1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/Loads.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/IR/ProfDataUtils.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/ValueMapper.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <optional> 45 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "loop-peel" 50 51 STATISTIC(NumPeeled, "Number of loops peeled"); 52 53 static cl::opt<unsigned> UnrollPeelCount( 54 "unroll-peel-count", cl::Hidden, 55 cl::desc("Set the unroll peeling count, for testing purposes")); 56 57 static cl::opt<bool> 58 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 59 cl::desc("Allows loops to be peeled when the dynamic " 60 "trip count is known to be low.")); 61 62 static cl::opt<bool> 63 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 64 cl::init(false), cl::Hidden, 65 cl::desc("Allows loop nests to be peeled.")); 66 67 static cl::opt<unsigned> UnrollPeelMaxCount( 68 "unroll-peel-max-count", cl::init(7), cl::Hidden, 69 cl::desc("Max average trip count which will cause loop peeling.")); 70 71 static cl::opt<unsigned> UnrollForcePeelCount( 72 "unroll-force-peel-count", cl::init(0), cl::Hidden, 73 cl::desc("Force a peel count regardless of profiling information.")); 74 75 static cl::opt<bool> DisableAdvancedPeeling( 76 "disable-advanced-peeling", cl::init(false), cl::Hidden, 77 cl::desc( 78 "Disable advance peeling. Issues for convergent targets (D134803).")); 79 80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 81 82 // Check whether we are capable of peeling this loop. 83 bool llvm::canPeel(const Loop *L) { 84 // Make sure the loop is in simplified form 85 if (!L->isLoopSimplifyForm()) 86 return false; 87 if (!DisableAdvancedPeeling) 88 return true; 89 90 SmallVector<BasicBlock *, 4> Exits; 91 L->getUniqueNonLatchExitBlocks(Exits); 92 // The latch must either be the only exiting block or all non-latch exit 93 // blocks have either a deopt or unreachable terminator or compose a chain of 94 // blocks where the last one is either deopt or unreachable terminated. Both 95 // deopt and unreachable terminators are a strong indication they are not 96 // taken. Note that this is a profitability check, not a legality check. Also 97 // note that LoopPeeling currently can only update the branch weights of latch 98 // blocks and branch weights to blocks with deopt or unreachable do not need 99 // updating. 100 return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable); 101 } 102 103 namespace { 104 105 // As a loop is peeled, it may be the case that Phi nodes become 106 // loop-invariant (ie, known because there is only one choice). 107 // For example, consider the following function: 108 // void g(int); 109 // void binary() { 110 // int x = 0; 111 // int y = 0; 112 // int a = 0; 113 // for(int i = 0; i <100000; ++i) { 114 // g(x); 115 // x = y; 116 // g(a); 117 // y = a + 1; 118 // a = 5; 119 // } 120 // } 121 // Peeling 3 iterations is beneficial because the values for x, y and a 122 // become known. The IR for this loop looks something like the following: 123 // 124 // %i = phi i32 [ 0, %entry ], [ %inc, %if.end ] 125 // %a = phi i32 [ 0, %entry ], [ 5, %if.end ] 126 // %y = phi i32 [ 0, %entry ], [ %add, %if.end ] 127 // %x = phi i32 [ 0, %entry ], [ %y, %if.end ] 128 // ... 129 // tail call void @_Z1gi(i32 signext %x) 130 // tail call void @_Z1gi(i32 signext %a) 131 // %add = add nuw nsw i32 %a, 1 132 // %inc = add nuw nsw i32 %i, 1 133 // %exitcond = icmp eq i32 %inc, 100000 134 // br i1 %exitcond, label %for.cond.cleanup, label %for.body 135 // 136 // The arguments for the calls to g will become known after 3 iterations 137 // of the loop, because the phi nodes values become known after 3 iterations 138 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations). 139 // The first iteration has g(0), g(0); the second has g(0), g(5); the 140 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5). 141 // Now consider the phi nodes: 142 // %a is a phi with constants so it is determined after iteration 1. 143 // %y is a phi based on a constant and %a so it is determined on 144 // the iteration after %a is determined, so iteration 2. 145 // %x is a phi based on a constant and %y so it is determined on 146 // the iteration after %y, so iteration 3. 147 // %i is based on itself (and is an induction variable) so it is 148 // never determined. 149 // This means that peeling off 3 iterations will result in being able to 150 // remove the phi nodes for %a, %y, and %x. The arguments for the 151 // corresponding calls to g are determined and the code for computing 152 // x, y, and a can be removed. 153 // 154 // The PhiAnalyzer class calculates how many times a loop should be 155 // peeled based on the above analysis of the phi nodes in the loop while 156 // respecting the maximum specified. 157 class PhiAnalyzer { 158 public: 159 PhiAnalyzer(const Loop &L, unsigned MaxIterations); 160 161 // Calculate the sufficient minimum number of iterations of the loop to peel 162 // such that phi instructions become determined (subject to allowable limits) 163 std::optional<unsigned> calculateIterationsToPeel(); 164 165 protected: 166 using PeelCounter = std::optional<unsigned>; 167 const PeelCounter Unknown = std::nullopt; 168 169 // Add 1 respecting Unknown and return Unknown if result over MaxIterations 170 PeelCounter addOne(PeelCounter PC) const { 171 if (PC == Unknown) 172 return Unknown; 173 return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown; 174 } 175 176 // Calculate the number of iterations after which the given value 177 // becomes an invariant. 178 PeelCounter calculate(const Value &); 179 180 const Loop &L; 181 const unsigned MaxIterations; 182 183 // Map of Values to number of iterations to invariance 184 SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance; 185 }; 186 187 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations) 188 : L(L), MaxIterations(MaxIterations) { 189 assert(canPeel(&L) && "loop is not suitable for peeling"); 190 assert(MaxIterations > 0 && "no peeling is allowed?"); 191 } 192 193 // This function calculates the number of iterations after which the value 194 // becomes an invariant. The pre-calculated values are memorized in a map. 195 // N.B. This number will be Unknown or <= MaxIterations. 196 // The function is calculated according to the following definition: 197 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 198 // F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown) 199 // G(%y) = 0 if %y is a loop invariant 200 // G(%y) = G(%BackEdgeValue) if %y is a phi in the header block 201 // G(%y) = TODO: if %y is an expression based on phis and loop invariants 202 // The example looks like: 203 // %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration. 204 // %y = phi(0, 5) 205 // %a = %y + 1 206 // G(%y) = Unknown otherwise (including phi not in header block) 207 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) { 208 // If we already know the answer, take it from the map. 209 auto I = IterationsToInvariance.find(&V); 210 if (I != IterationsToInvariance.end()) 211 return I->second; 212 213 // Place Unknown to map to avoid infinite recursion. Such 214 // cycles can never stop on an invariant. 215 IterationsToInvariance[&V] = Unknown; 216 217 if (L.isLoopInvariant(&V)) 218 // Loop invariant so known at start. 219 return (IterationsToInvariance[&V] = 0); 220 if (const PHINode *Phi = dyn_cast<PHINode>(&V)) { 221 if (Phi->getParent() != L.getHeader()) { 222 // Phi is not in header block so Unknown. 223 assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); 224 return Unknown; 225 } 226 // We need to analyze the input from the back edge and add 1. 227 Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch()); 228 PeelCounter Iterations = calculate(*Input); 229 assert(IterationsToInvariance[Input] == Iterations && 230 "unexpected value saved"); 231 return (IterationsToInvariance[Phi] = addOne(Iterations)); 232 } 233 if (const Instruction *I = dyn_cast<Instruction>(&V)) { 234 if (isa<CmpInst>(I) || I->isBinaryOp()) { 235 // Binary instructions get the max of the operands. 236 PeelCounter LHS = calculate(*I->getOperand(0)); 237 if (LHS == Unknown) 238 return Unknown; 239 PeelCounter RHS = calculate(*I->getOperand(1)); 240 if (RHS == Unknown) 241 return Unknown; 242 return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)}); 243 } 244 if (I->isCast()) 245 // Cast instructions get the value of the operand. 246 return (IterationsToInvariance[I] = calculate(*I->getOperand(0))); 247 } 248 // TODO: handle more expressions 249 250 // Everything else is Unknown. 251 assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); 252 return Unknown; 253 } 254 255 std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() { 256 unsigned Iterations = 0; 257 for (auto &PHI : L.getHeader()->phis()) { 258 PeelCounter ToInvariance = calculate(PHI); 259 if (ToInvariance != Unknown) { 260 assert(*ToInvariance <= MaxIterations && "bad result in phi analysis"); 261 Iterations = std::max(Iterations, *ToInvariance); 262 if (Iterations == MaxIterations) 263 break; 264 } 265 } 266 assert((Iterations <= MaxIterations) && "bad result in phi analysis"); 267 return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt; 268 } 269 270 } // unnamed namespace 271 272 // Try to find any invariant memory reads that will become dereferenceable in 273 // the remainder loop after peeling. The load must also be used (transitively) 274 // by an exit condition. Returns the number of iterations to peel off (at the 275 // moment either 0 or 1). 276 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, 277 DominatorTree &DT, 278 AssumptionCache *AC) { 279 // Skip loops with a single exiting block, because there should be no benefit 280 // for the heuristic below. 281 if (L.getExitingBlock()) 282 return 0; 283 284 // All non-latch exit blocks must have an UnreachableInst terminator. 285 // Otherwise the heuristic below may not be profitable. 286 SmallVector<BasicBlock *, 4> Exits; 287 L.getUniqueNonLatchExitBlocks(Exits); 288 if (any_of(Exits, [](const BasicBlock *BB) { 289 return !isa<UnreachableInst>(BB->getTerminator()); 290 })) 291 return 0; 292 293 // Now look for invariant loads that dominate the latch and are not known to 294 // be dereferenceable. If there are such loads and no writes, they will become 295 // dereferenceable in the loop if the first iteration is peeled off. Also 296 // collect the set of instructions controlled by such loads. Only peel if an 297 // exit condition uses (transitively) such a load. 298 BasicBlock *Header = L.getHeader(); 299 BasicBlock *Latch = L.getLoopLatch(); 300 SmallPtrSet<Value *, 8> LoadUsers; 301 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 302 for (BasicBlock *BB : L.blocks()) { 303 for (Instruction &I : *BB) { 304 if (I.mayWriteToMemory()) 305 return 0; 306 307 auto Iter = LoadUsers.find(&I); 308 if (Iter != LoadUsers.end()) { 309 for (Value *U : I.users()) 310 LoadUsers.insert(U); 311 } 312 // Do not look for reads in the header; they can already be hoisted 313 // without peeling. 314 if (BB == Header) 315 continue; 316 if (auto *LI = dyn_cast<LoadInst>(&I)) { 317 Value *Ptr = LI->getPointerOperand(); 318 if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && 319 !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT)) 320 for (Value *U : I.users()) 321 LoadUsers.insert(U); 322 } 323 } 324 } 325 SmallVector<BasicBlock *> ExitingBlocks; 326 L.getExitingBlocks(ExitingBlocks); 327 if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { 328 return LoadUsers.contains(Exiting->getTerminator()); 329 })) 330 return 1; 331 return 0; 332 } 333 334 // Return the number of iterations to peel off that make conditions in the 335 // body true/false. For example, if we peel 2 iterations off the loop below, 336 // the condition i < 2 can be evaluated at compile time. 337 // for (i = 0; i < n; i++) 338 // if (i < 2) 339 // .. 340 // else 341 // .. 342 // } 343 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 344 ScalarEvolution &SE) { 345 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 346 unsigned DesiredPeelCount = 0; 347 348 for (auto *BB : L.blocks()) { 349 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 350 if (!BI || BI->isUnconditional()) 351 continue; 352 353 // Ignore loop exit condition. 354 if (L.getLoopLatch() == BB) 355 continue; 356 357 Value *Condition = BI->getCondition(); 358 Value *LeftVal, *RightVal; 359 CmpInst::Predicate Pred; 360 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 361 continue; 362 363 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 364 const SCEV *RightSCEV = SE.getSCEV(RightVal); 365 366 // Do not consider predicates that are known to be true or false 367 // independently of the loop iteration. 368 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) 369 continue; 370 371 // Check if we have a condition with one AddRec and one non AddRec 372 // expression. Normalize LeftSCEV to be the AddRec. 373 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 374 if (isa<SCEVAddRecExpr>(RightSCEV)) { 375 std::swap(LeftSCEV, RightSCEV); 376 Pred = ICmpInst::getSwappedPredicate(Pred); 377 } else 378 continue; 379 } 380 381 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 382 383 // Avoid huge SCEV computations in the loop below, make sure we only 384 // consider AddRecs of the loop we are trying to peel. 385 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 386 continue; 387 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 388 !SE.getMonotonicPredicateType(LeftAR, Pred)) 389 continue; 390 391 // Check if extending the current DesiredPeelCount lets us evaluate Pred 392 // or !Pred in the loop body statically. 393 unsigned NewPeelCount = DesiredPeelCount; 394 395 const SCEV *IterVal = LeftAR->evaluateAtIteration( 396 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 397 398 // If the original condition is not known, get the negated predicate 399 // (which holds on the else branch) and check if it is known. This allows 400 // us to peel of iterations that make the original condition false. 401 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 402 Pred = ICmpInst::getInversePredicate(Pred); 403 404 const SCEV *Step = LeftAR->getStepRecurrence(SE); 405 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 406 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 407 &NewPeelCount]() { 408 IterVal = NextIterVal; 409 NextIterVal = SE.getAddExpr(IterVal, Step); 410 NewPeelCount++; 411 }; 412 413 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 414 return NewPeelCount < MaxPeelCount; 415 }; 416 417 while (CanPeelOneMoreIteration() && 418 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 419 PeelOneMoreIteration(); 420 421 // With *that* peel count, does the predicate !Pred become known in the 422 // first iteration of the loop body after peeling? 423 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 424 RightSCEV)) 425 continue; // If not, give up. 426 427 // However, for equality comparisons, that isn't always sufficient to 428 // eliminate the comparsion in loop body, we may need to peel one more 429 // iteration. See if that makes !Pred become unknown again. 430 if (ICmpInst::isEquality(Pred) && 431 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 432 RightSCEV) && 433 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 434 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 435 if (!CanPeelOneMoreIteration()) 436 continue; // Need to peel one more iteration, but can't. Give up. 437 PeelOneMoreIteration(); // Great! 438 } 439 440 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 441 } 442 443 return DesiredPeelCount; 444 } 445 446 /// This "heuristic" exactly matches implicit behavior which used to exist 447 /// inside getLoopEstimatedTripCount. It was added here to keep an 448 /// improvement inside that API from causing peeling to become more aggressive. 449 /// This should probably be removed. 450 static bool violatesLegacyMultiExitLoopCheck(Loop *L) { 451 BasicBlock *Latch = L->getLoopLatch(); 452 if (!Latch) 453 return true; 454 455 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 456 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 457 return true; 458 459 assert((LatchBR->getSuccessor(0) == L->getHeader() || 460 LatchBR->getSuccessor(1) == L->getHeader()) && 461 "At least one edge out of the latch must go to the header"); 462 463 SmallVector<BasicBlock *, 4> ExitBlocks; 464 L->getUniqueNonLatchExitBlocks(ExitBlocks); 465 return any_of(ExitBlocks, [](const BasicBlock *EB) { 466 return !EB->getTerminatingDeoptimizeCall(); 467 }); 468 } 469 470 471 // Return the number of iterations we want to peel off. 472 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 473 TargetTransformInfo::PeelingPreferences &PP, 474 unsigned TripCount, DominatorTree &DT, 475 ScalarEvolution &SE, AssumptionCache *AC, 476 unsigned Threshold) { 477 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 478 // Save the PP.PeelCount value set by the target in 479 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 480 unsigned TargetPeelCount = PP.PeelCount; 481 PP.PeelCount = 0; 482 if (!canPeel(L)) 483 return; 484 485 // Only try to peel innermost loops by default. 486 // The constraint can be relaxed by the target in TTI.getPeelingPreferences 487 // or by the flag -unroll-allow-loop-nests-peeling. 488 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 489 return; 490 491 // If the user provided a peel count, use that. 492 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 493 if (UserPeelCount) { 494 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 495 << " iterations.\n"); 496 PP.PeelCount = UnrollForcePeelCount; 497 PP.PeelProfiledIterations = true; 498 return; 499 } 500 501 // Skip peeling if it's disabled. 502 if (!PP.AllowPeeling) 503 return; 504 505 // Check that we can peel at least one iteration. 506 if (2 * LoopSize > Threshold) 507 return; 508 509 unsigned AlreadyPeeled = 0; 510 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 511 AlreadyPeeled = *Peeled; 512 // Stop if we already peeled off the maximum number of iterations. 513 if (AlreadyPeeled >= UnrollPeelMaxCount) 514 return; 515 516 // Pay respect to limitations implied by loop size and the max peel count. 517 unsigned MaxPeelCount = UnrollPeelMaxCount; 518 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 519 520 // Start the max computation with the PP.PeelCount value set by the target 521 // in TTI.getPeelingPreferences or by the flag -unroll-peel-count. 522 unsigned DesiredPeelCount = TargetPeelCount; 523 524 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 525 // iterations of the loop. For this we compute the number for iterations after 526 // which every Phi is guaranteed to become an invariant, and try to peel the 527 // maximum number of iterations among these values, thus turning all those 528 // Phis into invariants. 529 if (MaxPeelCount > DesiredPeelCount) { 530 // Check how many iterations are useful for resolving Phis 531 auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel(); 532 if (NumPeels) 533 DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels); 534 } 535 536 DesiredPeelCount = std::max(DesiredPeelCount, 537 countToEliminateCompares(*L, MaxPeelCount, SE)); 538 539 if (DesiredPeelCount == 0) 540 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC); 541 542 if (DesiredPeelCount > 0) { 543 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 544 // Consider max peel count limitation. 545 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 546 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 547 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 548 << " iteration(s) to turn" 549 << " some Phis into invariants.\n"); 550 PP.PeelCount = DesiredPeelCount; 551 PP.PeelProfiledIterations = false; 552 return; 553 } 554 } 555 556 // Bail if we know the statically calculated trip count. 557 // In this case we rather prefer partial unrolling. 558 if (TripCount) 559 return; 560 561 // Do not apply profile base peeling if it is disabled. 562 if (!PP.PeelProfiledIterations) 563 return; 564 // If we don't know the trip count, but have reason to believe the average 565 // trip count is low, peeling should be beneficial, since we will usually 566 // hit the peeled section. 567 // We only do this in the presence of profile information, since otherwise 568 // our estimates of the trip count are not reliable enough. 569 if (L->getHeader()->getParent()->hasProfileData()) { 570 if (violatesLegacyMultiExitLoopCheck(L)) 571 return; 572 std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L); 573 if (!EstimatedTripCount) 574 return; 575 576 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " 577 << *EstimatedTripCount << "\n"); 578 579 if (*EstimatedTripCount) { 580 if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) { 581 unsigned PeelCount = *EstimatedTripCount; 582 LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n"); 583 PP.PeelCount = PeelCount; 584 return; 585 } 586 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 587 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 588 LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n"); 589 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 590 LLVM_DEBUG(dbgs() << "Max peel count by cost: " 591 << (Threshold / LoopSize - 1) << "\n"); 592 } 593 } 594 } 595 596 struct WeightInfo { 597 // Weights for current iteration. 598 SmallVector<uint32_t> Weights; 599 // Weights to subtract after each iteration. 600 const SmallVector<uint32_t> SubWeights; 601 }; 602 603 /// Update the branch weights of an exiting block of a peeled-off loop 604 /// iteration. 605 /// Let F is a weight of the edge to continue (fallthrough) into the loop. 606 /// Let E is a weight of the edge to an exit. 607 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 608 /// go to exit. 609 /// Then, Estimated ExitCount = F / E. 610 /// For I-th (counting from 0) peeled off iteration we set the the weights for 611 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution, 612 /// The probability to go to exit 1/(EC-I) increases. At the same time 613 /// the estimated exit count in the remainder loop reduces by I. 614 /// To avoid dealing with division rounding we can just multiple both part 615 /// of weights to E and use weight as (F - I * E, E). 616 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) { 617 MDBuilder MDB(Term->getContext()); 618 Term->setMetadata(LLVMContext::MD_prof, 619 MDB.createBranchWeights(Info.Weights)); 620 for (auto [Idx, SubWeight] : enumerate(Info.SubWeights)) 621 if (SubWeight != 0) 622 Info.Weights[Idx] = Info.Weights[Idx] > SubWeight 623 ? Info.Weights[Idx] - SubWeight 624 : 1; 625 } 626 627 /// Initialize the weights for all exiting blocks. 628 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos, 629 Loop *L) { 630 SmallVector<BasicBlock *> ExitingBlocks; 631 L->getExitingBlocks(ExitingBlocks); 632 for (BasicBlock *ExitingBlock : ExitingBlocks) { 633 Instruction *Term = ExitingBlock->getTerminator(); 634 SmallVector<uint32_t> Weights; 635 if (!extractBranchWeights(*Term, Weights)) 636 continue; 637 638 // See the comment on updateBranchWeights() for an explanation of what we 639 // do here. 640 uint32_t FallThroughWeights = 0; 641 uint32_t ExitWeights = 0; 642 for (auto [Succ, Weight] : zip(successors(Term), Weights)) { 643 if (L->contains(Succ)) 644 FallThroughWeights += Weight; 645 else 646 ExitWeights += Weight; 647 } 648 649 // Don't try to update weights for degenerate case. 650 if (FallThroughWeights == 0) 651 continue; 652 653 SmallVector<uint32_t> SubWeights; 654 for (auto [Succ, Weight] : zip(successors(Term), Weights)) { 655 if (!L->contains(Succ)) { 656 // Exit weights stay the same. 657 SubWeights.push_back(0); 658 continue; 659 } 660 661 // Subtract exit weights on each iteration, distributed across all 662 // fallthrough edges. 663 double W = (double)Weight / (double)FallThroughWeights; 664 SubWeights.push_back((uint32_t)(ExitWeights * W)); 665 } 666 667 WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}}); 668 } 669 } 670 671 /// Update the weights of original exiting block after peeling off all 672 /// iterations. 673 static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) { 674 MDBuilder MDB(Term->getContext()); 675 Term->setMetadata(LLVMContext::MD_prof, 676 MDB.createBranchWeights(Info.Weights)); 677 } 678 679 /// Clones the body of the loop L, putting it between \p InsertTop and \p 680 /// InsertBot. 681 /// \param IterNumber The serial number of the iteration currently being 682 /// peeled off. 683 /// \param ExitEdges The exit edges of the original loop. 684 /// \param[out] NewBlocks A list of the blocks in the newly created clone 685 /// \param[out] VMap The value map between the loop and the new clone. 686 /// \param LoopBlocks A helper for DFS-traversal of the loop. 687 /// \param LVMap A value-map that maps instructions from the original loop to 688 /// instructions in the last peeled-off iteration. 689 static void cloneLoopBlocks( 690 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 691 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 692 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 693 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 694 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes, 695 ScalarEvolution &SE) { 696 BasicBlock *Header = L->getHeader(); 697 BasicBlock *Latch = L->getLoopLatch(); 698 BasicBlock *PreHeader = L->getLoopPreheader(); 699 700 Function *F = Header->getParent(); 701 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 702 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 703 Loop *ParentLoop = L->getParentLoop(); 704 705 // For each block in the original loop, create a new copy, 706 // and update the value map with the newly created values. 707 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 708 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 709 NewBlocks.push_back(NewBB); 710 711 // If an original block is an immediate child of the loop L, its copy 712 // is a child of a ParentLoop after peeling. If a block is a child of 713 // a nested loop, it is handled in the cloneLoop() call below. 714 if (ParentLoop && LI->getLoopFor(*BB) == L) 715 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 716 717 VMap[*BB] = NewBB; 718 719 // If dominator tree is available, insert nodes to represent cloned blocks. 720 if (DT) { 721 if (Header == *BB) 722 DT->addNewBlock(NewBB, InsertTop); 723 else { 724 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 725 // VMap must contain entry for IDom, as the iteration order is RPO. 726 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 727 } 728 } 729 } 730 731 { 732 // Identify what other metadata depends on the cloned version. After 733 // cloning, replace the metadata with the corrected version for both 734 // memory instructions and noalias intrinsics. 735 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); 736 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 737 Header->getContext(), Ext); 738 } 739 740 // Recursively create the new Loop objects for nested loops, if any, 741 // to preserve LoopInfo. 742 for (Loop *ChildLoop : *L) { 743 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 744 } 745 746 // Hook-up the control flow for the newly inserted blocks. 747 // The new header is hooked up directly to the "top", which is either 748 // the original loop preheader (for the first iteration) or the previous 749 // iteration's exiting block (for every other iteration) 750 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 751 752 // Similarly, for the latch: 753 // The original exiting edge is still hooked up to the loop exit. 754 // The backedge now goes to the "bottom", which is either the loop's real 755 // header (for the last peeled iteration) or the copied header of the next 756 // iteration (for every other iteration) 757 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 758 auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator()); 759 for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx) 760 if (LatchTerm->getSuccessor(idx) == Header) { 761 LatchTerm->setSuccessor(idx, InsertBot); 762 break; 763 } 764 if (DT) 765 DT->changeImmediateDominator(InsertBot, NewLatch); 766 767 // The new copy of the loop body starts with a bunch of PHI nodes 768 // that pick an incoming value from either the preheader, or the previous 769 // loop iteration. Since this copy is no longer part of the loop, we 770 // resolve this statically: 771 // For the first iteration, we use the value from the preheader directly. 772 // For any other iteration, we replace the phi with the value generated by 773 // the immediately preceding clone of the loop body (which represents 774 // the previous iteration). 775 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 776 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 777 if (IterNumber == 0) { 778 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 779 } else { 780 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 781 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 782 if (LatchInst && L->contains(LatchInst)) 783 VMap[&*I] = LVMap[LatchInst]; 784 else 785 VMap[&*I] = LatchVal; 786 } 787 NewPHI->eraseFromParent(); 788 } 789 790 // Fix up the outgoing values - we need to add a value for the iteration 791 // we've just created. Note that this must happen *after* the incoming 792 // values are adjusted, since the value going out of the latch may also be 793 // a value coming into the header. 794 for (auto Edge : ExitEdges) 795 for (PHINode &PHI : Edge.second->phis()) { 796 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 797 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 798 if (LatchInst && L->contains(LatchInst)) 799 LatchVal = VMap[LatchVal]; 800 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 801 SE.forgetValue(&PHI); 802 } 803 804 // LastValueMap is updated with the values for the current loop 805 // which are used the next time this function is called. 806 for (auto KV : VMap) 807 LVMap[KV.first] = KV.second; 808 } 809 810 TargetTransformInfo::PeelingPreferences 811 llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, 812 const TargetTransformInfo &TTI, 813 std::optional<bool> UserAllowPeeling, 814 std::optional<bool> UserAllowProfileBasedPeeling, 815 bool UnrollingSpecficValues) { 816 TargetTransformInfo::PeelingPreferences PP; 817 818 // Set the default values. 819 PP.PeelCount = 0; 820 PP.AllowPeeling = true; 821 PP.AllowLoopNestsPeeling = false; 822 PP.PeelProfiledIterations = true; 823 824 // Get the target specifc values. 825 TTI.getPeelingPreferences(L, SE, PP); 826 827 // User specified values using cl::opt. 828 if (UnrollingSpecficValues) { 829 if (UnrollPeelCount.getNumOccurrences() > 0) 830 PP.PeelCount = UnrollPeelCount; 831 if (UnrollAllowPeeling.getNumOccurrences() > 0) 832 PP.AllowPeeling = UnrollAllowPeeling; 833 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 834 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 835 } 836 837 // User specifed values provided by argument. 838 if (UserAllowPeeling) 839 PP.AllowPeeling = *UserAllowPeeling; 840 if (UserAllowProfileBasedPeeling) 841 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 842 843 return PP; 844 } 845 846 /// Peel off the first \p PeelCount iterations of loop \p L. 847 /// 848 /// Note that this does not peel them off as a single straight-line block. 849 /// Rather, each iteration is peeled off separately, and needs to check the 850 /// exit condition. 851 /// For loops that dynamically execute \p PeelCount iterations or less 852 /// this provides a benefit, since the peeled off iterations, which account 853 /// for the bulk of dynamic execution, can be further simplified by scalar 854 /// optimizations. 855 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 856 ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, 857 bool PreserveLCSSA, ValueToValueMapTy &LVMap) { 858 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 859 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 860 861 LoopBlocksDFS LoopBlocks(L); 862 LoopBlocks.perform(LI); 863 864 BasicBlock *Header = L->getHeader(); 865 BasicBlock *PreHeader = L->getLoopPreheader(); 866 BasicBlock *Latch = L->getLoopLatch(); 867 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 868 L->getExitEdges(ExitEdges); 869 870 // Remember dominators of blocks we might reach through exits to change them 871 // later. Immediate dominator of such block might change, because we add more 872 // routes which can lead to the exit: we can reach it from the peeled 873 // iterations too. 874 DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom; 875 for (auto *BB : L->blocks()) { 876 auto *BBDomNode = DT.getNode(BB); 877 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 878 for (auto *ChildDomNode : BBDomNode->children()) { 879 auto *ChildBB = ChildDomNode->getBlock(); 880 if (!L->contains(ChildBB)) 881 ChildrenToUpdate.push_back(ChildBB); 882 } 883 // The new idom of the block will be the nearest common dominator 884 // of all copies of the previous idom. This is equivalent to the 885 // nearest common dominator of the previous idom and the first latch, 886 // which dominates all copies of the previous idom. 887 BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch); 888 for (auto *ChildBB : ChildrenToUpdate) 889 NonLoopBlocksIDom[ChildBB] = NewIDom; 890 } 891 892 Function *F = Header->getParent(); 893 894 // Set up all the necessary basic blocks. It is convenient to split the 895 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 896 // body, and a new preheader for the "real" loop. 897 898 // Peeling the first iteration transforms. 899 // 900 // PreHeader: 901 // ... 902 // Header: 903 // LoopBody 904 // If (cond) goto Header 905 // Exit: 906 // 907 // into 908 // 909 // InsertTop: 910 // LoopBody 911 // If (!cond) goto Exit 912 // InsertBot: 913 // NewPreHeader: 914 // ... 915 // Header: 916 // LoopBody 917 // If (cond) goto Header 918 // Exit: 919 // 920 // Each following iteration will split the current bottom anchor in two, 921 // and put the new copy of the loop body between these two blocks. That is, 922 // after peeling another iteration from the example above, we'll split 923 // InsertBot, and get: 924 // 925 // InsertTop: 926 // LoopBody 927 // If (!cond) goto Exit 928 // InsertBot: 929 // LoopBody 930 // If (!cond) goto Exit 931 // InsertBot.next: 932 // NewPreHeader: 933 // ... 934 // Header: 935 // LoopBody 936 // If (cond) goto Header 937 // Exit: 938 939 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI); 940 BasicBlock *InsertBot = 941 SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI); 942 BasicBlock *NewPreHeader = 943 SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 944 945 InsertTop->setName(Header->getName() + ".peel.begin"); 946 InsertBot->setName(Header->getName() + ".peel.next"); 947 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 948 949 Instruction *LatchTerm = 950 cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator()); 951 952 // If we have branch weight information, we'll want to update it for the 953 // newly created branches. 954 DenseMap<Instruction *, WeightInfo> Weights; 955 initBranchWeights(Weights, L); 956 957 // Identify what noalias metadata is inside the loop: if it is inside the 958 // loop, the associated metadata must be cloned for each iteration. 959 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 960 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 961 962 // For each peeled-off iteration, make a copy of the loop. 963 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 964 SmallVector<BasicBlock *, 8> NewBlocks; 965 ValueToValueMapTy VMap; 966 967 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 968 LoopBlocks, VMap, LVMap, &DT, LI, 969 LoopLocalNoAliasDeclScopes, *SE); 970 971 // Remap to use values from the current iteration instead of the 972 // previous one. 973 remapInstructionsInBlocks(NewBlocks, VMap); 974 975 // Update IDoms of the blocks reachable through exits. 976 if (Iter == 0) 977 for (auto BBIDom : NonLoopBlocksIDom) 978 DT.changeImmediateDominator(BBIDom.first, 979 cast<BasicBlock>(LVMap[BBIDom.second])); 980 #ifdef EXPENSIVE_CHECKS 981 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 982 #endif 983 984 for (auto &[Term, Info] : Weights) { 985 auto *TermCopy = cast<Instruction>(VMap[Term]); 986 updateBranchWeights(TermCopy, Info); 987 } 988 989 // Remove Loop metadata from the latch branch instruction 990 // because it is not the Loop's latch branch anymore. 991 auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]); 992 LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr); 993 994 InsertTop = InsertBot; 995 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); 996 InsertBot->setName(Header->getName() + ".peel.next"); 997 998 F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(), 999 F->end()); 1000 } 1001 1002 // Now adjust the phi nodes in the loop header to get their initial values 1003 // from the last peeled-off iteration instead of the preheader. 1004 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 1005 PHINode *PHI = cast<PHINode>(I); 1006 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 1007 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 1008 if (LatchInst && L->contains(LatchInst)) 1009 NewVal = LVMap[LatchInst]; 1010 1011 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 1012 } 1013 1014 for (const auto &[Term, Info] : Weights) 1015 fixupBranchWeights(Term, Info); 1016 1017 // Update Metadata for count of peeled off iterations. 1018 unsigned AlreadyPeeled = 0; 1019 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 1020 AlreadyPeeled = *Peeled; 1021 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 1022 1023 if (Loop *ParentLoop = L->getParentLoop()) 1024 L = ParentLoop; 1025 1026 // We modified the loop, update SE. 1027 SE->forgetTopmostLoop(L); 1028 1029 #ifdef EXPENSIVE_CHECKS 1030 // Finally DomtTree must be correct. 1031 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1032 #endif 1033 1034 // FIXME: Incrementally update loop-simplify 1035 simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA); 1036 1037 NumPeeled++; 1038 1039 return true; 1040 } 1041