1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/Loads.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/ProfDataUtils.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/ValueMapper.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <optional> 45 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "loop-peel" 50 51 STATISTIC(NumPeeled, "Number of loops peeled"); 52 53 static cl::opt<unsigned> UnrollPeelCount( 54 "unroll-peel-count", cl::Hidden, 55 cl::desc("Set the unroll peeling count, for testing purposes")); 56 57 static cl::opt<bool> 58 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 59 cl::desc("Allows loops to be peeled when the dynamic " 60 "trip count is known to be low.")); 61 62 static cl::opt<bool> 63 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 64 cl::init(false), cl::Hidden, 65 cl::desc("Allows loop nests to be peeled.")); 66 67 static cl::opt<unsigned> UnrollPeelMaxCount( 68 "unroll-peel-max-count", cl::init(7), cl::Hidden, 69 cl::desc("Max average trip count which will cause loop peeling.")); 70 71 static cl::opt<unsigned> UnrollForcePeelCount( 72 "unroll-force-peel-count", cl::init(0), cl::Hidden, 73 cl::desc("Force a peel count regardless of profiling information.")); 74 75 static cl::opt<bool> DisableAdvancedPeeling( 76 "disable-advanced-peeling", cl::init(false), cl::Hidden, 77 cl::desc( 78 "Disable advance peeling. Issues for convergent targets (D134803).")); 79 80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 81 82 // Check whether we are capable of peeling this loop. 83 bool llvm::canPeel(const Loop *L) { 84 // Make sure the loop is in simplified form 85 if (!L->isLoopSimplifyForm()) 86 return false; 87 if (!DisableAdvancedPeeling) 88 return true; 89 90 SmallVector<BasicBlock *, 4> Exits; 91 L->getUniqueNonLatchExitBlocks(Exits); 92 // The latch must either be the only exiting block or all non-latch exit 93 // blocks have either a deopt or unreachable terminator or compose a chain of 94 // blocks where the last one is either deopt or unreachable terminated. Both 95 // deopt and unreachable terminators are a strong indication they are not 96 // taken. Note that this is a profitability check, not a legality check. Also 97 // note that LoopPeeling currently can only update the branch weights of latch 98 // blocks and branch weights to blocks with deopt or unreachable do not need 99 // updating. 100 return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable); 101 } 102 103 namespace { 104 105 // As a loop is peeled, it may be the case that Phi nodes become 106 // loop-invariant (ie, known because there is only one choice). 107 // For example, consider the following function: 108 // void g(int); 109 // void binary() { 110 // int x = 0; 111 // int y = 0; 112 // int a = 0; 113 // for(int i = 0; i <100000; ++i) { 114 // g(x); 115 // x = y; 116 // g(a); 117 // y = a + 1; 118 // a = 5; 119 // } 120 // } 121 // Peeling 3 iterations is beneficial because the values for x, y and a 122 // become known. The IR for this loop looks something like the following: 123 // 124 // %i = phi i32 [ 0, %entry ], [ %inc, %if.end ] 125 // %a = phi i32 [ 0, %entry ], [ 5, %if.end ] 126 // %y = phi i32 [ 0, %entry ], [ %add, %if.end ] 127 // %x = phi i32 [ 0, %entry ], [ %y, %if.end ] 128 // ... 129 // tail call void @_Z1gi(i32 signext %x) 130 // tail call void @_Z1gi(i32 signext %a) 131 // %add = add nuw nsw i32 %a, 1 132 // %inc = add nuw nsw i32 %i, 1 133 // %exitcond = icmp eq i32 %inc, 100000 134 // br i1 %exitcond, label %for.cond.cleanup, label %for.body 135 // 136 // The arguments for the calls to g will become known after 3 iterations 137 // of the loop, because the phi nodes values become known after 3 iterations 138 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations). 139 // The first iteration has g(0), g(0); the second has g(0), g(5); the 140 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5). 141 // Now consider the phi nodes: 142 // %a is a phi with constants so it is determined after iteration 1. 143 // %y is a phi based on a constant and %a so it is determined on 144 // the iteration after %a is determined, so iteration 2. 145 // %x is a phi based on a constant and %y so it is determined on 146 // the iteration after %y, so iteration 3. 147 // %i is based on itself (and is an induction variable) so it is 148 // never determined. 149 // This means that peeling off 3 iterations will result in being able to 150 // remove the phi nodes for %a, %y, and %x. The arguments for the 151 // corresponding calls to g are determined and the code for computing 152 // x, y, and a can be removed. 153 // 154 // The PhiAnalyzer class calculates how many times a loop should be 155 // peeled based on the above analysis of the phi nodes in the loop while 156 // respecting the maximum specified. 157 class PhiAnalyzer { 158 public: 159 PhiAnalyzer(const Loop &L, unsigned MaxIterations); 160 161 // Calculate the sufficient minimum number of iterations of the loop to peel 162 // such that phi instructions become determined (subject to allowable limits) 163 std::optional<unsigned> calculateIterationsToPeel(); 164 165 protected: 166 using PeelCounter = std::optional<unsigned>; 167 const PeelCounter Unknown = std::nullopt; 168 169 // Add 1 respecting Unknown and return Unknown if result over MaxIterations 170 PeelCounter addOne(PeelCounter PC) const { 171 if (PC == Unknown) 172 return Unknown; 173 return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown; 174 } 175 176 // Calculate the number of iterations after which the given value 177 // becomes an invariant. 178 PeelCounter calculate(const Value &); 179 180 const Loop &L; 181 const unsigned MaxIterations; 182 183 // Map of Values to number of iterations to invariance 184 SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance; 185 }; 186 187 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations) 188 : L(L), MaxIterations(MaxIterations) { 189 assert(canPeel(&L) && "loop is not suitable for peeling"); 190 assert(MaxIterations > 0 && "no peeling is allowed?"); 191 } 192 193 // This function calculates the number of iterations after which the value 194 // becomes an invariant. The pre-calculated values are memorized in a map. 195 // N.B. This number will be Unknown or <= MaxIterations. 196 // The function is calculated according to the following definition: 197 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 198 // F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown) 199 // G(%y) = 0 if %y is a loop invariant 200 // G(%y) = G(%BackEdgeValue) if %y is a phi in the header block 201 // G(%y) = TODO: if %y is an expression based on phis and loop invariants 202 // The example looks like: 203 // %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration. 204 // %y = phi(0, 5) 205 // %a = %y + 1 206 // G(%y) = Unknown otherwise (including phi not in header block) 207 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) { 208 // If we already know the answer, take it from the map. 209 auto I = IterationsToInvariance.find(&V); 210 if (I != IterationsToInvariance.end()) 211 return I->second; 212 213 // Place Unknown to map to avoid infinite recursion. Such 214 // cycles can never stop on an invariant. 215 IterationsToInvariance[&V] = Unknown; 216 217 if (L.isLoopInvariant(&V)) 218 // Loop invariant so known at start. 219 return (IterationsToInvariance[&V] = 0); 220 if (const PHINode *Phi = dyn_cast<PHINode>(&V)) { 221 if (Phi->getParent() != L.getHeader()) { 222 // Phi is not in header block so Unknown. 223 assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); 224 return Unknown; 225 } 226 // We need to analyze the input from the back edge and add 1. 227 Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch()); 228 PeelCounter Iterations = calculate(*Input); 229 assert(IterationsToInvariance[Input] == Iterations && 230 "unexpected value saved"); 231 return (IterationsToInvariance[Phi] = addOne(Iterations)); 232 } 233 if (const Instruction *I = dyn_cast<Instruction>(&V)) { 234 if (isa<CmpInst>(I) || I->isBinaryOp()) { 235 // Binary instructions get the max of the operands. 236 PeelCounter LHS = calculate(*I->getOperand(0)); 237 if (LHS == Unknown) 238 return Unknown; 239 PeelCounter RHS = calculate(*I->getOperand(1)); 240 if (RHS == Unknown) 241 return Unknown; 242 return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)}); 243 } 244 if (I->isCast()) 245 // Cast instructions get the value of the operand. 246 return (IterationsToInvariance[I] = calculate(*I->getOperand(0))); 247 } 248 // TODO: handle more expressions 249 250 // Everything else is Unknown. 251 assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); 252 return Unknown; 253 } 254 255 std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() { 256 unsigned Iterations = 0; 257 for (auto &PHI : L.getHeader()->phis()) { 258 PeelCounter ToInvariance = calculate(PHI); 259 if (ToInvariance != Unknown) { 260 assert(*ToInvariance <= MaxIterations && "bad result in phi analysis"); 261 Iterations = std::max(Iterations, *ToInvariance); 262 if (Iterations == MaxIterations) 263 break; 264 } 265 } 266 assert((Iterations <= MaxIterations) && "bad result in phi analysis"); 267 return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt; 268 } 269 270 } // unnamed namespace 271 272 // Try to find any invariant memory reads that will become dereferenceable in 273 // the remainder loop after peeling. The load must also be used (transitively) 274 // by an exit condition. Returns the number of iterations to peel off (at the 275 // moment either 0 or 1). 276 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, 277 DominatorTree &DT, 278 AssumptionCache *AC) { 279 // Skip loops with a single exiting block, because there should be no benefit 280 // for the heuristic below. 281 if (L.getExitingBlock()) 282 return 0; 283 284 // All non-latch exit blocks must have an UnreachableInst terminator. 285 // Otherwise the heuristic below may not be profitable. 286 SmallVector<BasicBlock *, 4> Exits; 287 L.getUniqueNonLatchExitBlocks(Exits); 288 if (any_of(Exits, [](const BasicBlock *BB) { 289 return !isa<UnreachableInst>(BB->getTerminator()); 290 })) 291 return 0; 292 293 // Now look for invariant loads that dominate the latch and are not known to 294 // be dereferenceable. If there are such loads and no writes, they will become 295 // dereferenceable in the loop if the first iteration is peeled off. Also 296 // collect the set of instructions controlled by such loads. Only peel if an 297 // exit condition uses (transitively) such a load. 298 BasicBlock *Header = L.getHeader(); 299 BasicBlock *Latch = L.getLoopLatch(); 300 SmallPtrSet<Value *, 8> LoadUsers; 301 const DataLayout &DL = L.getHeader()->getDataLayout(); 302 for (BasicBlock *BB : L.blocks()) { 303 for (Instruction &I : *BB) { 304 if (I.mayWriteToMemory()) 305 return 0; 306 307 auto Iter = LoadUsers.find(&I); 308 if (Iter != LoadUsers.end()) { 309 for (Value *U : I.users()) 310 LoadUsers.insert(U); 311 } 312 // Do not look for reads in the header; they can already be hoisted 313 // without peeling. 314 if (BB == Header) 315 continue; 316 if (auto *LI = dyn_cast<LoadInst>(&I)) { 317 Value *Ptr = LI->getPointerOperand(); 318 if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && 319 !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT)) 320 for (Value *U : I.users()) 321 LoadUsers.insert(U); 322 } 323 } 324 } 325 SmallVector<BasicBlock *> ExitingBlocks; 326 L.getExitingBlocks(ExitingBlocks); 327 if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { 328 return LoadUsers.contains(Exiting->getTerminator()); 329 })) 330 return 1; 331 return 0; 332 } 333 334 // Return the number of iterations to peel off that make conditions in the 335 // body true/false. For example, if we peel 2 iterations off the loop below, 336 // the condition i < 2 can be evaluated at compile time. 337 // for (i = 0; i < n; i++) 338 // if (i < 2) 339 // .. 340 // else 341 // .. 342 // } 343 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 344 ScalarEvolution &SE) { 345 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 346 unsigned DesiredPeelCount = 0; 347 348 // Do not peel the entire loop. 349 const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L); 350 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE)) 351 MaxPeelCount = 352 std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount); 353 354 // Increase PeelCount while (IterVal Pred BoundSCEV) condition is satisfied; 355 // return true if inversed condition become known before reaching the 356 // MaxPeelCount limit. 357 auto PeelWhilePredicateIsKnown = 358 [&](unsigned &PeelCount, const SCEV *&IterVal, const SCEV *BoundSCEV, 359 const SCEV *Step, ICmpInst::Predicate Pred) { 360 while (PeelCount < MaxPeelCount && 361 SE.isKnownPredicate(Pred, IterVal, BoundSCEV)) { 362 IterVal = SE.getAddExpr(IterVal, Step); 363 ++PeelCount; 364 } 365 return SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 366 BoundSCEV); 367 }; 368 369 const unsigned MaxDepth = 4; 370 std::function<void(Value *, unsigned)> ComputePeelCount = 371 [&](Value *Condition, unsigned Depth) -> void { 372 if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth) 373 return; 374 375 Value *LeftVal, *RightVal; 376 if (match(Condition, m_And(m_Value(LeftVal), m_Value(RightVal))) || 377 match(Condition, m_Or(m_Value(LeftVal), m_Value(RightVal)))) { 378 ComputePeelCount(LeftVal, Depth + 1); 379 ComputePeelCount(RightVal, Depth + 1); 380 return; 381 } 382 383 CmpInst::Predicate Pred; 384 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 385 return; 386 387 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 388 const SCEV *RightSCEV = SE.getSCEV(RightVal); 389 390 // Do not consider predicates that are known to be true or false 391 // independently of the loop iteration. 392 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) 393 return; 394 395 // Check if we have a condition with one AddRec and one non AddRec 396 // expression. Normalize LeftSCEV to be the AddRec. 397 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 398 if (isa<SCEVAddRecExpr>(RightSCEV)) { 399 std::swap(LeftSCEV, RightSCEV); 400 Pred = ICmpInst::getSwappedPredicate(Pred); 401 } else 402 return; 403 } 404 405 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 406 407 // Avoid huge SCEV computations in the loop below, make sure we only 408 // consider AddRecs of the loop we are trying to peel. 409 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 410 return; 411 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 412 !SE.getMonotonicPredicateType(LeftAR, Pred)) 413 return; 414 415 // Check if extending the current DesiredPeelCount lets us evaluate Pred 416 // or !Pred in the loop body statically. 417 unsigned NewPeelCount = DesiredPeelCount; 418 419 const SCEV *IterVal = LeftAR->evaluateAtIteration( 420 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 421 422 // If the original condition is not known, get the negated predicate 423 // (which holds on the else branch) and check if it is known. This allows 424 // us to peel of iterations that make the original condition false. 425 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 426 Pred = ICmpInst::getInversePredicate(Pred); 427 428 const SCEV *Step = LeftAR->getStepRecurrence(SE); 429 if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, RightSCEV, Step, 430 Pred)) 431 return; 432 433 // However, for equality comparisons, that isn't always sufficient to 434 // eliminate the comparsion in loop body, we may need to peel one more 435 // iteration. See if that makes !Pred become unknown again. 436 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 437 if (ICmpInst::isEquality(Pred) && 438 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 439 RightSCEV) && 440 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 441 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 442 if (NewPeelCount >= MaxPeelCount) 443 return; // Need to peel one more iteration, but can't. Give up. 444 ++NewPeelCount; // Great! 445 } 446 447 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 448 }; 449 450 auto ComputePeelCountMinMax = [&](MinMaxIntrinsic *MinMax) { 451 if (!MinMax->getType()->isIntegerTy()) 452 return; 453 Value *LHS = MinMax->getLHS(), *RHS = MinMax->getRHS(); 454 const SCEV *BoundSCEV, *IterSCEV; 455 if (L.isLoopInvariant(LHS)) { 456 BoundSCEV = SE.getSCEV(LHS); 457 IterSCEV = SE.getSCEV(RHS); 458 } else if (L.isLoopInvariant(RHS)) { 459 BoundSCEV = SE.getSCEV(RHS); 460 IterSCEV = SE.getSCEV(LHS); 461 } else 462 return; 463 const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IterSCEV); 464 // For simplicity, we support only affine recurrences. 465 if (!AddRec || !AddRec->isAffine() || AddRec->getLoop() != &L) 466 return; 467 const SCEV *Step = AddRec->getStepRecurrence(SE); 468 bool IsSigned = MinMax->isSigned(); 469 // To minimize number of peeled iterations, we use strict relational 470 // predicates here. 471 ICmpInst::Predicate Pred; 472 if (SE.isKnownPositive(Step)) 473 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 474 else if (SE.isKnownNegative(Step)) 475 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 476 else 477 return; 478 // Check that AddRec is not wrapping. 479 if (!(IsSigned ? AddRec->hasNoSignedWrap() : AddRec->hasNoUnsignedWrap())) 480 return; 481 unsigned NewPeelCount = DesiredPeelCount; 482 const SCEV *IterVal = AddRec->evaluateAtIteration( 483 SE.getConstant(AddRec->getType(), NewPeelCount), SE); 484 if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, BoundSCEV, Step, 485 Pred)) 486 return; 487 DesiredPeelCount = NewPeelCount; 488 }; 489 490 for (BasicBlock *BB : L.blocks()) { 491 for (Instruction &I : *BB) { 492 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) 493 ComputePeelCount(SI->getCondition(), 0); 494 if (MinMaxIntrinsic *MinMax = dyn_cast<MinMaxIntrinsic>(&I)) 495 ComputePeelCountMinMax(MinMax); 496 } 497 498 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 499 if (!BI || BI->isUnconditional()) 500 continue; 501 502 // Ignore loop exit condition. 503 if (L.getLoopLatch() == BB) 504 continue; 505 506 ComputePeelCount(BI->getCondition(), 0); 507 } 508 509 return DesiredPeelCount; 510 } 511 512 /// This "heuristic" exactly matches implicit behavior which used to exist 513 /// inside getLoopEstimatedTripCount. It was added here to keep an 514 /// improvement inside that API from causing peeling to become more aggressive. 515 /// This should probably be removed. 516 static bool violatesLegacyMultiExitLoopCheck(Loop *L) { 517 BasicBlock *Latch = L->getLoopLatch(); 518 if (!Latch) 519 return true; 520 521 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 522 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 523 return true; 524 525 assert((LatchBR->getSuccessor(0) == L->getHeader() || 526 LatchBR->getSuccessor(1) == L->getHeader()) && 527 "At least one edge out of the latch must go to the header"); 528 529 SmallVector<BasicBlock *, 4> ExitBlocks; 530 L->getUniqueNonLatchExitBlocks(ExitBlocks); 531 return any_of(ExitBlocks, [](const BasicBlock *EB) { 532 return !EB->getTerminatingDeoptimizeCall(); 533 }); 534 } 535 536 537 // Return the number of iterations we want to peel off. 538 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 539 TargetTransformInfo::PeelingPreferences &PP, 540 unsigned TripCount, DominatorTree &DT, 541 ScalarEvolution &SE, AssumptionCache *AC, 542 unsigned Threshold) { 543 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 544 // Save the PP.PeelCount value set by the target in 545 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 546 unsigned TargetPeelCount = PP.PeelCount; 547 PP.PeelCount = 0; 548 if (!canPeel(L)) 549 return; 550 551 // Only try to peel innermost loops by default. 552 // The constraint can be relaxed by the target in TTI.getPeelingPreferences 553 // or by the flag -unroll-allow-loop-nests-peeling. 554 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 555 return; 556 557 // If the user provided a peel count, use that. 558 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 559 if (UserPeelCount) { 560 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 561 << " iterations.\n"); 562 PP.PeelCount = UnrollForcePeelCount; 563 PP.PeelProfiledIterations = true; 564 return; 565 } 566 567 // Skip peeling if it's disabled. 568 if (!PP.AllowPeeling) 569 return; 570 571 // Check that we can peel at least one iteration. 572 if (2 * LoopSize > Threshold) 573 return; 574 575 unsigned AlreadyPeeled = 0; 576 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 577 AlreadyPeeled = *Peeled; 578 // Stop if we already peeled off the maximum number of iterations. 579 if (AlreadyPeeled >= UnrollPeelMaxCount) 580 return; 581 582 // Pay respect to limitations implied by loop size and the max peel count. 583 unsigned MaxPeelCount = UnrollPeelMaxCount; 584 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 585 586 // Start the max computation with the PP.PeelCount value set by the target 587 // in TTI.getPeelingPreferences or by the flag -unroll-peel-count. 588 unsigned DesiredPeelCount = TargetPeelCount; 589 590 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 591 // iterations of the loop. For this we compute the number for iterations after 592 // which every Phi is guaranteed to become an invariant, and try to peel the 593 // maximum number of iterations among these values, thus turning all those 594 // Phis into invariants. 595 if (MaxPeelCount > DesiredPeelCount) { 596 // Check how many iterations are useful for resolving Phis 597 auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel(); 598 if (NumPeels) 599 DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels); 600 } 601 602 DesiredPeelCount = std::max(DesiredPeelCount, 603 countToEliminateCompares(*L, MaxPeelCount, SE)); 604 605 if (DesiredPeelCount == 0) 606 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC); 607 608 if (DesiredPeelCount > 0) { 609 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 610 // Consider max peel count limitation. 611 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 612 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 613 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 614 << " iteration(s) to turn" 615 << " some Phis into invariants.\n"); 616 PP.PeelCount = DesiredPeelCount; 617 PP.PeelProfiledIterations = false; 618 return; 619 } 620 } 621 622 // Bail if we know the statically calculated trip count. 623 // In this case we rather prefer partial unrolling. 624 if (TripCount) 625 return; 626 627 // Do not apply profile base peeling if it is disabled. 628 if (!PP.PeelProfiledIterations) 629 return; 630 // If we don't know the trip count, but have reason to believe the average 631 // trip count is low, peeling should be beneficial, since we will usually 632 // hit the peeled section. 633 // We only do this in the presence of profile information, since otherwise 634 // our estimates of the trip count are not reliable enough. 635 if (L->getHeader()->getParent()->hasProfileData()) { 636 if (violatesLegacyMultiExitLoopCheck(L)) 637 return; 638 std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L); 639 if (!EstimatedTripCount) 640 return; 641 642 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " 643 << *EstimatedTripCount << "\n"); 644 645 if (*EstimatedTripCount) { 646 if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) { 647 unsigned PeelCount = *EstimatedTripCount; 648 LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n"); 649 PP.PeelCount = PeelCount; 650 return; 651 } 652 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 653 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 654 LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n"); 655 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 656 LLVM_DEBUG(dbgs() << "Max peel count by cost: " 657 << (Threshold / LoopSize - 1) << "\n"); 658 } 659 } 660 } 661 662 struct WeightInfo { 663 // Weights for current iteration. 664 SmallVector<uint32_t> Weights; 665 // Weights to subtract after each iteration. 666 const SmallVector<uint32_t> SubWeights; 667 }; 668 669 /// Update the branch weights of an exiting block of a peeled-off loop 670 /// iteration. 671 /// Let F is a weight of the edge to continue (fallthrough) into the loop. 672 /// Let E is a weight of the edge to an exit. 673 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 674 /// go to exit. 675 /// Then, Estimated ExitCount = F / E. 676 /// For I-th (counting from 0) peeled off iteration we set the weights for 677 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution, 678 /// The probability to go to exit 1/(EC-I) increases. At the same time 679 /// the estimated exit count in the remainder loop reduces by I. 680 /// To avoid dealing with division rounding we can just multiple both part 681 /// of weights to E and use weight as (F - I * E, E). 682 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) { 683 setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false); 684 for (auto [Idx, SubWeight] : enumerate(Info.SubWeights)) 685 if (SubWeight != 0) 686 // Don't set the probability of taking the edge from latch to loop header 687 // to less than 1:1 ratio (meaning Weight should not be lower than 688 // SubWeight), as this could significantly reduce the loop's hotness, 689 // which would be incorrect in the case of underestimating the trip count. 690 Info.Weights[Idx] = 691 Info.Weights[Idx] > SubWeight 692 ? std::max(Info.Weights[Idx] - SubWeight, SubWeight) 693 : SubWeight; 694 } 695 696 /// Initialize the weights for all exiting blocks. 697 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos, 698 Loop *L) { 699 SmallVector<BasicBlock *> ExitingBlocks; 700 L->getExitingBlocks(ExitingBlocks); 701 for (BasicBlock *ExitingBlock : ExitingBlocks) { 702 Instruction *Term = ExitingBlock->getTerminator(); 703 SmallVector<uint32_t> Weights; 704 if (!extractBranchWeights(*Term, Weights)) 705 continue; 706 707 // See the comment on updateBranchWeights() for an explanation of what we 708 // do here. 709 uint32_t FallThroughWeights = 0; 710 uint32_t ExitWeights = 0; 711 for (auto [Succ, Weight] : zip(successors(Term), Weights)) { 712 if (L->contains(Succ)) 713 FallThroughWeights += Weight; 714 else 715 ExitWeights += Weight; 716 } 717 718 // Don't try to update weights for degenerate case. 719 if (FallThroughWeights == 0) 720 continue; 721 722 SmallVector<uint32_t> SubWeights; 723 for (auto [Succ, Weight] : zip(successors(Term), Weights)) { 724 if (!L->contains(Succ)) { 725 // Exit weights stay the same. 726 SubWeights.push_back(0); 727 continue; 728 } 729 730 // Subtract exit weights on each iteration, distributed across all 731 // fallthrough edges. 732 double W = (double)Weight / (double)FallThroughWeights; 733 SubWeights.push_back((uint32_t)(ExitWeights * W)); 734 } 735 736 WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}}); 737 } 738 } 739 740 /// Clones the body of the loop L, putting it between \p InsertTop and \p 741 /// InsertBot. 742 /// \param IterNumber The serial number of the iteration currently being 743 /// peeled off. 744 /// \param ExitEdges The exit edges of the original loop. 745 /// \param[out] NewBlocks A list of the blocks in the newly created clone 746 /// \param[out] VMap The value map between the loop and the new clone. 747 /// \param LoopBlocks A helper for DFS-traversal of the loop. 748 /// \param LVMap A value-map that maps instructions from the original loop to 749 /// instructions in the last peeled-off iteration. 750 static void cloneLoopBlocks( 751 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 752 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 753 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 754 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 755 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes, 756 ScalarEvolution &SE) { 757 BasicBlock *Header = L->getHeader(); 758 BasicBlock *Latch = L->getLoopLatch(); 759 BasicBlock *PreHeader = L->getLoopPreheader(); 760 761 Function *F = Header->getParent(); 762 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 763 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 764 Loop *ParentLoop = L->getParentLoop(); 765 766 // For each block in the original loop, create a new copy, 767 // and update the value map with the newly created values. 768 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 769 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 770 NewBlocks.push_back(NewBB); 771 772 // If an original block is an immediate child of the loop L, its copy 773 // is a child of a ParentLoop after peeling. If a block is a child of 774 // a nested loop, it is handled in the cloneLoop() call below. 775 if (ParentLoop && LI->getLoopFor(*BB) == L) 776 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 777 778 VMap[*BB] = NewBB; 779 780 // If dominator tree is available, insert nodes to represent cloned blocks. 781 if (DT) { 782 if (Header == *BB) 783 DT->addNewBlock(NewBB, InsertTop); 784 else { 785 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 786 // VMap must contain entry for IDom, as the iteration order is RPO. 787 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 788 } 789 } 790 } 791 792 { 793 // Identify what other metadata depends on the cloned version. After 794 // cloning, replace the metadata with the corrected version for both 795 // memory instructions and noalias intrinsics. 796 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); 797 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 798 Header->getContext(), Ext); 799 } 800 801 // Recursively create the new Loop objects for nested loops, if any, 802 // to preserve LoopInfo. 803 for (Loop *ChildLoop : *L) { 804 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 805 } 806 807 // Hook-up the control flow for the newly inserted blocks. 808 // The new header is hooked up directly to the "top", which is either 809 // the original loop preheader (for the first iteration) or the previous 810 // iteration's exiting block (for every other iteration) 811 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 812 813 // Similarly, for the latch: 814 // The original exiting edge is still hooked up to the loop exit. 815 // The backedge now goes to the "bottom", which is either the loop's real 816 // header (for the last peeled iteration) or the copied header of the next 817 // iteration (for every other iteration) 818 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 819 auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator()); 820 for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx) 821 if (LatchTerm->getSuccessor(idx) == Header) { 822 LatchTerm->setSuccessor(idx, InsertBot); 823 break; 824 } 825 if (DT) 826 DT->changeImmediateDominator(InsertBot, NewLatch); 827 828 // The new copy of the loop body starts with a bunch of PHI nodes 829 // that pick an incoming value from either the preheader, or the previous 830 // loop iteration. Since this copy is no longer part of the loop, we 831 // resolve this statically: 832 // For the first iteration, we use the value from the preheader directly. 833 // For any other iteration, we replace the phi with the value generated by 834 // the immediately preceding clone of the loop body (which represents 835 // the previous iteration). 836 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 837 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 838 if (IterNumber == 0) { 839 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 840 } else { 841 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 842 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 843 if (LatchInst && L->contains(LatchInst)) 844 VMap[&*I] = LVMap[LatchInst]; 845 else 846 VMap[&*I] = LatchVal; 847 } 848 NewPHI->eraseFromParent(); 849 } 850 851 // Fix up the outgoing values - we need to add a value for the iteration 852 // we've just created. Note that this must happen *after* the incoming 853 // values are adjusted, since the value going out of the latch may also be 854 // a value coming into the header. 855 for (auto Edge : ExitEdges) 856 for (PHINode &PHI : Edge.second->phis()) { 857 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 858 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 859 if (LatchInst && L->contains(LatchInst)) 860 LatchVal = VMap[LatchVal]; 861 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 862 SE.forgetLcssaPhiWithNewPredecessor(L, &PHI); 863 } 864 865 // LastValueMap is updated with the values for the current loop 866 // which are used the next time this function is called. 867 for (auto KV : VMap) 868 LVMap[KV.first] = KV.second; 869 } 870 871 TargetTransformInfo::PeelingPreferences 872 llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, 873 const TargetTransformInfo &TTI, 874 std::optional<bool> UserAllowPeeling, 875 std::optional<bool> UserAllowProfileBasedPeeling, 876 bool UnrollingSpecficValues) { 877 TargetTransformInfo::PeelingPreferences PP; 878 879 // Set the default values. 880 PP.PeelCount = 0; 881 PP.AllowPeeling = true; 882 PP.AllowLoopNestsPeeling = false; 883 PP.PeelProfiledIterations = true; 884 885 // Get the target specifc values. 886 TTI.getPeelingPreferences(L, SE, PP); 887 888 // User specified values using cl::opt. 889 if (UnrollingSpecficValues) { 890 if (UnrollPeelCount.getNumOccurrences() > 0) 891 PP.PeelCount = UnrollPeelCount; 892 if (UnrollAllowPeeling.getNumOccurrences() > 0) 893 PP.AllowPeeling = UnrollAllowPeeling; 894 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 895 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 896 } 897 898 // User specifed values provided by argument. 899 if (UserAllowPeeling) 900 PP.AllowPeeling = *UserAllowPeeling; 901 if (UserAllowProfileBasedPeeling) 902 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 903 904 return PP; 905 } 906 907 /// Peel off the first \p PeelCount iterations of loop \p L. 908 /// 909 /// Note that this does not peel them off as a single straight-line block. 910 /// Rather, each iteration is peeled off separately, and needs to check the 911 /// exit condition. 912 /// For loops that dynamically execute \p PeelCount iterations or less 913 /// this provides a benefit, since the peeled off iterations, which account 914 /// for the bulk of dynamic execution, can be further simplified by scalar 915 /// optimizations. 916 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 917 ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, 918 bool PreserveLCSSA, ValueToValueMapTy &LVMap) { 919 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 920 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 921 922 LoopBlocksDFS LoopBlocks(L); 923 LoopBlocks.perform(LI); 924 925 BasicBlock *Header = L->getHeader(); 926 BasicBlock *PreHeader = L->getLoopPreheader(); 927 BasicBlock *Latch = L->getLoopLatch(); 928 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 929 L->getExitEdges(ExitEdges); 930 931 // Remember dominators of blocks we might reach through exits to change them 932 // later. Immediate dominator of such block might change, because we add more 933 // routes which can lead to the exit: we can reach it from the peeled 934 // iterations too. 935 DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom; 936 for (auto *BB : L->blocks()) { 937 auto *BBDomNode = DT.getNode(BB); 938 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 939 for (auto *ChildDomNode : BBDomNode->children()) { 940 auto *ChildBB = ChildDomNode->getBlock(); 941 if (!L->contains(ChildBB)) 942 ChildrenToUpdate.push_back(ChildBB); 943 } 944 // The new idom of the block will be the nearest common dominator 945 // of all copies of the previous idom. This is equivalent to the 946 // nearest common dominator of the previous idom and the first latch, 947 // which dominates all copies of the previous idom. 948 BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch); 949 for (auto *ChildBB : ChildrenToUpdate) 950 NonLoopBlocksIDom[ChildBB] = NewIDom; 951 } 952 953 Function *F = Header->getParent(); 954 955 // Set up all the necessary basic blocks. It is convenient to split the 956 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 957 // body, and a new preheader for the "real" loop. 958 959 // Peeling the first iteration transforms. 960 // 961 // PreHeader: 962 // ... 963 // Header: 964 // LoopBody 965 // If (cond) goto Header 966 // Exit: 967 // 968 // into 969 // 970 // InsertTop: 971 // LoopBody 972 // If (!cond) goto Exit 973 // InsertBot: 974 // NewPreHeader: 975 // ... 976 // Header: 977 // LoopBody 978 // If (cond) goto Header 979 // Exit: 980 // 981 // Each following iteration will split the current bottom anchor in two, 982 // and put the new copy of the loop body between these two blocks. That is, 983 // after peeling another iteration from the example above, we'll split 984 // InsertBot, and get: 985 // 986 // InsertTop: 987 // LoopBody 988 // If (!cond) goto Exit 989 // InsertBot: 990 // LoopBody 991 // If (!cond) goto Exit 992 // InsertBot.next: 993 // NewPreHeader: 994 // ... 995 // Header: 996 // LoopBody 997 // If (cond) goto Header 998 // Exit: 999 1000 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI); 1001 BasicBlock *InsertBot = 1002 SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI); 1003 BasicBlock *NewPreHeader = 1004 SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 1005 1006 InsertTop->setName(Header->getName() + ".peel.begin"); 1007 InsertBot->setName(Header->getName() + ".peel.next"); 1008 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 1009 1010 Instruction *LatchTerm = 1011 cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator()); 1012 1013 // If we have branch weight information, we'll want to update it for the 1014 // newly created branches. 1015 DenseMap<Instruction *, WeightInfo> Weights; 1016 initBranchWeights(Weights, L); 1017 1018 // Identify what noalias metadata is inside the loop: if it is inside the 1019 // loop, the associated metadata must be cloned for each iteration. 1020 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 1021 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 1022 1023 // For each peeled-off iteration, make a copy of the loop. 1024 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 1025 SmallVector<BasicBlock *, 8> NewBlocks; 1026 ValueToValueMapTy VMap; 1027 1028 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 1029 LoopBlocks, VMap, LVMap, &DT, LI, 1030 LoopLocalNoAliasDeclScopes, *SE); 1031 1032 // Remap to use values from the current iteration instead of the 1033 // previous one. 1034 remapInstructionsInBlocks(NewBlocks, VMap); 1035 1036 // Update IDoms of the blocks reachable through exits. 1037 if (Iter == 0) 1038 for (auto BBIDom : NonLoopBlocksIDom) 1039 DT.changeImmediateDominator(BBIDom.first, 1040 cast<BasicBlock>(LVMap[BBIDom.second])); 1041 #ifdef EXPENSIVE_CHECKS 1042 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1043 #endif 1044 1045 for (auto &[Term, Info] : Weights) { 1046 auto *TermCopy = cast<Instruction>(VMap[Term]); 1047 updateBranchWeights(TermCopy, Info); 1048 } 1049 1050 // Remove Loop metadata from the latch branch instruction 1051 // because it is not the Loop's latch branch anymore. 1052 auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]); 1053 LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr); 1054 1055 InsertTop = InsertBot; 1056 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 1057 InsertBot->setName(Header->getName() + ".peel.next"); 1058 1059 F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(), 1060 F->end()); 1061 } 1062 1063 // Now adjust the phi nodes in the loop header to get their initial values 1064 // from the last peeled-off iteration instead of the preheader. 1065 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 1066 PHINode *PHI = cast<PHINode>(I); 1067 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 1068 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 1069 if (LatchInst && L->contains(LatchInst)) 1070 NewVal = LVMap[LatchInst]; 1071 1072 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 1073 } 1074 1075 for (const auto &[Term, Info] : Weights) { 1076 setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false); 1077 } 1078 1079 // Update Metadata for count of peeled off iterations. 1080 unsigned AlreadyPeeled = 0; 1081 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 1082 AlreadyPeeled = *Peeled; 1083 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 1084 1085 if (Loop *ParentLoop = L->getParentLoop()) 1086 L = ParentLoop; 1087 1088 // We modified the loop, update SE. 1089 SE->forgetTopmostLoop(L); 1090 SE->forgetBlockAndLoopDispositions(); 1091 1092 #ifdef EXPENSIVE_CHECKS 1093 // Finally DomtTree must be correct. 1094 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1095 #endif 1096 1097 // FIXME: Incrementally update loop-simplify 1098 simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA); 1099 1100 NumPeeled++; 1101 1102 return true; 1103 } 1104