1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Optional.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/LoopIterator.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopSimplify.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/UnrollLoop.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 #include <algorithm> 44 #include <cassert> 45 #include <cstdint> 46 #include <limits> 47 48 using namespace llvm; 49 using namespace llvm::PatternMatch; 50 51 #define DEBUG_TYPE "loop-peel" 52 53 STATISTIC(NumPeeled, "Number of loops peeled"); 54 55 static cl::opt<unsigned> UnrollPeelCount( 56 "unroll-peel-count", cl::Hidden, 57 cl::desc("Set the unroll peeling count, for testing purposes")); 58 59 static cl::opt<bool> 60 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 61 cl::desc("Allows loops to be peeled when the dynamic " 62 "trip count is known to be low.")); 63 64 static cl::opt<bool> 65 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 66 cl::init(false), cl::Hidden, 67 cl::desc("Allows loop nests to be peeled.")); 68 69 static cl::opt<unsigned> UnrollPeelMaxCount( 70 "unroll-peel-max-count", cl::init(7), cl::Hidden, 71 cl::desc("Max average trip count which will cause loop peeling.")); 72 73 static cl::opt<unsigned> UnrollForcePeelCount( 74 "unroll-force-peel-count", cl::init(0), cl::Hidden, 75 cl::desc("Force a peel count regardless of profiling information.")); 76 77 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 78 79 // Check whether we are capable of peeling this loop. 80 bool llvm::canPeel(Loop *L) { 81 // Make sure the loop is in simplified form 82 if (!L->isLoopSimplifyForm()) 83 return false; 84 85 // Don't try to peel loops where the latch is not the exiting block. 86 // This can be an indication of two different things: 87 // 1) The loop is not rotated. 88 // 2) The loop contains irreducible control flow that involves the latch. 89 const BasicBlock *Latch = L->getLoopLatch(); 90 if (!L->isLoopExiting(Latch)) 91 return false; 92 93 // Peeling is only supported if the latch is a branch. 94 if (!isa<BranchInst>(Latch->getTerminator())) 95 return false; 96 97 SmallVector<BasicBlock *, 4> Exits; 98 L->getUniqueNonLatchExitBlocks(Exits); 99 // The latch must either be the only exiting block or all non-latch exit 100 // blocks have either a deopt or unreachable terminator or compose a chain of 101 // blocks where the last one is either deopt or unreachable terminated. Both 102 // deopt and unreachable terminators are a strong indication they are not 103 // taken. Note that this is a profitability check, not a legality check. Also 104 // note that LoopPeeling currently can only update the branch weights of latch 105 // blocks and branch weights to blocks with deopt or unreachable do not need 106 // updating. 107 return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable); 108 } 109 110 // This function calculates the number of iterations after which the given Phi 111 // becomes an invariant. The pre-calculated values are memorized in the map. The 112 // function (shortcut is I) is calculated according to the following definition: 113 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 114 // If %y is a loop invariant, then I(%x) = 1. 115 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 116 // Otherwise, I(%x) is infinite. 117 // TODO: Actually if %y is an expression that depends only on Phi %z and some 118 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 119 // looks like: 120 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 121 // %y = phi(0, 5), 122 // %a = %y + 1. 123 static Optional<unsigned> calculateIterationsToInvariance( 124 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 125 SmallDenseMap<PHINode *, Optional<unsigned> > &IterationsToInvariance) { 126 assert(Phi->getParent() == L->getHeader() && 127 "Non-loop Phi should not be checked for turning into invariant."); 128 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 129 // If we already know the answer, take it from the map. 130 auto I = IterationsToInvariance.find(Phi); 131 if (I != IterationsToInvariance.end()) 132 return I->second; 133 134 // Otherwise we need to analyze the input from the back edge. 135 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 136 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 137 // cycles can never stop on an invariant. 138 IterationsToInvariance[Phi] = None; 139 Optional<unsigned> ToInvariance = None; 140 141 if (L->isLoopInvariant(Input)) 142 ToInvariance = 1u; 143 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 144 // Only consider Phis in header block. 145 if (IncPhi->getParent() != L->getHeader()) 146 return None; 147 // If the input becomes an invariant after X iterations, then our Phi 148 // becomes an invariant after X + 1 iterations. 149 auto InputToInvariance = calculateIterationsToInvariance( 150 IncPhi, L, BackEdge, IterationsToInvariance); 151 if (InputToInvariance) 152 ToInvariance = *InputToInvariance + 1u; 153 } 154 155 // If we found that this Phi lies in an invariant chain, update the map. 156 if (ToInvariance) 157 IterationsToInvariance[Phi] = ToInvariance; 158 return ToInvariance; 159 } 160 161 // Try to find any invariant memory reads that will become dereferenceable in 162 // the remainder loop after peeling. The load must also be used (transitively) 163 // by an exit condition. Returns the number of iterations to peel off (at the 164 // moment either 0 or 1). 165 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, 166 DominatorTree &DT) { 167 // Skip loops with a single exiting block, because there should be no benefit 168 // for the heuristic below. 169 if (L.getExitingBlock()) 170 return 0; 171 172 // All non-latch exit blocks must have an UnreachableInst terminator. 173 // Otherwise the heuristic below may not be profitable. 174 SmallVector<BasicBlock *, 4> Exits; 175 L.getUniqueNonLatchExitBlocks(Exits); 176 if (any_of(Exits, [](const BasicBlock *BB) { 177 return !isa<UnreachableInst>(BB->getTerminator()); 178 })) 179 return 0; 180 181 // Now look for invariant loads that dominate the latch and are not known to 182 // be dereferenceable. If there are such loads and no writes, they will become 183 // dereferenceable in the loop if the first iteration is peeled off. Also 184 // collect the set of instructions controlled by such loads. Only peel if an 185 // exit condition uses (transitively) such a load. 186 BasicBlock *Header = L.getHeader(); 187 BasicBlock *Latch = L.getLoopLatch(); 188 SmallPtrSet<Value *, 8> LoadUsers; 189 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 190 for (BasicBlock *BB : L.blocks()) { 191 for (Instruction &I : *BB) { 192 if (I.mayWriteToMemory()) 193 return 0; 194 195 auto Iter = LoadUsers.find(&I); 196 if (Iter != LoadUsers.end()) { 197 for (Value *U : I.users()) 198 LoadUsers.insert(U); 199 } 200 // Do not look for reads in the header; they can already be hoisted 201 // without peeling. 202 if (BB == Header) 203 continue; 204 if (auto *LI = dyn_cast<LoadInst>(&I)) { 205 Value *Ptr = LI->getPointerOperand(); 206 if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && 207 !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, &DT)) 208 for (Value *U : I.users()) 209 LoadUsers.insert(U); 210 } 211 } 212 } 213 SmallVector<BasicBlock *> ExitingBlocks; 214 L.getExitingBlocks(ExitingBlocks); 215 if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { 216 return LoadUsers.contains(Exiting->getTerminator()); 217 })) 218 return 1; 219 return 0; 220 } 221 222 // Return the number of iterations to peel off that make conditions in the 223 // body true/false. For example, if we peel 2 iterations off the loop below, 224 // the condition i < 2 can be evaluated at compile time. 225 // for (i = 0; i < n; i++) 226 // if (i < 2) 227 // .. 228 // else 229 // .. 230 // } 231 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 232 ScalarEvolution &SE) { 233 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 234 unsigned DesiredPeelCount = 0; 235 236 for (auto *BB : L.blocks()) { 237 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 238 if (!BI || BI->isUnconditional()) 239 continue; 240 241 // Ignore loop exit condition. 242 if (L.getLoopLatch() == BB) 243 continue; 244 245 Value *Condition = BI->getCondition(); 246 Value *LeftVal, *RightVal; 247 CmpInst::Predicate Pred; 248 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 249 continue; 250 251 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 252 const SCEV *RightSCEV = SE.getSCEV(RightVal); 253 254 // Do not consider predicates that are known to be true or false 255 // independently of the loop iteration. 256 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) 257 continue; 258 259 // Check if we have a condition with one AddRec and one non AddRec 260 // expression. Normalize LeftSCEV to be the AddRec. 261 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 262 if (isa<SCEVAddRecExpr>(RightSCEV)) { 263 std::swap(LeftSCEV, RightSCEV); 264 Pred = ICmpInst::getSwappedPredicate(Pred); 265 } else 266 continue; 267 } 268 269 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 270 271 // Avoid huge SCEV computations in the loop below, make sure we only 272 // consider AddRecs of the loop we are trying to peel. 273 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 274 continue; 275 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 276 !SE.getMonotonicPredicateType(LeftAR, Pred)) 277 continue; 278 279 // Check if extending the current DesiredPeelCount lets us evaluate Pred 280 // or !Pred in the loop body statically. 281 unsigned NewPeelCount = DesiredPeelCount; 282 283 const SCEV *IterVal = LeftAR->evaluateAtIteration( 284 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 285 286 // If the original condition is not known, get the negated predicate 287 // (which holds on the else branch) and check if it is known. This allows 288 // us to peel of iterations that make the original condition false. 289 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 290 Pred = ICmpInst::getInversePredicate(Pred); 291 292 const SCEV *Step = LeftAR->getStepRecurrence(SE); 293 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 294 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 295 &NewPeelCount]() { 296 IterVal = NextIterVal; 297 NextIterVal = SE.getAddExpr(IterVal, Step); 298 NewPeelCount++; 299 }; 300 301 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 302 return NewPeelCount < MaxPeelCount; 303 }; 304 305 while (CanPeelOneMoreIteration() && 306 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 307 PeelOneMoreIteration(); 308 309 // With *that* peel count, does the predicate !Pred become known in the 310 // first iteration of the loop body after peeling? 311 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 312 RightSCEV)) 313 continue; // If not, give up. 314 315 // However, for equality comparisons, that isn't always sufficient to 316 // eliminate the comparsion in loop body, we may need to peel one more 317 // iteration. See if that makes !Pred become unknown again. 318 if (ICmpInst::isEquality(Pred) && 319 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 320 RightSCEV) && 321 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 322 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 323 if (!CanPeelOneMoreIteration()) 324 continue; // Need to peel one more iteration, but can't. Give up. 325 PeelOneMoreIteration(); // Great! 326 } 327 328 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 329 } 330 331 return DesiredPeelCount; 332 } 333 334 /// This "heuristic" exactly matches implicit behavior which used to exist 335 /// inside getLoopEstimatedTripCount. It was added here to keep an 336 /// improvement inside that API from causing peeling to become more agressive. 337 /// This should probably be removed. 338 static bool violatesLegacyMultiExitLoopCheck(Loop *L) { 339 BasicBlock *Latch = L->getLoopLatch(); 340 if (!Latch) 341 return true; 342 343 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 344 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 345 return true; 346 347 assert((LatchBR->getSuccessor(0) == L->getHeader() || 348 LatchBR->getSuccessor(1) == L->getHeader()) && 349 "At least one edge out of the latch must go to the header"); 350 351 SmallVector<BasicBlock *, 4> ExitBlocks; 352 L->getUniqueNonLatchExitBlocks(ExitBlocks); 353 return any_of(ExitBlocks, [](const BasicBlock *EB) { 354 return !EB->getTerminatingDeoptimizeCall(); 355 }); 356 } 357 358 359 // Return the number of iterations we want to peel off. 360 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 361 TargetTransformInfo::PeelingPreferences &PP, 362 unsigned TripCount, DominatorTree &DT, 363 ScalarEvolution &SE, unsigned Threshold) { 364 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 365 // Save the PP.PeelCount value set by the target in 366 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 367 unsigned TargetPeelCount = PP.PeelCount; 368 PP.PeelCount = 0; 369 if (!canPeel(L)) 370 return; 371 372 // Only try to peel innermost loops by default. 373 // The constraint can be relaxed by the target in TTI.getPeelingPreferences 374 // or by the flag -unroll-allow-loop-nests-peeling. 375 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 376 return; 377 378 // If the user provided a peel count, use that. 379 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 380 if (UserPeelCount) { 381 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 382 << " iterations.\n"); 383 PP.PeelCount = UnrollForcePeelCount; 384 PP.PeelProfiledIterations = true; 385 return; 386 } 387 388 // Skip peeling if it's disabled. 389 if (!PP.AllowPeeling) 390 return; 391 392 unsigned AlreadyPeeled = 0; 393 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 394 AlreadyPeeled = *Peeled; 395 // Stop if we already peeled off the maximum number of iterations. 396 if (AlreadyPeeled >= UnrollPeelMaxCount) 397 return; 398 399 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 400 // iterations of the loop. For this we compute the number for iterations after 401 // which every Phi is guaranteed to become an invariant, and try to peel the 402 // maximum number of iterations among these values, thus turning all those 403 // Phis into invariants. 404 // First, check that we can peel at least one iteration. 405 if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) { 406 // Store the pre-calculated values here. 407 SmallDenseMap<PHINode *, Optional<unsigned> > IterationsToInvariance; 408 // Now go through all Phis to calculate their the number of iterations they 409 // need to become invariants. 410 // Start the max computation with the PP.PeelCount value set by the target 411 // in TTI.getPeelingPreferences or by the flag -unroll-peel-count. 412 unsigned DesiredPeelCount = TargetPeelCount; 413 BasicBlock *BackEdge = L->getLoopLatch(); 414 assert(BackEdge && "Loop is not in simplified form?"); 415 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 416 PHINode *Phi = cast<PHINode>(&*BI); 417 auto ToInvariance = calculateIterationsToInvariance( 418 Phi, L, BackEdge, IterationsToInvariance); 419 if (ToInvariance) 420 DesiredPeelCount = std::max(DesiredPeelCount, *ToInvariance); 421 } 422 423 // Pay respect to limitations implied by loop size and the max peel count. 424 unsigned MaxPeelCount = UnrollPeelMaxCount; 425 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 426 427 DesiredPeelCount = std::max(DesiredPeelCount, 428 countToEliminateCompares(*L, MaxPeelCount, SE)); 429 430 if (DesiredPeelCount == 0) 431 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT); 432 433 if (DesiredPeelCount > 0) { 434 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 435 // Consider max peel count limitation. 436 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 437 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 438 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 439 << " iteration(s) to turn" 440 << " some Phis into invariants.\n"); 441 PP.PeelCount = DesiredPeelCount; 442 PP.PeelProfiledIterations = false; 443 return; 444 } 445 } 446 } 447 448 // Bail if we know the statically calculated trip count. 449 // In this case we rather prefer partial unrolling. 450 if (TripCount) 451 return; 452 453 // Do not apply profile base peeling if it is disabled. 454 if (!PP.PeelProfiledIterations) 455 return; 456 // If we don't know the trip count, but have reason to believe the average 457 // trip count is low, peeling should be beneficial, since we will usually 458 // hit the peeled section. 459 // We only do this in the presence of profile information, since otherwise 460 // our estimates of the trip count are not reliable enough. 461 if (L->getHeader()->getParent()->hasProfileData()) { 462 if (violatesLegacyMultiExitLoopCheck(L)) 463 return; 464 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); 465 if (!PeelCount) 466 return; 467 468 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount 469 << "\n"); 470 471 if (*PeelCount) { 472 if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) && 473 (LoopSize * (*PeelCount + 1) <= Threshold)) { 474 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount 475 << " iterations.\n"); 476 PP.PeelCount = *PeelCount; 477 return; 478 } 479 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); 480 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 481 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 482 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) 483 << "\n"); 484 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 485 } 486 } 487 } 488 489 /// Update the branch weights of the latch of a peeled-off loop 490 /// iteration. 491 /// This sets the branch weights for the latch of the recently peeled off loop 492 /// iteration correctly. 493 /// Let F is a weight of the edge from latch to header. 494 /// Let E is a weight of the edge from latch to exit. 495 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 496 /// go to exit. 497 /// Then, Estimated TripCount = F / E. 498 /// For I-th (counting from 0) peeled off iteration we set the the weights for 499 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution, 500 /// The probability to go to exit 1/(TC-I) increases. At the same time 501 /// the estimated trip count of remaining loop reduces by I. 502 /// To avoid dealing with division rounding we can just multiple both part 503 /// of weights to E and use weight as (F - I * E, E). 504 /// 505 /// \param Header The copy of the header block that belongs to next iteration. 506 /// \param LatchBR The copy of the latch branch that belongs to this iteration. 507 /// \param[in,out] FallThroughWeight The weight of the edge from latch to 508 /// header before peeling (in) and after peeled off one iteration (out). 509 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 510 uint64_t ExitWeight, 511 uint64_t &FallThroughWeight) { 512 // FallThroughWeight is 0 means that there is no branch weights on original 513 // latch block or estimated trip count is zero. 514 if (!FallThroughWeight) 515 return; 516 517 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 518 MDBuilder MDB(LatchBR->getContext()); 519 MDNode *WeightNode = 520 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 521 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 522 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 523 FallThroughWeight = 524 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1; 525 } 526 527 /// Initialize the weights. 528 /// 529 /// \param Header The header block. 530 /// \param LatchBR The latch branch. 531 /// \param[out] ExitWeight The weight of the edge from Latch to Exit. 532 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header. 533 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 534 uint64_t &ExitWeight, 535 uint64_t &FallThroughWeight) { 536 uint64_t TrueWeight, FalseWeight; 537 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 538 return; 539 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 540 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; 541 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight; 542 } 543 544 /// Update the weights of original Latch block after peeling off all iterations. 545 /// 546 /// \param Header The header block. 547 /// \param LatchBR The latch branch. 548 /// \param ExitWeight The weight of the edge from Latch to Exit. 549 /// \param FallThroughWeight The weight of the edge from Latch to Header. 550 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 551 uint64_t ExitWeight, 552 uint64_t FallThroughWeight) { 553 // FallThroughWeight is 0 means that there is no branch weights on original 554 // latch block or estimated trip count is zero. 555 if (!FallThroughWeight) 556 return; 557 558 // Sets the branch weights on the loop exit. 559 MDBuilder MDB(LatchBR->getContext()); 560 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 561 MDNode *WeightNode = 562 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 563 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 564 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 565 } 566 567 /// Clones the body of the loop L, putting it between \p InsertTop and \p 568 /// InsertBot. 569 /// \param IterNumber The serial number of the iteration currently being 570 /// peeled off. 571 /// \param ExitEdges The exit edges of the original loop. 572 /// \param[out] NewBlocks A list of the blocks in the newly created clone 573 /// \param[out] VMap The value map between the loop and the new clone. 574 /// \param LoopBlocks A helper for DFS-traversal of the loop. 575 /// \param LVMap A value-map that maps instructions from the original loop to 576 /// instructions in the last peeled-off iteration. 577 static void cloneLoopBlocks( 578 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 579 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 580 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 581 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 582 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) { 583 BasicBlock *Header = L->getHeader(); 584 BasicBlock *Latch = L->getLoopLatch(); 585 BasicBlock *PreHeader = L->getLoopPreheader(); 586 587 Function *F = Header->getParent(); 588 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 589 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 590 Loop *ParentLoop = L->getParentLoop(); 591 592 // For each block in the original loop, create a new copy, 593 // and update the value map with the newly created values. 594 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 595 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 596 NewBlocks.push_back(NewBB); 597 598 // If an original block is an immediate child of the loop L, its copy 599 // is a child of a ParentLoop after peeling. If a block is a child of 600 // a nested loop, it is handled in the cloneLoop() call below. 601 if (ParentLoop && LI->getLoopFor(*BB) == L) 602 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 603 604 VMap[*BB] = NewBB; 605 606 // If dominator tree is available, insert nodes to represent cloned blocks. 607 if (DT) { 608 if (Header == *BB) 609 DT->addNewBlock(NewBB, InsertTop); 610 else { 611 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 612 // VMap must contain entry for IDom, as the iteration order is RPO. 613 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 614 } 615 } 616 } 617 618 { 619 // Identify what other metadata depends on the cloned version. After 620 // cloning, replace the metadata with the corrected version for both 621 // memory instructions and noalias intrinsics. 622 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); 623 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 624 Header->getContext(), Ext); 625 } 626 627 // Recursively create the new Loop objects for nested loops, if any, 628 // to preserve LoopInfo. 629 for (Loop *ChildLoop : *L) { 630 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 631 } 632 633 // Hook-up the control flow for the newly inserted blocks. 634 // The new header is hooked up directly to the "top", which is either 635 // the original loop preheader (for the first iteration) or the previous 636 // iteration's exiting block (for every other iteration) 637 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 638 639 // Similarly, for the latch: 640 // The original exiting edge is still hooked up to the loop exit. 641 // The backedge now goes to the "bottom", which is either the loop's real 642 // header (for the last peeled iteration) or the copied header of the next 643 // iteration (for every other iteration) 644 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 645 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); 646 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) 647 if (LatchBR->getSuccessor(idx) == Header) { 648 LatchBR->setSuccessor(idx, InsertBot); 649 break; 650 } 651 if (DT) 652 DT->changeImmediateDominator(InsertBot, NewLatch); 653 654 // The new copy of the loop body starts with a bunch of PHI nodes 655 // that pick an incoming value from either the preheader, or the previous 656 // loop iteration. Since this copy is no longer part of the loop, we 657 // resolve this statically: 658 // For the first iteration, we use the value from the preheader directly. 659 // For any other iteration, we replace the phi with the value generated by 660 // the immediately preceding clone of the loop body (which represents 661 // the previous iteration). 662 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 663 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 664 if (IterNumber == 0) { 665 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 666 } else { 667 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 668 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 669 if (LatchInst && L->contains(LatchInst)) 670 VMap[&*I] = LVMap[LatchInst]; 671 else 672 VMap[&*I] = LatchVal; 673 } 674 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 675 } 676 677 // Fix up the outgoing values - we need to add a value for the iteration 678 // we've just created. Note that this must happen *after* the incoming 679 // values are adjusted, since the value going out of the latch may also be 680 // a value coming into the header. 681 for (auto Edge : ExitEdges) 682 for (PHINode &PHI : Edge.second->phis()) { 683 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 684 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 685 if (LatchInst && L->contains(LatchInst)) 686 LatchVal = VMap[LatchVal]; 687 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 688 } 689 690 // LastValueMap is updated with the values for the current loop 691 // which are used the next time this function is called. 692 for (auto KV : VMap) 693 LVMap[KV.first] = KV.second; 694 } 695 696 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences( 697 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 698 Optional<bool> UserAllowPeeling, 699 Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) { 700 TargetTransformInfo::PeelingPreferences PP; 701 702 // Set the default values. 703 PP.PeelCount = 0; 704 PP.AllowPeeling = true; 705 PP.AllowLoopNestsPeeling = false; 706 PP.PeelProfiledIterations = true; 707 708 // Get the target specifc values. 709 TTI.getPeelingPreferences(L, SE, PP); 710 711 // User specified values using cl::opt. 712 if (UnrollingSpecficValues) { 713 if (UnrollPeelCount.getNumOccurrences() > 0) 714 PP.PeelCount = UnrollPeelCount; 715 if (UnrollAllowPeeling.getNumOccurrences() > 0) 716 PP.AllowPeeling = UnrollAllowPeeling; 717 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 718 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 719 } 720 721 // User specifed values provided by argument. 722 if (UserAllowPeeling.hasValue()) 723 PP.AllowPeeling = *UserAllowPeeling; 724 if (UserAllowProfileBasedPeeling.hasValue()) 725 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 726 727 return PP; 728 } 729 730 /// Peel off the first \p PeelCount iterations of loop \p L. 731 /// 732 /// Note that this does not peel them off as a single straight-line block. 733 /// Rather, each iteration is peeled off separately, and needs to check the 734 /// exit condition. 735 /// For loops that dynamically execute \p PeelCount iterations or less 736 /// this provides a benefit, since the peeled off iterations, which account 737 /// for the bulk of dynamic execution, can be further simplified by scalar 738 /// optimizations. 739 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 740 ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, 741 bool PreserveLCSSA) { 742 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 743 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 744 745 LoopBlocksDFS LoopBlocks(L); 746 LoopBlocks.perform(LI); 747 748 BasicBlock *Header = L->getHeader(); 749 BasicBlock *PreHeader = L->getLoopPreheader(); 750 BasicBlock *Latch = L->getLoopLatch(); 751 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 752 L->getExitEdges(ExitEdges); 753 754 // Remember dominators of blocks we might reach through exits to change them 755 // later. Immediate dominator of such block might change, because we add more 756 // routes which can lead to the exit: we can reach it from the peeled 757 // iterations too. 758 DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom; 759 for (auto *BB : L->blocks()) { 760 auto *BBDomNode = DT.getNode(BB); 761 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 762 for (auto *ChildDomNode : BBDomNode->children()) { 763 auto *ChildBB = ChildDomNode->getBlock(); 764 if (!L->contains(ChildBB)) 765 ChildrenToUpdate.push_back(ChildBB); 766 } 767 // The new idom of the block will be the nearest common dominator 768 // of all copies of the previous idom. This is equivalent to the 769 // nearest common dominator of the previous idom and the first latch, 770 // which dominates all copies of the previous idom. 771 BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch); 772 for (auto *ChildBB : ChildrenToUpdate) 773 NonLoopBlocksIDom[ChildBB] = NewIDom; 774 } 775 776 Function *F = Header->getParent(); 777 778 // Set up all the necessary basic blocks. It is convenient to split the 779 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 780 // body, and a new preheader for the "real" loop. 781 782 // Peeling the first iteration transforms. 783 // 784 // PreHeader: 785 // ... 786 // Header: 787 // LoopBody 788 // If (cond) goto Header 789 // Exit: 790 // 791 // into 792 // 793 // InsertTop: 794 // LoopBody 795 // If (!cond) goto Exit 796 // InsertBot: 797 // NewPreHeader: 798 // ... 799 // Header: 800 // LoopBody 801 // If (cond) goto Header 802 // Exit: 803 // 804 // Each following iteration will split the current bottom anchor in two, 805 // and put the new copy of the loop body between these two blocks. That is, 806 // after peeling another iteration from the example above, we'll split 807 // InsertBot, and get: 808 // 809 // InsertTop: 810 // LoopBody 811 // If (!cond) goto Exit 812 // InsertBot: 813 // LoopBody 814 // If (!cond) goto Exit 815 // InsertBot.next: 816 // NewPreHeader: 817 // ... 818 // Header: 819 // LoopBody 820 // If (cond) goto Header 821 // Exit: 822 823 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI); 824 BasicBlock *InsertBot = 825 SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI); 826 BasicBlock *NewPreHeader = 827 SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 828 829 InsertTop->setName(Header->getName() + ".peel.begin"); 830 InsertBot->setName(Header->getName() + ".peel.next"); 831 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 832 833 ValueToValueMapTy LVMap; 834 835 // If we have branch weight information, we'll want to update it for the 836 // newly created branches. 837 BranchInst *LatchBR = 838 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); 839 uint64_t ExitWeight = 0, FallThroughWeight = 0; 840 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 841 842 // Identify what noalias metadata is inside the loop: if it is inside the 843 // loop, the associated metadata must be cloned for each iteration. 844 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 845 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 846 847 // For each peeled-off iteration, make a copy of the loop. 848 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 849 SmallVector<BasicBlock *, 8> NewBlocks; 850 ValueToValueMapTy VMap; 851 852 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 853 LoopBlocks, VMap, LVMap, &DT, LI, 854 LoopLocalNoAliasDeclScopes); 855 856 // Remap to use values from the current iteration instead of the 857 // previous one. 858 remapInstructionsInBlocks(NewBlocks, VMap); 859 860 // Update IDoms of the blocks reachable through exits. 861 if (Iter == 0) 862 for (auto BBIDom : NonLoopBlocksIDom) 863 DT.changeImmediateDominator(BBIDom.first, 864 cast<BasicBlock>(LVMap[BBIDom.second])); 865 #ifdef EXPENSIVE_CHECKS 866 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 867 #endif 868 869 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); 870 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight); 871 // Remove Loop metadata from the latch branch instruction 872 // because it is not the Loop's latch branch anymore. 873 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); 874 875 InsertTop = InsertBot; 876 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 877 InsertBot->setName(Header->getName() + ".peel.next"); 878 879 F->getBasicBlockList().splice(InsertTop->getIterator(), 880 F->getBasicBlockList(), 881 NewBlocks[0]->getIterator(), F->end()); 882 } 883 884 // Now adjust the phi nodes in the loop header to get their initial values 885 // from the last peeled-off iteration instead of the preheader. 886 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 887 PHINode *PHI = cast<PHINode>(I); 888 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 889 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 890 if (LatchInst && L->contains(LatchInst)) 891 NewVal = LVMap[LatchInst]; 892 893 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 894 } 895 896 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 897 898 // Update Metadata for count of peeled off iterations. 899 unsigned AlreadyPeeled = 0; 900 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 901 AlreadyPeeled = *Peeled; 902 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 903 904 if (Loop *ParentLoop = L->getParentLoop()) 905 L = ParentLoop; 906 907 // We modified the loop, update SE. 908 SE->forgetTopmostLoop(L); 909 910 // Finally DomtTree must be correct. 911 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 912 913 // FIXME: Incrementally update loop-simplify 914 simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA); 915 916 NumPeeled++; 917 918 return true; 919 } 920