1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/Loads.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/ProfDataUtils.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/ValueMapper.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <optional> 45 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "loop-peel" 50 51 STATISTIC(NumPeeled, "Number of loops peeled"); 52 53 static cl::opt<unsigned> UnrollPeelCount( 54 "unroll-peel-count", cl::Hidden, 55 cl::desc("Set the unroll peeling count, for testing purposes")); 56 57 static cl::opt<bool> 58 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 59 cl::desc("Allows loops to be peeled when the dynamic " 60 "trip count is known to be low.")); 61 62 static cl::opt<bool> 63 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 64 cl::init(false), cl::Hidden, 65 cl::desc("Allows loop nests to be peeled.")); 66 67 static cl::opt<unsigned> UnrollPeelMaxCount( 68 "unroll-peel-max-count", cl::init(7), cl::Hidden, 69 cl::desc("Max average trip count which will cause loop peeling.")); 70 71 static cl::opt<unsigned> UnrollForcePeelCount( 72 "unroll-force-peel-count", cl::init(0), cl::Hidden, 73 cl::desc("Force a peel count regardless of profiling information.")); 74 75 static cl::opt<bool> DisableAdvancedPeeling( 76 "disable-advanced-peeling", cl::init(false), cl::Hidden, 77 cl::desc( 78 "Disable advance peeling. Issues for convergent targets (D134803).")); 79 80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 81 82 // Check whether we are capable of peeling this loop. 83 bool llvm::canPeel(const Loop *L) { 84 // Make sure the loop is in simplified form 85 if (!L->isLoopSimplifyForm()) 86 return false; 87 if (!DisableAdvancedPeeling) 88 return true; 89 90 SmallVector<BasicBlock *, 4> Exits; 91 L->getUniqueNonLatchExitBlocks(Exits); 92 // The latch must either be the only exiting block or all non-latch exit 93 // blocks have either a deopt or unreachable terminator or compose a chain of 94 // blocks where the last one is either deopt or unreachable terminated. Both 95 // deopt and unreachable terminators are a strong indication they are not 96 // taken. Note that this is a profitability check, not a legality check. Also 97 // note that LoopPeeling currently can only update the branch weights of latch 98 // blocks and branch weights to blocks with deopt or unreachable do not need 99 // updating. 100 return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable); 101 } 102 103 namespace { 104 105 // As a loop is peeled, it may be the case that Phi nodes become 106 // loop-invariant (ie, known because there is only one choice). 107 // For example, consider the following function: 108 // void g(int); 109 // void binary() { 110 // int x = 0; 111 // int y = 0; 112 // int a = 0; 113 // for(int i = 0; i <100000; ++i) { 114 // g(x); 115 // x = y; 116 // g(a); 117 // y = a + 1; 118 // a = 5; 119 // } 120 // } 121 // Peeling 3 iterations is beneficial because the values for x, y and a 122 // become known. The IR for this loop looks something like the following: 123 // 124 // %i = phi i32 [ 0, %entry ], [ %inc, %if.end ] 125 // %a = phi i32 [ 0, %entry ], [ 5, %if.end ] 126 // %y = phi i32 [ 0, %entry ], [ %add, %if.end ] 127 // %x = phi i32 [ 0, %entry ], [ %y, %if.end ] 128 // ... 129 // tail call void @_Z1gi(i32 signext %x) 130 // tail call void @_Z1gi(i32 signext %a) 131 // %add = add nuw nsw i32 %a, 1 132 // %inc = add nuw nsw i32 %i, 1 133 // %exitcond = icmp eq i32 %inc, 100000 134 // br i1 %exitcond, label %for.cond.cleanup, label %for.body 135 // 136 // The arguments for the calls to g will become known after 3 iterations 137 // of the loop, because the phi nodes values become known after 3 iterations 138 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations). 139 // The first iteration has g(0), g(0); the second has g(0), g(5); the 140 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5). 141 // Now consider the phi nodes: 142 // %a is a phi with constants so it is determined after iteration 1. 143 // %y is a phi based on a constant and %a so it is determined on 144 // the iteration after %a is determined, so iteration 2. 145 // %x is a phi based on a constant and %y so it is determined on 146 // the iteration after %y, so iteration 3. 147 // %i is based on itself (and is an induction variable) so it is 148 // never determined. 149 // This means that peeling off 3 iterations will result in being able to 150 // remove the phi nodes for %a, %y, and %x. The arguments for the 151 // corresponding calls to g are determined and the code for computing 152 // x, y, and a can be removed. 153 // 154 // The PhiAnalyzer class calculates how many times a loop should be 155 // peeled based on the above analysis of the phi nodes in the loop while 156 // respecting the maximum specified. 157 class PhiAnalyzer { 158 public: 159 PhiAnalyzer(const Loop &L, unsigned MaxIterations); 160 161 // Calculate the sufficient minimum number of iterations of the loop to peel 162 // such that phi instructions become determined (subject to allowable limits) 163 std::optional<unsigned> calculateIterationsToPeel(); 164 165 protected: 166 using PeelCounter = std::optional<unsigned>; 167 const PeelCounter Unknown = std::nullopt; 168 169 // Add 1 respecting Unknown and return Unknown if result over MaxIterations 170 PeelCounter addOne(PeelCounter PC) const { 171 if (PC == Unknown) 172 return Unknown; 173 return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown; 174 } 175 176 // Calculate the number of iterations after which the given value 177 // becomes an invariant. 178 PeelCounter calculate(const Value &); 179 180 const Loop &L; 181 const unsigned MaxIterations; 182 183 // Map of Values to number of iterations to invariance 184 SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance; 185 }; 186 187 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations) 188 : L(L), MaxIterations(MaxIterations) { 189 assert(canPeel(&L) && "loop is not suitable for peeling"); 190 assert(MaxIterations > 0 && "no peeling is allowed?"); 191 } 192 193 // This function calculates the number of iterations after which the value 194 // becomes an invariant. The pre-calculated values are memorized in a map. 195 // N.B. This number will be Unknown or <= MaxIterations. 196 // The function is calculated according to the following definition: 197 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 198 // F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown) 199 // G(%y) = 0 if %y is a loop invariant 200 // G(%y) = G(%BackEdgeValue) if %y is a phi in the header block 201 // G(%y) = TODO: if %y is an expression based on phis and loop invariants 202 // The example looks like: 203 // %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration. 204 // %y = phi(0, 5) 205 // %a = %y + 1 206 // G(%y) = Unknown otherwise (including phi not in header block) 207 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) { 208 // If we already know the answer, take it from the map. 209 auto I = IterationsToInvariance.find(&V); 210 if (I != IterationsToInvariance.end()) 211 return I->second; 212 213 // Place Unknown to map to avoid infinite recursion. Such 214 // cycles can never stop on an invariant. 215 IterationsToInvariance[&V] = Unknown; 216 217 if (L.isLoopInvariant(&V)) 218 // Loop invariant so known at start. 219 return (IterationsToInvariance[&V] = 0); 220 if (const PHINode *Phi = dyn_cast<PHINode>(&V)) { 221 if (Phi->getParent() != L.getHeader()) { 222 // Phi is not in header block so Unknown. 223 assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); 224 return Unknown; 225 } 226 // We need to analyze the input from the back edge and add 1. 227 Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch()); 228 PeelCounter Iterations = calculate(*Input); 229 assert(IterationsToInvariance[Input] == Iterations && 230 "unexpected value saved"); 231 return (IterationsToInvariance[Phi] = addOne(Iterations)); 232 } 233 if (const Instruction *I = dyn_cast<Instruction>(&V)) { 234 if (isa<CmpInst>(I) || I->isBinaryOp()) { 235 // Binary instructions get the max of the operands. 236 PeelCounter LHS = calculate(*I->getOperand(0)); 237 if (LHS == Unknown) 238 return Unknown; 239 PeelCounter RHS = calculate(*I->getOperand(1)); 240 if (RHS == Unknown) 241 return Unknown; 242 return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)}); 243 } 244 if (I->isCast()) 245 // Cast instructions get the value of the operand. 246 return (IterationsToInvariance[I] = calculate(*I->getOperand(0))); 247 } 248 // TODO: handle more expressions 249 250 // Everything else is Unknown. 251 assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); 252 return Unknown; 253 } 254 255 std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() { 256 unsigned Iterations = 0; 257 for (auto &PHI : L.getHeader()->phis()) { 258 PeelCounter ToInvariance = calculate(PHI); 259 if (ToInvariance != Unknown) { 260 assert(*ToInvariance <= MaxIterations && "bad result in phi analysis"); 261 Iterations = std::max(Iterations, *ToInvariance); 262 if (Iterations == MaxIterations) 263 break; 264 } 265 } 266 assert((Iterations <= MaxIterations) && "bad result in phi analysis"); 267 return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt; 268 } 269 270 } // unnamed namespace 271 272 // Try to find any invariant memory reads that will become dereferenceable in 273 // the remainder loop after peeling. The load must also be used (transitively) 274 // by an exit condition. Returns the number of iterations to peel off (at the 275 // moment either 0 or 1). 276 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, 277 DominatorTree &DT, 278 AssumptionCache *AC) { 279 // Skip loops with a single exiting block, because there should be no benefit 280 // for the heuristic below. 281 if (L.getExitingBlock()) 282 return 0; 283 284 // All non-latch exit blocks must have an UnreachableInst terminator. 285 // Otherwise the heuristic below may not be profitable. 286 SmallVector<BasicBlock *, 4> Exits; 287 L.getUniqueNonLatchExitBlocks(Exits); 288 if (any_of(Exits, [](const BasicBlock *BB) { 289 return !isa<UnreachableInst>(BB->getTerminator()); 290 })) 291 return 0; 292 293 // Now look for invariant loads that dominate the latch and are not known to 294 // be dereferenceable. If there are such loads and no writes, they will become 295 // dereferenceable in the loop if the first iteration is peeled off. Also 296 // collect the set of instructions controlled by such loads. Only peel if an 297 // exit condition uses (transitively) such a load. 298 BasicBlock *Header = L.getHeader(); 299 BasicBlock *Latch = L.getLoopLatch(); 300 SmallPtrSet<Value *, 8> LoadUsers; 301 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 302 for (BasicBlock *BB : L.blocks()) { 303 for (Instruction &I : *BB) { 304 if (I.mayWriteToMemory()) 305 return 0; 306 307 auto Iter = LoadUsers.find(&I); 308 if (Iter != LoadUsers.end()) { 309 for (Value *U : I.users()) 310 LoadUsers.insert(U); 311 } 312 // Do not look for reads in the header; they can already be hoisted 313 // without peeling. 314 if (BB == Header) 315 continue; 316 if (auto *LI = dyn_cast<LoadInst>(&I)) { 317 Value *Ptr = LI->getPointerOperand(); 318 if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && 319 !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT)) 320 for (Value *U : I.users()) 321 LoadUsers.insert(U); 322 } 323 } 324 } 325 SmallVector<BasicBlock *> ExitingBlocks; 326 L.getExitingBlocks(ExitingBlocks); 327 if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { 328 return LoadUsers.contains(Exiting->getTerminator()); 329 })) 330 return 1; 331 return 0; 332 } 333 334 // Return the number of iterations to peel off that make conditions in the 335 // body true/false. For example, if we peel 2 iterations off the loop below, 336 // the condition i < 2 can be evaluated at compile time. 337 // for (i = 0; i < n; i++) 338 // if (i < 2) 339 // .. 340 // else 341 // .. 342 // } 343 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 344 ScalarEvolution &SE) { 345 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 346 unsigned DesiredPeelCount = 0; 347 348 // Do not peel the entire loop. 349 const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L); 350 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE)) 351 MaxPeelCount = 352 std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount); 353 354 const unsigned MaxDepth = 4; 355 std::function<void(Value *, unsigned)> ComputePeelCount = 356 [&](Value *Condition, unsigned Depth) -> void { 357 if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth) 358 return; 359 360 Value *LeftVal, *RightVal; 361 if (match(Condition, m_And(m_Value(LeftVal), m_Value(RightVal))) || 362 match(Condition, m_Or(m_Value(LeftVal), m_Value(RightVal)))) { 363 ComputePeelCount(LeftVal, Depth + 1); 364 ComputePeelCount(RightVal, Depth + 1); 365 return; 366 } 367 368 CmpInst::Predicate Pred; 369 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 370 return; 371 372 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 373 const SCEV *RightSCEV = SE.getSCEV(RightVal); 374 375 // Do not consider predicates that are known to be true or false 376 // independently of the loop iteration. 377 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) 378 return; 379 380 // Check if we have a condition with one AddRec and one non AddRec 381 // expression. Normalize LeftSCEV to be the AddRec. 382 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 383 if (isa<SCEVAddRecExpr>(RightSCEV)) { 384 std::swap(LeftSCEV, RightSCEV); 385 Pred = ICmpInst::getSwappedPredicate(Pred); 386 } else 387 return; 388 } 389 390 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 391 392 // Avoid huge SCEV computations in the loop below, make sure we only 393 // consider AddRecs of the loop we are trying to peel. 394 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 395 return; 396 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 397 !SE.getMonotonicPredicateType(LeftAR, Pred)) 398 return; 399 400 // Check if extending the current DesiredPeelCount lets us evaluate Pred 401 // or !Pred in the loop body statically. 402 unsigned NewPeelCount = DesiredPeelCount; 403 404 const SCEV *IterVal = LeftAR->evaluateAtIteration( 405 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 406 407 // If the original condition is not known, get the negated predicate 408 // (which holds on the else branch) and check if it is known. This allows 409 // us to peel of iterations that make the original condition false. 410 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 411 Pred = ICmpInst::getInversePredicate(Pred); 412 413 const SCEV *Step = LeftAR->getStepRecurrence(SE); 414 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 415 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 416 &NewPeelCount]() { 417 IterVal = NextIterVal; 418 NextIterVal = SE.getAddExpr(IterVal, Step); 419 NewPeelCount++; 420 }; 421 422 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 423 return NewPeelCount < MaxPeelCount; 424 }; 425 426 while (CanPeelOneMoreIteration() && 427 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 428 PeelOneMoreIteration(); 429 430 // With *that* peel count, does the predicate !Pred become known in the 431 // first iteration of the loop body after peeling? 432 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 433 RightSCEV)) 434 return; // If not, give up. 435 436 // However, for equality comparisons, that isn't always sufficient to 437 // eliminate the comparsion in loop body, we may need to peel one more 438 // iteration. See if that makes !Pred become unknown again. 439 if (ICmpInst::isEquality(Pred) && 440 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 441 RightSCEV) && 442 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 443 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 444 if (!CanPeelOneMoreIteration()) 445 return; // Need to peel one more iteration, but can't. Give up. 446 PeelOneMoreIteration(); // Great! 447 } 448 449 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 450 }; 451 452 for (BasicBlock *BB : L.blocks()) { 453 for (Instruction &I : *BB) { 454 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) 455 ComputePeelCount(SI->getCondition(), 0); 456 } 457 458 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 459 if (!BI || BI->isUnconditional()) 460 continue; 461 462 // Ignore loop exit condition. 463 if (L.getLoopLatch() == BB) 464 continue; 465 466 ComputePeelCount(BI->getCondition(), 0); 467 } 468 469 return DesiredPeelCount; 470 } 471 472 /// This "heuristic" exactly matches implicit behavior which used to exist 473 /// inside getLoopEstimatedTripCount. It was added here to keep an 474 /// improvement inside that API from causing peeling to become more aggressive. 475 /// This should probably be removed. 476 static bool violatesLegacyMultiExitLoopCheck(Loop *L) { 477 BasicBlock *Latch = L->getLoopLatch(); 478 if (!Latch) 479 return true; 480 481 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 482 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 483 return true; 484 485 assert((LatchBR->getSuccessor(0) == L->getHeader() || 486 LatchBR->getSuccessor(1) == L->getHeader()) && 487 "At least one edge out of the latch must go to the header"); 488 489 SmallVector<BasicBlock *, 4> ExitBlocks; 490 L->getUniqueNonLatchExitBlocks(ExitBlocks); 491 return any_of(ExitBlocks, [](const BasicBlock *EB) { 492 return !EB->getTerminatingDeoptimizeCall(); 493 }); 494 } 495 496 497 // Return the number of iterations we want to peel off. 498 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 499 TargetTransformInfo::PeelingPreferences &PP, 500 unsigned TripCount, DominatorTree &DT, 501 ScalarEvolution &SE, AssumptionCache *AC, 502 unsigned Threshold) { 503 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 504 // Save the PP.PeelCount value set by the target in 505 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 506 unsigned TargetPeelCount = PP.PeelCount; 507 PP.PeelCount = 0; 508 if (!canPeel(L)) 509 return; 510 511 // Only try to peel innermost loops by default. 512 // The constraint can be relaxed by the target in TTI.getPeelingPreferences 513 // or by the flag -unroll-allow-loop-nests-peeling. 514 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 515 return; 516 517 // If the user provided a peel count, use that. 518 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 519 if (UserPeelCount) { 520 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 521 << " iterations.\n"); 522 PP.PeelCount = UnrollForcePeelCount; 523 PP.PeelProfiledIterations = true; 524 return; 525 } 526 527 // Skip peeling if it's disabled. 528 if (!PP.AllowPeeling) 529 return; 530 531 // Check that we can peel at least one iteration. 532 if (2 * LoopSize > Threshold) 533 return; 534 535 unsigned AlreadyPeeled = 0; 536 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 537 AlreadyPeeled = *Peeled; 538 // Stop if we already peeled off the maximum number of iterations. 539 if (AlreadyPeeled >= UnrollPeelMaxCount) 540 return; 541 542 // Pay respect to limitations implied by loop size and the max peel count. 543 unsigned MaxPeelCount = UnrollPeelMaxCount; 544 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 545 546 // Start the max computation with the PP.PeelCount value set by the target 547 // in TTI.getPeelingPreferences or by the flag -unroll-peel-count. 548 unsigned DesiredPeelCount = TargetPeelCount; 549 550 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 551 // iterations of the loop. For this we compute the number for iterations after 552 // which every Phi is guaranteed to become an invariant, and try to peel the 553 // maximum number of iterations among these values, thus turning all those 554 // Phis into invariants. 555 if (MaxPeelCount > DesiredPeelCount) { 556 // Check how many iterations are useful for resolving Phis 557 auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel(); 558 if (NumPeels) 559 DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels); 560 } 561 562 DesiredPeelCount = std::max(DesiredPeelCount, 563 countToEliminateCompares(*L, MaxPeelCount, SE)); 564 565 if (DesiredPeelCount == 0) 566 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC); 567 568 if (DesiredPeelCount > 0) { 569 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 570 // Consider max peel count limitation. 571 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 572 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 573 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 574 << " iteration(s) to turn" 575 << " some Phis into invariants.\n"); 576 PP.PeelCount = DesiredPeelCount; 577 PP.PeelProfiledIterations = false; 578 return; 579 } 580 } 581 582 // Bail if we know the statically calculated trip count. 583 // In this case we rather prefer partial unrolling. 584 if (TripCount) 585 return; 586 587 // Do not apply profile base peeling if it is disabled. 588 if (!PP.PeelProfiledIterations) 589 return; 590 // If we don't know the trip count, but have reason to believe the average 591 // trip count is low, peeling should be beneficial, since we will usually 592 // hit the peeled section. 593 // We only do this in the presence of profile information, since otherwise 594 // our estimates of the trip count are not reliable enough. 595 if (L->getHeader()->getParent()->hasProfileData()) { 596 if (violatesLegacyMultiExitLoopCheck(L)) 597 return; 598 std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L); 599 if (!EstimatedTripCount) 600 return; 601 602 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " 603 << *EstimatedTripCount << "\n"); 604 605 if (*EstimatedTripCount) { 606 if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) { 607 unsigned PeelCount = *EstimatedTripCount; 608 LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n"); 609 PP.PeelCount = PeelCount; 610 return; 611 } 612 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 613 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 614 LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n"); 615 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 616 LLVM_DEBUG(dbgs() << "Max peel count by cost: " 617 << (Threshold / LoopSize - 1) << "\n"); 618 } 619 } 620 } 621 622 struct WeightInfo { 623 // Weights for current iteration. 624 SmallVector<uint32_t> Weights; 625 // Weights to subtract after each iteration. 626 const SmallVector<uint32_t> SubWeights; 627 }; 628 629 /// Update the branch weights of an exiting block of a peeled-off loop 630 /// iteration. 631 /// Let F is a weight of the edge to continue (fallthrough) into the loop. 632 /// Let E is a weight of the edge to an exit. 633 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 634 /// go to exit. 635 /// Then, Estimated ExitCount = F / E. 636 /// For I-th (counting from 0) peeled off iteration we set the weights for 637 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution, 638 /// The probability to go to exit 1/(EC-I) increases. At the same time 639 /// the estimated exit count in the remainder loop reduces by I. 640 /// To avoid dealing with division rounding we can just multiple both part 641 /// of weights to E and use weight as (F - I * E, E). 642 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) { 643 setBranchWeights(*Term, Info.Weights); 644 for (auto [Idx, SubWeight] : enumerate(Info.SubWeights)) 645 if (SubWeight != 0) 646 // Don't set the probability of taking the edge from latch to loop header 647 // to less than 1:1 ratio (meaning Weight should not be lower than 648 // SubWeight), as this could significantly reduce the loop's hotness, 649 // which would be incorrect in the case of underestimating the trip count. 650 Info.Weights[Idx] = 651 Info.Weights[Idx] > SubWeight 652 ? std::max(Info.Weights[Idx] - SubWeight, SubWeight) 653 : SubWeight; 654 } 655 656 /// Initialize the weights for all exiting blocks. 657 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos, 658 Loop *L) { 659 SmallVector<BasicBlock *> ExitingBlocks; 660 L->getExitingBlocks(ExitingBlocks); 661 for (BasicBlock *ExitingBlock : ExitingBlocks) { 662 Instruction *Term = ExitingBlock->getTerminator(); 663 SmallVector<uint32_t> Weights; 664 if (!extractBranchWeights(*Term, Weights)) 665 continue; 666 667 // See the comment on updateBranchWeights() for an explanation of what we 668 // do here. 669 uint32_t FallThroughWeights = 0; 670 uint32_t ExitWeights = 0; 671 for (auto [Succ, Weight] : zip(successors(Term), Weights)) { 672 if (L->contains(Succ)) 673 FallThroughWeights += Weight; 674 else 675 ExitWeights += Weight; 676 } 677 678 // Don't try to update weights for degenerate case. 679 if (FallThroughWeights == 0) 680 continue; 681 682 SmallVector<uint32_t> SubWeights; 683 for (auto [Succ, Weight] : zip(successors(Term), Weights)) { 684 if (!L->contains(Succ)) { 685 // Exit weights stay the same. 686 SubWeights.push_back(0); 687 continue; 688 } 689 690 // Subtract exit weights on each iteration, distributed across all 691 // fallthrough edges. 692 double W = (double)Weight / (double)FallThroughWeights; 693 SubWeights.push_back((uint32_t)(ExitWeights * W)); 694 } 695 696 WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}}); 697 } 698 } 699 700 /// Clones the body of the loop L, putting it between \p InsertTop and \p 701 /// InsertBot. 702 /// \param IterNumber The serial number of the iteration currently being 703 /// peeled off. 704 /// \param ExitEdges The exit edges of the original loop. 705 /// \param[out] NewBlocks A list of the blocks in the newly created clone 706 /// \param[out] VMap The value map between the loop and the new clone. 707 /// \param LoopBlocks A helper for DFS-traversal of the loop. 708 /// \param LVMap A value-map that maps instructions from the original loop to 709 /// instructions in the last peeled-off iteration. 710 static void cloneLoopBlocks( 711 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 712 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 713 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 714 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 715 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes, 716 ScalarEvolution &SE) { 717 BasicBlock *Header = L->getHeader(); 718 BasicBlock *Latch = L->getLoopLatch(); 719 BasicBlock *PreHeader = L->getLoopPreheader(); 720 721 Function *F = Header->getParent(); 722 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 723 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 724 Loop *ParentLoop = L->getParentLoop(); 725 726 // For each block in the original loop, create a new copy, 727 // and update the value map with the newly created values. 728 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 729 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 730 NewBlocks.push_back(NewBB); 731 732 // If an original block is an immediate child of the loop L, its copy 733 // is a child of a ParentLoop after peeling. If a block is a child of 734 // a nested loop, it is handled in the cloneLoop() call below. 735 if (ParentLoop && LI->getLoopFor(*BB) == L) 736 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 737 738 VMap[*BB] = NewBB; 739 740 // If dominator tree is available, insert nodes to represent cloned blocks. 741 if (DT) { 742 if (Header == *BB) 743 DT->addNewBlock(NewBB, InsertTop); 744 else { 745 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 746 // VMap must contain entry for IDom, as the iteration order is RPO. 747 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 748 } 749 } 750 } 751 752 { 753 // Identify what other metadata depends on the cloned version. After 754 // cloning, replace the metadata with the corrected version for both 755 // memory instructions and noalias intrinsics. 756 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); 757 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 758 Header->getContext(), Ext); 759 } 760 761 // Recursively create the new Loop objects for nested loops, if any, 762 // to preserve LoopInfo. 763 for (Loop *ChildLoop : *L) { 764 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 765 } 766 767 // Hook-up the control flow for the newly inserted blocks. 768 // The new header is hooked up directly to the "top", which is either 769 // the original loop preheader (for the first iteration) or the previous 770 // iteration's exiting block (for every other iteration) 771 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 772 773 // Similarly, for the latch: 774 // The original exiting edge is still hooked up to the loop exit. 775 // The backedge now goes to the "bottom", which is either the loop's real 776 // header (for the last peeled iteration) or the copied header of the next 777 // iteration (for every other iteration) 778 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 779 auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator()); 780 for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx) 781 if (LatchTerm->getSuccessor(idx) == Header) { 782 LatchTerm->setSuccessor(idx, InsertBot); 783 break; 784 } 785 if (DT) 786 DT->changeImmediateDominator(InsertBot, NewLatch); 787 788 // The new copy of the loop body starts with a bunch of PHI nodes 789 // that pick an incoming value from either the preheader, or the previous 790 // loop iteration. Since this copy is no longer part of the loop, we 791 // resolve this statically: 792 // For the first iteration, we use the value from the preheader directly. 793 // For any other iteration, we replace the phi with the value generated by 794 // the immediately preceding clone of the loop body (which represents 795 // the previous iteration). 796 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 797 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 798 if (IterNumber == 0) { 799 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 800 } else { 801 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 802 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 803 if (LatchInst && L->contains(LatchInst)) 804 VMap[&*I] = LVMap[LatchInst]; 805 else 806 VMap[&*I] = LatchVal; 807 } 808 NewPHI->eraseFromParent(); 809 } 810 811 // Fix up the outgoing values - we need to add a value for the iteration 812 // we've just created. Note that this must happen *after* the incoming 813 // values are adjusted, since the value going out of the latch may also be 814 // a value coming into the header. 815 for (auto Edge : ExitEdges) 816 for (PHINode &PHI : Edge.second->phis()) { 817 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 818 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 819 if (LatchInst && L->contains(LatchInst)) 820 LatchVal = VMap[LatchVal]; 821 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 822 SE.forgetValue(&PHI); 823 } 824 825 // LastValueMap is updated with the values for the current loop 826 // which are used the next time this function is called. 827 for (auto KV : VMap) 828 LVMap[KV.first] = KV.second; 829 } 830 831 TargetTransformInfo::PeelingPreferences 832 llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, 833 const TargetTransformInfo &TTI, 834 std::optional<bool> UserAllowPeeling, 835 std::optional<bool> UserAllowProfileBasedPeeling, 836 bool UnrollingSpecficValues) { 837 TargetTransformInfo::PeelingPreferences PP; 838 839 // Set the default values. 840 PP.PeelCount = 0; 841 PP.AllowPeeling = true; 842 PP.AllowLoopNestsPeeling = false; 843 PP.PeelProfiledIterations = true; 844 845 // Get the target specifc values. 846 TTI.getPeelingPreferences(L, SE, PP); 847 848 // User specified values using cl::opt. 849 if (UnrollingSpecficValues) { 850 if (UnrollPeelCount.getNumOccurrences() > 0) 851 PP.PeelCount = UnrollPeelCount; 852 if (UnrollAllowPeeling.getNumOccurrences() > 0) 853 PP.AllowPeeling = UnrollAllowPeeling; 854 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 855 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 856 } 857 858 // User specifed values provided by argument. 859 if (UserAllowPeeling) 860 PP.AllowPeeling = *UserAllowPeeling; 861 if (UserAllowProfileBasedPeeling) 862 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 863 864 return PP; 865 } 866 867 /// Peel off the first \p PeelCount iterations of loop \p L. 868 /// 869 /// Note that this does not peel them off as a single straight-line block. 870 /// Rather, each iteration is peeled off separately, and needs to check the 871 /// exit condition. 872 /// For loops that dynamically execute \p PeelCount iterations or less 873 /// this provides a benefit, since the peeled off iterations, which account 874 /// for the bulk of dynamic execution, can be further simplified by scalar 875 /// optimizations. 876 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 877 ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, 878 bool PreserveLCSSA, ValueToValueMapTy &LVMap) { 879 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 880 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 881 882 LoopBlocksDFS LoopBlocks(L); 883 LoopBlocks.perform(LI); 884 885 BasicBlock *Header = L->getHeader(); 886 BasicBlock *PreHeader = L->getLoopPreheader(); 887 BasicBlock *Latch = L->getLoopLatch(); 888 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 889 L->getExitEdges(ExitEdges); 890 891 // Remember dominators of blocks we might reach through exits to change them 892 // later. Immediate dominator of such block might change, because we add more 893 // routes which can lead to the exit: we can reach it from the peeled 894 // iterations too. 895 DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom; 896 for (auto *BB : L->blocks()) { 897 auto *BBDomNode = DT.getNode(BB); 898 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 899 for (auto *ChildDomNode : BBDomNode->children()) { 900 auto *ChildBB = ChildDomNode->getBlock(); 901 if (!L->contains(ChildBB)) 902 ChildrenToUpdate.push_back(ChildBB); 903 } 904 // The new idom of the block will be the nearest common dominator 905 // of all copies of the previous idom. This is equivalent to the 906 // nearest common dominator of the previous idom and the first latch, 907 // which dominates all copies of the previous idom. 908 BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch); 909 for (auto *ChildBB : ChildrenToUpdate) 910 NonLoopBlocksIDom[ChildBB] = NewIDom; 911 } 912 913 Function *F = Header->getParent(); 914 915 // Set up all the necessary basic blocks. It is convenient to split the 916 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 917 // body, and a new preheader for the "real" loop. 918 919 // Peeling the first iteration transforms. 920 // 921 // PreHeader: 922 // ... 923 // Header: 924 // LoopBody 925 // If (cond) goto Header 926 // Exit: 927 // 928 // into 929 // 930 // InsertTop: 931 // LoopBody 932 // If (!cond) goto Exit 933 // InsertBot: 934 // NewPreHeader: 935 // ... 936 // Header: 937 // LoopBody 938 // If (cond) goto Header 939 // Exit: 940 // 941 // Each following iteration will split the current bottom anchor in two, 942 // and put the new copy of the loop body between these two blocks. That is, 943 // after peeling another iteration from the example above, we'll split 944 // InsertBot, and get: 945 // 946 // InsertTop: 947 // LoopBody 948 // If (!cond) goto Exit 949 // InsertBot: 950 // LoopBody 951 // If (!cond) goto Exit 952 // InsertBot.next: 953 // NewPreHeader: 954 // ... 955 // Header: 956 // LoopBody 957 // If (cond) goto Header 958 // Exit: 959 960 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI); 961 BasicBlock *InsertBot = 962 SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI); 963 BasicBlock *NewPreHeader = 964 SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 965 966 InsertTop->setName(Header->getName() + ".peel.begin"); 967 InsertBot->setName(Header->getName() + ".peel.next"); 968 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 969 970 Instruction *LatchTerm = 971 cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator()); 972 973 // If we have branch weight information, we'll want to update it for the 974 // newly created branches. 975 DenseMap<Instruction *, WeightInfo> Weights; 976 initBranchWeights(Weights, L); 977 978 // Identify what noalias metadata is inside the loop: if it is inside the 979 // loop, the associated metadata must be cloned for each iteration. 980 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 981 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 982 983 // For each peeled-off iteration, make a copy of the loop. 984 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 985 SmallVector<BasicBlock *, 8> NewBlocks; 986 ValueToValueMapTy VMap; 987 988 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 989 LoopBlocks, VMap, LVMap, &DT, LI, 990 LoopLocalNoAliasDeclScopes, *SE); 991 992 // Remap to use values from the current iteration instead of the 993 // previous one. 994 remapInstructionsInBlocks(NewBlocks, VMap); 995 996 // Update IDoms of the blocks reachable through exits. 997 if (Iter == 0) 998 for (auto BBIDom : NonLoopBlocksIDom) 999 DT.changeImmediateDominator(BBIDom.first, 1000 cast<BasicBlock>(LVMap[BBIDom.second])); 1001 #ifdef EXPENSIVE_CHECKS 1002 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1003 #endif 1004 1005 for (auto &[Term, Info] : Weights) { 1006 auto *TermCopy = cast<Instruction>(VMap[Term]); 1007 updateBranchWeights(TermCopy, Info); 1008 } 1009 1010 // Remove Loop metadata from the latch branch instruction 1011 // because it is not the Loop's latch branch anymore. 1012 auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]); 1013 LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr); 1014 1015 InsertTop = InsertBot; 1016 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 1017 InsertBot->setName(Header->getName() + ".peel.next"); 1018 1019 F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(), 1020 F->end()); 1021 } 1022 1023 // Now adjust the phi nodes in the loop header to get their initial values 1024 // from the last peeled-off iteration instead of the preheader. 1025 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 1026 PHINode *PHI = cast<PHINode>(I); 1027 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 1028 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 1029 if (LatchInst && L->contains(LatchInst)) 1030 NewVal = LVMap[LatchInst]; 1031 1032 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 1033 } 1034 1035 for (const auto &[Term, Info] : Weights) { 1036 setBranchWeights(*Term, Info.Weights); 1037 } 1038 1039 // Update Metadata for count of peeled off iterations. 1040 unsigned AlreadyPeeled = 0; 1041 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 1042 AlreadyPeeled = *Peeled; 1043 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 1044 1045 if (Loop *ParentLoop = L->getParentLoop()) 1046 L = ParentLoop; 1047 1048 // We modified the loop, update SE. 1049 SE->forgetTopmostLoop(L); 1050 SE->forgetBlockAndLoopDispositions(); 1051 1052 #ifdef EXPENSIVE_CHECKS 1053 // Finally DomtTree must be correct. 1054 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1055 #endif 1056 1057 // FIXME: Incrementally update loop-simplify 1058 simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA); 1059 1060 NumPeeled++; 1061 1062 return true; 1063 } 1064