopy, Info);
1048     }
1049 
1050     // Remove Loop metadata from the latch branch instruction
1051     // because it is not the Loop's latch branch anymore.
1052     auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
1053     LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
1054 
1055     InsertTop = InsertBot;
1056     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
1057     InsertBot->setName(Header->getName() + ".peel.next");
1058 
1059     F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
1060               F->end());
1061   }
1062 
1063   // Now adjust the phi nodes in the loop header to get their initial values
1064   // from the last peeled-off iteration instead of the preheader.
1065   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
1066     PHINode *PHI = cast<PHINode>(I);
1067     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
1068     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
1069     if (LatchInst && L->contains(LatchInst))
1070       NewVal = LVMap[LatchInst];
1071 
1072     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
1073   }
1074 
1075   for (const auto &[Term, Info] : Weights) {
1076     setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false);
1077   }
1078 
1079   // Update Metadata for count of peeled off iterations.
1080   unsigned AlreadyPeeled = 0;
1081   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
1082     AlreadyPeeled = *Peeled;
1083   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
1084 
1085   if (Loop *ParentLoop = L->getParentLoop())
1086     L = ParentLoop;
1087 
1088   // We modified the loop, update SE.
1089   SE->forgetTopmostLoop(L);
1090   SE->forgetBlockAndLoopDispositions();
1091 
1092 #ifdef EXPENSIVE_CHECKS
1093   // Finally DomtTree must be correct.
1094   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1095 #endif
1096 
1097   // FIXME: Incrementally update loop-simplify
1098   simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
1099 
1100   NumPeeled++;
1101 
1102   return true;
1103 }
1104