xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp (revision 02e9120893770924227138ba49df1edb3896112a)
1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/Loads.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/ProfDataUtils.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <optional>
45 
46 using namespace llvm;
47 using namespace llvm::PatternMatch;
48 
49 #define DEBUG_TYPE "loop-peel"
50 
51 STATISTIC(NumPeeled, "Number of loops peeled");
52 
53 static cl::opt<unsigned> UnrollPeelCount(
54     "unroll-peel-count", cl::Hidden,
55     cl::desc("Set the unroll peeling count, for testing purposes"));
56 
57 static cl::opt<bool>
58     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
59                        cl::desc("Allows loops to be peeled when the dynamic "
60                                 "trip count is known to be low."));
61 
62 static cl::opt<bool>
63     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
64                                 cl::init(false), cl::Hidden,
65                                 cl::desc("Allows loop nests to be peeled."));
66 
67 static cl::opt<unsigned> UnrollPeelMaxCount(
68     "unroll-peel-max-count", cl::init(7), cl::Hidden,
69     cl::desc("Max average trip count which will cause loop peeling."));
70 
71 static cl::opt<unsigned> UnrollForcePeelCount(
72     "unroll-force-peel-count", cl::init(0), cl::Hidden,
73     cl::desc("Force a peel count regardless of profiling information."));
74 
75 static cl::opt<bool> DisableAdvancedPeeling(
76     "disable-advanced-peeling", cl::init(false), cl::Hidden,
77     cl::desc(
78         "Disable advance peeling. Issues for convergent targets (D134803)."));
79 
80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
81 
82 // Check whether we are capable of peeling this loop.
83 bool llvm::canPeel(const Loop *L) {
84   // Make sure the loop is in simplified form
85   if (!L->isLoopSimplifyForm())
86     return false;
87   if (!DisableAdvancedPeeling)
88     return true;
89 
90   SmallVector<BasicBlock *, 4> Exits;
91   L->getUniqueNonLatchExitBlocks(Exits);
92   // The latch must either be the only exiting block or all non-latch exit
93   // blocks have either a deopt or unreachable terminator or compose a chain of
94   // blocks where the last one is either deopt or unreachable terminated. Both
95   // deopt and unreachable terminators are a strong indication they are not
96   // taken. Note that this is a profitability check, not a legality check. Also
97   // note that LoopPeeling currently can only update the branch weights of latch
98   // blocks and branch weights to blocks with deopt or unreachable do not need
99   // updating.
100   return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
101 }
102 
103 namespace {
104 
105 // As a loop is peeled, it may be the case that Phi nodes become
106 // loop-invariant (ie, known because there is only one choice).
107 // For example, consider the following function:
108 //   void g(int);
109 //   void binary() {
110 //     int x = 0;
111 //     int y = 0;
112 //     int a = 0;
113 //     for(int i = 0; i <100000; ++i) {
114 //       g(x);
115 //       x = y;
116 //       g(a);
117 //       y = a + 1;
118 //       a = 5;
119 //     }
120 //   }
121 // Peeling 3 iterations is beneficial because the values for x, y and a
122 // become known.  The IR for this loop looks something like the following:
123 //
124 //   %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
125 //   %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
126 //   %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
127 //   %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
128 //   ...
129 //   tail call void @_Z1gi(i32 signext %x)
130 //   tail call void @_Z1gi(i32 signext %a)
131 //   %add = add nuw nsw i32 %a, 1
132 //   %inc = add nuw nsw i32 %i, 1
133 //   %exitcond = icmp eq i32 %inc, 100000
134 //   br i1 %exitcond, label %for.cond.cleanup, label %for.body
135 //
136 // The arguments for the calls to g will become known after 3 iterations
137 // of the loop, because the phi nodes values become known after 3 iterations
138 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
139 // The first iteration has g(0), g(0); the second has g(0), g(5); the
140 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
141 // Now consider the phi nodes:
142 //   %a is a phi with constants so it is determined after iteration 1.
143 //   %y is a phi based on a constant and %a so it is determined on
144 //     the iteration after %a is determined, so iteration 2.
145 //   %x is a phi based on a constant and %y so it is determined on
146 //     the iteration after %y, so iteration 3.
147 //   %i is based on itself (and is an induction variable) so it is
148 //     never determined.
149 // This means that peeling off 3 iterations will result in being able to
150 // remove the phi nodes for %a, %y, and %x.  The arguments for the
151 // corresponding calls to g are determined and the code for computing
152 // x, y, and a can be removed.
153 //
154 // The PhiAnalyzer class calculates how many times a loop should be
155 // peeled based on the above analysis of the phi nodes in the loop while
156 // respecting the maximum specified.
157 class PhiAnalyzer {
158 public:
159   PhiAnalyzer(const Loop &L, unsigned MaxIterations);
160 
161   // Calculate the sufficient minimum number of iterations of the loop to peel
162   // such that phi instructions become determined (subject to allowable limits)
163   std::optional<unsigned> calculateIterationsToPeel();
164 
165 protected:
166   using PeelCounter = std::optional<unsigned>;
167   const PeelCounter Unknown = std::nullopt;
168 
169   // Add 1 respecting Unknown and return Unknown if result over MaxIterations
170   PeelCounter addOne(PeelCounter PC) const {
171     if (PC == Unknown)
172       return Unknown;
173     return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
174   }
175 
176   // Calculate the number of iterations after which the given value
177   // becomes an invariant.
178   PeelCounter calculate(const Value &);
179 
180   const Loop &L;
181   const unsigned MaxIterations;
182 
183   // Map of Values to number of iterations to invariance
184   SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
185 };
186 
187 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
188     : L(L), MaxIterations(MaxIterations) {
189   assert(canPeel(&L) && "loop is not suitable for peeling");
190   assert(MaxIterations > 0 && "no peeling is allowed?");
191 }
192 
193 // This function calculates the number of iterations after which the value
194 // becomes an invariant. The pre-calculated values are memorized in a map.
195 // N.B. This number will be Unknown or <= MaxIterations.
196 // The function is calculated according to the following definition:
197 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
198 //   F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
199 //   G(%y) = 0 if %y is a loop invariant
200 //   G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
201 //   G(%y) = TODO: if %y is an expression based on phis and loop invariants
202 //           The example looks like:
203 //           %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
204 //           %y = phi(0, 5)
205 //           %a = %y + 1
206 //   G(%y) = Unknown otherwise (including phi not in header block)
207 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
208   // If we already know the answer, take it from the map.
209   auto I = IterationsToInvariance.find(&V);
210   if (I != IterationsToInvariance.end())
211     return I->second;
212 
213   // Place Unknown to map to avoid infinite recursion. Such
214   // cycles can never stop on an invariant.
215   IterationsToInvariance[&V] = Unknown;
216 
217   if (L.isLoopInvariant(&V))
218     // Loop invariant so known at start.
219     return (IterationsToInvariance[&V] = 0);
220   if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
221     if (Phi->getParent() != L.getHeader()) {
222       // Phi is not in header block so Unknown.
223       assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
224       return Unknown;
225     }
226     // We need to analyze the input from the back edge and add 1.
227     Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
228     PeelCounter Iterations = calculate(*Input);
229     assert(IterationsToInvariance[Input] == Iterations &&
230            "unexpected value saved");
231     return (IterationsToInvariance[Phi] = addOne(Iterations));
232   }
233   if (const Instruction *I = dyn_cast<Instruction>(&V)) {
234     if (isa<CmpInst>(I) || I->isBinaryOp()) {
235       // Binary instructions get the max of the operands.
236       PeelCounter LHS = calculate(*I->getOperand(0));
237       if (LHS == Unknown)
238         return Unknown;
239       PeelCounter RHS = calculate(*I->getOperand(1));
240       if (RHS == Unknown)
241         return Unknown;
242       return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
243     }
244     if (I->isCast())
245       // Cast instructions get the value of the operand.
246       return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
247   }
248   // TODO: handle more expressions
249 
250   // Everything else is Unknown.
251   assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
252   return Unknown;
253 }
254 
255 std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
256   unsigned Iterations = 0;
257   for (auto &PHI : L.getHeader()->phis()) {
258     PeelCounter ToInvariance = calculate(PHI);
259     if (ToInvariance != Unknown) {
260       assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
261       Iterations = std::max(Iterations, *ToInvariance);
262       if (Iterations == MaxIterations)
263         break;
264     }
265   }
266   assert((Iterations <= MaxIterations) && "bad result in phi analysis");
267   return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
268 }
269 
270 } // unnamed namespace
271 
272 // Try to find any invariant memory reads that will become dereferenceable in
273 // the remainder loop after peeling. The load must also be used (transitively)
274 // by an exit condition. Returns the number of iterations to peel off (at the
275 // moment either 0 or 1).
276 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
277                                                       DominatorTree &DT,
278                                                       AssumptionCache *AC) {
279   // Skip loops with a single exiting block, because there should be no benefit
280   // for the heuristic below.
281   if (L.getExitingBlock())
282     return 0;
283 
284   // All non-latch exit blocks must have an UnreachableInst terminator.
285   // Otherwise the heuristic below may not be profitable.
286   SmallVector<BasicBlock *, 4> Exits;
287   L.getUniqueNonLatchExitBlocks(Exits);
288   if (any_of(Exits, [](const BasicBlock *BB) {
289         return !isa<UnreachableInst>(BB->getTerminator());
290       }))
291     return 0;
292 
293   // Now look for invariant loads that dominate the latch and are not known to
294   // be dereferenceable. If there are such loads and no writes, they will become
295   // dereferenceable in the loop if the first iteration is peeled off. Also
296   // collect the set of instructions controlled by such loads. Only peel if an
297   // exit condition uses (transitively) such a load.
298   BasicBlock *Header = L.getHeader();
299   BasicBlock *Latch = L.getLoopLatch();
300   SmallPtrSet<Value *, 8> LoadUsers;
301   const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
302   for (BasicBlock *BB : L.blocks()) {
303     for (Instruction &I : *BB) {
304       if (I.mayWriteToMemory())
305         return 0;
306 
307       auto Iter = LoadUsers.find(&I);
308       if (Iter != LoadUsers.end()) {
309         for (Value *U : I.users())
310           LoadUsers.insert(U);
311       }
312       // Do not look for reads in the header; they can already be hoisted
313       // without peeling.
314       if (BB == Header)
315         continue;
316       if (auto *LI = dyn_cast<LoadInst>(&I)) {
317         Value *Ptr = LI->getPointerOperand();
318         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
319             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
320           for (Value *U : I.users())
321             LoadUsers.insert(U);
322       }
323     }
324   }
325   SmallVector<BasicBlock *> ExitingBlocks;
326   L.getExitingBlocks(ExitingBlocks);
327   if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
328         return LoadUsers.contains(Exiting->getTerminator());
329       }))
330     return 1;
331   return 0;
332 }
333 
334 // Return the number of iterations to peel off that make conditions in the
335 // body true/false. For example, if we peel 2 iterations off the loop below,
336 // the condition i < 2 can be evaluated at compile time.
337 //  for (i = 0; i < n; i++)
338 //    if (i < 2)
339 //      ..
340 //    else
341 //      ..
342 //   }
343 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
344                                          ScalarEvolution &SE) {
345   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
346   unsigned DesiredPeelCount = 0;
347 
348   // Do not peel the entire loop.
349   const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L);
350   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE))
351     MaxPeelCount =
352         std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount);
353 
354   auto ComputePeelCount = [&](Value *Condition) -> void {
355     if (!Condition->getType()->isIntegerTy())
356       return;
357 
358     Value *LeftVal, *RightVal;
359     CmpInst::Predicate Pred;
360     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
361       return;
362 
363     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
364     const SCEV *RightSCEV = SE.getSCEV(RightVal);
365 
366     // Do not consider predicates that are known to be true or false
367     // independently of the loop iteration.
368     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
369       return;
370 
371     // Check if we have a condition with one AddRec and one non AddRec
372     // expression. Normalize LeftSCEV to be the AddRec.
373     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
374       if (isa<SCEVAddRecExpr>(RightSCEV)) {
375         std::swap(LeftSCEV, RightSCEV);
376         Pred = ICmpInst::getSwappedPredicate(Pred);
377       } else
378         return;
379     }
380 
381     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
382 
383     // Avoid huge SCEV computations in the loop below, make sure we only
384     // consider AddRecs of the loop we are trying to peel.
385     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
386       return;
387     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
388         !SE.getMonotonicPredicateType(LeftAR, Pred))
389       return;
390 
391     // Check if extending the current DesiredPeelCount lets us evaluate Pred
392     // or !Pred in the loop body statically.
393     unsigned NewPeelCount = DesiredPeelCount;
394 
395     const SCEV *IterVal = LeftAR->evaluateAtIteration(
396         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
397 
398     // If the original condition is not known, get the negated predicate
399     // (which holds on the else branch) and check if it is known. This allows
400     // us to peel of iterations that make the original condition false.
401     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
402       Pred = ICmpInst::getInversePredicate(Pred);
403 
404     const SCEV *Step = LeftAR->getStepRecurrence(SE);
405     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
406     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
407                                  &NewPeelCount]() {
408       IterVal = NextIterVal;
409       NextIterVal = SE.getAddExpr(IterVal, Step);
410       NewPeelCount++;
411     };
412 
413     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
414       return NewPeelCount < MaxPeelCount;
415     };
416 
417     while (CanPeelOneMoreIteration() &&
418            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
419       PeelOneMoreIteration();
420 
421     // With *that* peel count, does the predicate !Pred become known in the
422     // first iteration of the loop body after peeling?
423     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
424                              RightSCEV))
425       return; // If not, give up.
426 
427     // However, for equality comparisons, that isn't always sufficient to
428     // eliminate the comparsion in loop body, we may need to peel one more
429     // iteration. See if that makes !Pred become unknown again.
430     if (ICmpInst::isEquality(Pred) &&
431         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
432                              RightSCEV) &&
433         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
434         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
435       if (!CanPeelOneMoreIteration())
436         return; // Need to peel one more iteration, but can't. Give up.
437       PeelOneMoreIteration(); // Great!
438     }
439 
440     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
441   };
442 
443   for (BasicBlock *BB : L.blocks()) {
444     for (Instruction &I : *BB) {
445       if (SelectInst *SI = dyn_cast<SelectInst>(&I))
446         ComputePeelCount(SI->getCondition());
447     }
448 
449     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
450     if (!BI || BI->isUnconditional())
451       continue;
452 
453     // Ignore loop exit condition.
454     if (L.getLoopLatch() == BB)
455       continue;
456 
457     ComputePeelCount(BI->getCondition());
458   }
459 
460   return DesiredPeelCount;
461 }
462 
463 /// This "heuristic" exactly matches implicit behavior which used to exist
464 /// inside getLoopEstimatedTripCount.  It was added here to keep an
465 /// improvement inside that API from causing peeling to become more aggressive.
466 /// This should probably be removed.
467 static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
468   BasicBlock *Latch = L->getLoopLatch();
469   if (!Latch)
470     return true;
471 
472   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
473   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
474     return true;
475 
476   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
477           LatchBR->getSuccessor(1) == L->getHeader()) &&
478          "At least one edge out of the latch must go to the header");
479 
480   SmallVector<BasicBlock *, 4> ExitBlocks;
481   L->getUniqueNonLatchExitBlocks(ExitBlocks);
482   return any_of(ExitBlocks, [](const BasicBlock *EB) {
483       return !EB->getTerminatingDeoptimizeCall();
484     });
485 }
486 
487 
488 // Return the number of iterations we want to peel off.
489 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
490                             TargetTransformInfo::PeelingPreferences &PP,
491                             unsigned TripCount, DominatorTree &DT,
492                             ScalarEvolution &SE, AssumptionCache *AC,
493                             unsigned Threshold) {
494   assert(LoopSize > 0 && "Zero loop size is not allowed!");
495   // Save the PP.PeelCount value set by the target in
496   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
497   unsigned TargetPeelCount = PP.PeelCount;
498   PP.PeelCount = 0;
499   if (!canPeel(L))
500     return;
501 
502   // Only try to peel innermost loops by default.
503   // The constraint can be relaxed by the target in TTI.getPeelingPreferences
504   // or by the flag -unroll-allow-loop-nests-peeling.
505   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
506     return;
507 
508   // If the user provided a peel count, use that.
509   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
510   if (UserPeelCount) {
511     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
512                       << " iterations.\n");
513     PP.PeelCount = UnrollForcePeelCount;
514     PP.PeelProfiledIterations = true;
515     return;
516   }
517 
518   // Skip peeling if it's disabled.
519   if (!PP.AllowPeeling)
520     return;
521 
522   // Check that we can peel at least one iteration.
523   if (2 * LoopSize > Threshold)
524     return;
525 
526   unsigned AlreadyPeeled = 0;
527   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
528     AlreadyPeeled = *Peeled;
529   // Stop if we already peeled off the maximum number of iterations.
530   if (AlreadyPeeled >= UnrollPeelMaxCount)
531     return;
532 
533   // Pay respect to limitations implied by loop size and the max peel count.
534   unsigned MaxPeelCount = UnrollPeelMaxCount;
535   MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
536 
537   // Start the max computation with the PP.PeelCount value set by the target
538   // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
539   unsigned DesiredPeelCount = TargetPeelCount;
540 
541   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
542   // iterations of the loop. For this we compute the number for iterations after
543   // which every Phi is guaranteed to become an invariant, and try to peel the
544   // maximum number of iterations among these values, thus turning all those
545   // Phis into invariants.
546   if (MaxPeelCount > DesiredPeelCount) {
547     // Check how many iterations are useful for resolving Phis
548     auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
549     if (NumPeels)
550       DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
551   }
552 
553   DesiredPeelCount = std::max(DesiredPeelCount,
554                               countToEliminateCompares(*L, MaxPeelCount, SE));
555 
556   if (DesiredPeelCount == 0)
557     DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
558 
559   if (DesiredPeelCount > 0) {
560     DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
561     // Consider max peel count limitation.
562     assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
563     if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
564       LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
565                         << " iteration(s) to turn"
566                         << " some Phis into invariants.\n");
567       PP.PeelCount = DesiredPeelCount;
568       PP.PeelProfiledIterations = false;
569       return;
570     }
571   }
572 
573   // Bail if we know the statically calculated trip count.
574   // In this case we rather prefer partial unrolling.
575   if (TripCount)
576     return;
577 
578   // Do not apply profile base peeling if it is disabled.
579   if (!PP.PeelProfiledIterations)
580     return;
581   // If we don't know the trip count, but have reason to believe the average
582   // trip count is low, peeling should be beneficial, since we will usually
583   // hit the peeled section.
584   // We only do this in the presence of profile information, since otherwise
585   // our estimates of the trip count are not reliable enough.
586   if (L->getHeader()->getParent()->hasProfileData()) {
587     if (violatesLegacyMultiExitLoopCheck(L))
588       return;
589     std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
590     if (!EstimatedTripCount)
591       return;
592 
593     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
594                       << *EstimatedTripCount << "\n");
595 
596     if (*EstimatedTripCount) {
597       if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
598         unsigned PeelCount = *EstimatedTripCount;
599         LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
600         PP.PeelCount = PeelCount;
601         return;
602       }
603       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
604       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
605       LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
606       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
607       LLVM_DEBUG(dbgs() << "Max peel count by cost: "
608                         << (Threshold / LoopSize - 1) << "\n");
609     }
610   }
611 }
612 
613 struct WeightInfo {
614   // Weights for current iteration.
615   SmallVector<uint32_t> Weights;
616   // Weights to subtract after each iteration.
617   const SmallVector<uint32_t> SubWeights;
618 };
619 
620 /// Update the branch weights of an exiting block of a peeled-off loop
621 /// iteration.
622 /// Let F is a weight of the edge to continue (fallthrough) into the loop.
623 /// Let E is a weight of the edge to an exit.
624 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
625 /// go to exit.
626 /// Then, Estimated ExitCount = F / E.
627 /// For I-th (counting from 0) peeled off iteration we set the the weights for
628 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
629 /// The probability to go to exit 1/(EC-I) increases. At the same time
630 /// the estimated exit count in the remainder loop reduces by I.
631 /// To avoid dealing with division rounding we can just multiple both part
632 /// of weights to E and use weight as (F - I * E, E).
633 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
634   MDBuilder MDB(Term->getContext());
635   Term->setMetadata(LLVMContext::MD_prof,
636                     MDB.createBranchWeights(Info.Weights));
637   for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
638     if (SubWeight != 0)
639       Info.Weights[Idx] = Info.Weights[Idx] > SubWeight
640                               ? Info.Weights[Idx] - SubWeight
641                               : 1;
642 }
643 
644 /// Initialize the weights for all exiting blocks.
645 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
646                               Loop *L) {
647   SmallVector<BasicBlock *> ExitingBlocks;
648   L->getExitingBlocks(ExitingBlocks);
649   for (BasicBlock *ExitingBlock : ExitingBlocks) {
650     Instruction *Term = ExitingBlock->getTerminator();
651     SmallVector<uint32_t> Weights;
652     if (!extractBranchWeights(*Term, Weights))
653       continue;
654 
655     // See the comment on updateBranchWeights() for an explanation of what we
656     // do here.
657     uint32_t FallThroughWeights = 0;
658     uint32_t ExitWeights = 0;
659     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
660       if (L->contains(Succ))
661         FallThroughWeights += Weight;
662       else
663         ExitWeights += Weight;
664     }
665 
666     // Don't try to update weights for degenerate case.
667     if (FallThroughWeights == 0)
668       continue;
669 
670     SmallVector<uint32_t> SubWeights;
671     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
672       if (!L->contains(Succ)) {
673         // Exit weights stay the same.
674         SubWeights.push_back(0);
675         continue;
676       }
677 
678       // Subtract exit weights on each iteration, distributed across all
679       // fallthrough edges.
680       double W = (double)Weight / (double)FallThroughWeights;
681       SubWeights.push_back((uint32_t)(ExitWeights * W));
682     }
683 
684     WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
685   }
686 }
687 
688 /// Update the weights of original exiting block after peeling off all
689 /// iterations.
690 static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) {
691   MDBuilder MDB(Term->getContext());
692   Term->setMetadata(LLVMContext::MD_prof,
693                     MDB.createBranchWeights(Info.Weights));
694 }
695 
696 /// Clones the body of the loop L, putting it between \p InsertTop and \p
697 /// InsertBot.
698 /// \param IterNumber The serial number of the iteration currently being
699 /// peeled off.
700 /// \param ExitEdges The exit edges of the original loop.
701 /// \param[out] NewBlocks A list of the blocks in the newly created clone
702 /// \param[out] VMap The value map between the loop and the new clone.
703 /// \param LoopBlocks A helper for DFS-traversal of the loop.
704 /// \param LVMap A value-map that maps instructions from the original loop to
705 /// instructions in the last peeled-off iteration.
706 static void cloneLoopBlocks(
707     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
708     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
709     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
710     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
711     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
712     ScalarEvolution &SE) {
713   BasicBlock *Header = L->getHeader();
714   BasicBlock *Latch = L->getLoopLatch();
715   BasicBlock *PreHeader = L->getLoopPreheader();
716 
717   Function *F = Header->getParent();
718   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
719   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
720   Loop *ParentLoop = L->getParentLoop();
721 
722   // For each block in the original loop, create a new copy,
723   // and update the value map with the newly created values.
724   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
725     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
726     NewBlocks.push_back(NewBB);
727 
728     // If an original block is an immediate child of the loop L, its copy
729     // is a child of a ParentLoop after peeling. If a block is a child of
730     // a nested loop, it is handled in the cloneLoop() call below.
731     if (ParentLoop && LI->getLoopFor(*BB) == L)
732       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
733 
734     VMap[*BB] = NewBB;
735 
736     // If dominator tree is available, insert nodes to represent cloned blocks.
737     if (DT) {
738       if (Header == *BB)
739         DT->addNewBlock(NewBB, InsertTop);
740       else {
741         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
742         // VMap must contain entry for IDom, as the iteration order is RPO.
743         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
744       }
745     }
746   }
747 
748   {
749     // Identify what other metadata depends on the cloned version. After
750     // cloning, replace the metadata with the corrected version for both
751     // memory instructions and noalias intrinsics.
752     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
753     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
754                                Header->getContext(), Ext);
755   }
756 
757   // Recursively create the new Loop objects for nested loops, if any,
758   // to preserve LoopInfo.
759   for (Loop *ChildLoop : *L) {
760     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
761   }
762 
763   // Hook-up the control flow for the newly inserted blocks.
764   // The new header is hooked up directly to the "top", which is either
765   // the original loop preheader (for the first iteration) or the previous
766   // iteration's exiting block (for every other iteration)
767   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
768 
769   // Similarly, for the latch:
770   // The original exiting edge is still hooked up to the loop exit.
771   // The backedge now goes to the "bottom", which is either the loop's real
772   // header (for the last peeled iteration) or the copied header of the next
773   // iteration (for every other iteration)
774   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
775   auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
776   for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
777     if (LatchTerm->getSuccessor(idx) == Header) {
778       LatchTerm->setSuccessor(idx, InsertBot);
779       break;
780     }
781   if (DT)
782     DT->changeImmediateDominator(InsertBot, NewLatch);
783 
784   // The new copy of the loop body starts with a bunch of PHI nodes
785   // that pick an incoming value from either the preheader, or the previous
786   // loop iteration. Since this copy is no longer part of the loop, we
787   // resolve this statically:
788   // For the first iteration, we use the value from the preheader directly.
789   // For any other iteration, we replace the phi with the value generated by
790   // the immediately preceding clone of the loop body (which represents
791   // the previous iteration).
792   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
793     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
794     if (IterNumber == 0) {
795       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
796     } else {
797       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
798       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
799       if (LatchInst && L->contains(LatchInst))
800         VMap[&*I] = LVMap[LatchInst];
801       else
802         VMap[&*I] = LatchVal;
803     }
804     NewPHI->eraseFromParent();
805   }
806 
807   // Fix up the outgoing values - we need to add a value for the iteration
808   // we've just created. Note that this must happen *after* the incoming
809   // values are adjusted, since the value going out of the latch may also be
810   // a value coming into the header.
811   for (auto Edge : ExitEdges)
812     for (PHINode &PHI : Edge.second->phis()) {
813       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
814       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
815       if (LatchInst && L->contains(LatchInst))
816         LatchVal = VMap[LatchVal];
817       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
818       SE.forgetValue(&PHI);
819     }
820 
821   // LastValueMap is updated with the values for the current loop
822   // which are used the next time this function is called.
823   for (auto KV : VMap)
824     LVMap[KV.first] = KV.second;
825 }
826 
827 TargetTransformInfo::PeelingPreferences
828 llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
829                                const TargetTransformInfo &TTI,
830                                std::optional<bool> UserAllowPeeling,
831                                std::optional<bool> UserAllowProfileBasedPeeling,
832                                bool UnrollingSpecficValues) {
833   TargetTransformInfo::PeelingPreferences PP;
834 
835   // Set the default values.
836   PP.PeelCount = 0;
837   PP.AllowPeeling = true;
838   PP.AllowLoopNestsPeeling = false;
839   PP.PeelProfiledIterations = true;
840 
841   // Get the target specifc values.
842   TTI.getPeelingPreferences(L, SE, PP);
843 
844   // User specified values using cl::opt.
845   if (UnrollingSpecficValues) {
846     if (UnrollPeelCount.getNumOccurrences() > 0)
847       PP.PeelCount = UnrollPeelCount;
848     if (UnrollAllowPeeling.getNumOccurrences() > 0)
849       PP.AllowPeeling = UnrollAllowPeeling;
850     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
851       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
852   }
853 
854   // User specifed values provided by argument.
855   if (UserAllowPeeling)
856     PP.AllowPeeling = *UserAllowPeeling;
857   if (UserAllowProfileBasedPeeling)
858     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
859 
860   return PP;
861 }
862 
863 /// Peel off the first \p PeelCount iterations of loop \p L.
864 ///
865 /// Note that this does not peel them off as a single straight-line block.
866 /// Rather, each iteration is peeled off separately, and needs to check the
867 /// exit condition.
868 /// For loops that dynamically execute \p PeelCount iterations or less
869 /// this provides a benefit, since the peeled off iterations, which account
870 /// for the bulk of dynamic execution, can be further simplified by scalar
871 /// optimizations.
872 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
873                     ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
874                     bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
875   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
876   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
877 
878   LoopBlocksDFS LoopBlocks(L);
879   LoopBlocks.perform(LI);
880 
881   BasicBlock *Header = L->getHeader();
882   BasicBlock *PreHeader = L->getLoopPreheader();
883   BasicBlock *Latch = L->getLoopLatch();
884   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
885   L->getExitEdges(ExitEdges);
886 
887   // Remember dominators of blocks we might reach through exits to change them
888   // later. Immediate dominator of such block might change, because we add more
889   // routes which can lead to the exit: we can reach it from the peeled
890   // iterations too.
891   DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
892   for (auto *BB : L->blocks()) {
893     auto *BBDomNode = DT.getNode(BB);
894     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
895     for (auto *ChildDomNode : BBDomNode->children()) {
896       auto *ChildBB = ChildDomNode->getBlock();
897       if (!L->contains(ChildBB))
898         ChildrenToUpdate.push_back(ChildBB);
899     }
900     // The new idom of the block will be the nearest common dominator
901     // of all copies of the previous idom. This is equivalent to the
902     // nearest common dominator of the previous idom and the first latch,
903     // which dominates all copies of the previous idom.
904     BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
905     for (auto *ChildBB : ChildrenToUpdate)
906       NonLoopBlocksIDom[ChildBB] = NewIDom;
907   }
908 
909   Function *F = Header->getParent();
910 
911   // Set up all the necessary basic blocks. It is convenient to split the
912   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
913   // body, and a new preheader for the "real" loop.
914 
915   // Peeling the first iteration transforms.
916   //
917   // PreHeader:
918   // ...
919   // Header:
920   //   LoopBody
921   //   If (cond) goto Header
922   // Exit:
923   //
924   // into
925   //
926   // InsertTop:
927   //   LoopBody
928   //   If (!cond) goto Exit
929   // InsertBot:
930   // NewPreHeader:
931   // ...
932   // Header:
933   //  LoopBody
934   //  If (cond) goto Header
935   // Exit:
936   //
937   // Each following iteration will split the current bottom anchor in two,
938   // and put the new copy of the loop body between these two blocks. That is,
939   // after peeling another iteration from the example above, we'll split
940   // InsertBot, and get:
941   //
942   // InsertTop:
943   //   LoopBody
944   //   If (!cond) goto Exit
945   // InsertBot:
946   //   LoopBody
947   //   If (!cond) goto Exit
948   // InsertBot.next:
949   // NewPreHeader:
950   // ...
951   // Header:
952   //  LoopBody
953   //  If (cond) goto Header
954   // Exit:
955 
956   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
957   BasicBlock *InsertBot =
958       SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
959   BasicBlock *NewPreHeader =
960       SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
961 
962   InsertTop->setName(Header->getName() + ".peel.begin");
963   InsertBot->setName(Header->getName() + ".peel.next");
964   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
965 
966   Instruction *LatchTerm =
967       cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
968 
969   // If we have branch weight information, we'll want to update it for the
970   // newly created branches.
971   DenseMap<Instruction *, WeightInfo> Weights;
972   initBranchWeights(Weights, L);
973 
974   // Identify what noalias metadata is inside the loop: if it is inside the
975   // loop, the associated metadata must be cloned for each iteration.
976   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
977   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
978 
979   // For each peeled-off iteration, make a copy of the loop.
980   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
981     SmallVector<BasicBlock *, 8> NewBlocks;
982     ValueToValueMapTy VMap;
983 
984     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
985                     LoopBlocks, VMap, LVMap, &DT, LI,
986                     LoopLocalNoAliasDeclScopes, *SE);
987 
988     // Remap to use values from the current iteration instead of the
989     // previous one.
990     remapInstructionsInBlocks(NewBlocks, VMap);
991 
992     // Update IDoms of the blocks reachable through exits.
993     if (Iter == 0)
994       for (auto BBIDom : NonLoopBlocksIDom)
995         DT.changeImmediateDominator(BBIDom.first,
996                                      cast<BasicBlock>(LVMap[BBIDom.second]));
997 #ifdef EXPENSIVE_CHECKS
998     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
999 #endif
1000 
1001     for (auto &[Term, Info] : Weights) {
1002       auto *TermCopy = cast<Instruction>(VMap[Term]);
1003       updateBranchWeights(TermCopy, Info);
1004     }
1005 
1006     // Remove Loop metadata from the latch branch instruction
1007     // because it is not the Loop's latch branch anymore.
1008     auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
1009     LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
1010 
1011     InsertTop = InsertBot;
1012     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
1013     InsertBot->setName(Header->getName() + ".peel.next");
1014 
1015     F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
1016               F->end());
1017   }
1018 
1019   // Now adjust the phi nodes in the loop header to get their initial values
1020   // from the last peeled-off iteration instead of the preheader.
1021   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
1022     PHINode *PHI = cast<PHINode>(I);
1023     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
1024     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
1025     if (LatchInst && L->contains(LatchInst))
1026       NewVal = LVMap[LatchInst];
1027 
1028     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
1029   }
1030 
1031   for (const auto &[Term, Info] : Weights)
1032     fixupBranchWeights(Term, Info);
1033 
1034   // Update Metadata for count of peeled off iterations.
1035   unsigned AlreadyPeeled = 0;
1036   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
1037     AlreadyPeeled = *Peeled;
1038   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
1039 
1040   if (Loop *ParentLoop = L->getParentLoop())
1041     L = ParentLoop;
1042 
1043   // We modified the loop, update SE.
1044   SE->forgetTopmostLoop(L);
1045   SE->forgetBlockAndLoopDispositions();
1046 
1047 #ifdef EXPENSIVE_CHECKS
1048   // Finally DomtTree must be correct.
1049   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1050 #endif
1051 
1052   // FIXME: Incrementally update loop-simplify
1053   simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
1054 
1055   NumPeeled++;
1056 
1057   return true;
1058 }
1059