1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 // Max recursion depth for collectBitParts used when detecting bswap and 95 // bitreverse idioms 96 static const unsigned BitPartRecursionMaxDepth = 64; 97 98 //===----------------------------------------------------------------------===// 99 // Local constant propagation. 100 // 101 102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 103 /// constant value, convert it into an unconditional branch to the constant 104 /// destination. This is a nontrivial operation because the successors of this 105 /// basic block must have their PHI nodes updated. 106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 107 /// conditions and indirectbr addresses this might make dead if 108 /// DeleteDeadConditions is true. 109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 110 const TargetLibraryInfo *TLI, 111 DomTreeUpdater *DTU) { 112 Instruction *T = BB->getTerminator(); 113 IRBuilder<> Builder(T); 114 115 // Branch - See if we are conditional jumping on constant 116 if (auto *BI = dyn_cast<BranchInst>(T)) { 117 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 118 BasicBlock *Dest1 = BI->getSuccessor(0); 119 BasicBlock *Dest2 = BI->getSuccessor(1); 120 121 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 122 // Are we branching on constant? 123 // YES. Change to unconditional branch... 124 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 125 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 126 127 // Let the basic block know that we are letting go of it. Based on this, 128 // it will adjust it's PHI nodes. 129 OldDest->removePredecessor(BB); 130 131 // Replace the conditional branch with an unconditional one. 132 Builder.CreateBr(Destination); 133 BI->eraseFromParent(); 134 if (DTU) 135 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 136 return true; 137 } 138 139 if (Dest2 == Dest1) { // Conditional branch to same location? 140 // This branch matches something like this: 141 // br bool %cond, label %Dest, label %Dest 142 // and changes it into: br label %Dest 143 144 // Let the basic block know that we are letting go of one copy of it. 145 assert(BI->getParent() && "Terminator not inserted in block!"); 146 Dest1->removePredecessor(BI->getParent()); 147 148 // Replace the conditional branch with an unconditional one. 149 Builder.CreateBr(Dest1); 150 Value *Cond = BI->getCondition(); 151 BI->eraseFromParent(); 152 if (DeleteDeadConditions) 153 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 154 return true; 155 } 156 return false; 157 } 158 159 if (auto *SI = dyn_cast<SwitchInst>(T)) { 160 // If we are switching on a constant, we can convert the switch to an 161 // unconditional branch. 162 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 163 BasicBlock *DefaultDest = SI->getDefaultDest(); 164 BasicBlock *TheOnlyDest = DefaultDest; 165 166 // If the default is unreachable, ignore it when searching for TheOnlyDest. 167 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 168 SI->getNumCases() > 0) { 169 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 170 } 171 172 // Figure out which case it goes to. 173 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 174 // Found case matching a constant operand? 175 if (i->getCaseValue() == CI) { 176 TheOnlyDest = i->getCaseSuccessor(); 177 break; 178 } 179 180 // Check to see if this branch is going to the same place as the default 181 // dest. If so, eliminate it as an explicit compare. 182 if (i->getCaseSuccessor() == DefaultDest) { 183 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 184 unsigned NCases = SI->getNumCases(); 185 // Fold the case metadata into the default if there will be any branches 186 // left, unless the metadata doesn't match the switch. 187 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 188 // Collect branch weights into a vector. 189 SmallVector<uint32_t, 8> Weights; 190 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 191 ++MD_i) { 192 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 193 Weights.push_back(CI->getValue().getZExtValue()); 194 } 195 // Merge weight of this case to the default weight. 196 unsigned idx = i->getCaseIndex(); 197 Weights[0] += Weights[idx+1]; 198 // Remove weight for this case. 199 std::swap(Weights[idx+1], Weights.back()); 200 Weights.pop_back(); 201 SI->setMetadata(LLVMContext::MD_prof, 202 MDBuilder(BB->getContext()). 203 createBranchWeights(Weights)); 204 } 205 // Remove this entry. 206 BasicBlock *ParentBB = SI->getParent(); 207 DefaultDest->removePredecessor(ParentBB); 208 i = SI->removeCase(i); 209 e = SI->case_end(); 210 if (DTU) 211 DTU->applyUpdatesPermissive( 212 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 213 continue; 214 } 215 216 // Otherwise, check to see if the switch only branches to one destination. 217 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 218 // destinations. 219 if (i->getCaseSuccessor() != TheOnlyDest) 220 TheOnlyDest = nullptr; 221 222 // Increment this iterator as we haven't removed the case. 223 ++i; 224 } 225 226 if (CI && !TheOnlyDest) { 227 // Branching on a constant, but not any of the cases, go to the default 228 // successor. 229 TheOnlyDest = SI->getDefaultDest(); 230 } 231 232 // If we found a single destination that we can fold the switch into, do so 233 // now. 234 if (TheOnlyDest) { 235 // Insert the new branch. 236 Builder.CreateBr(TheOnlyDest); 237 BasicBlock *BB = SI->getParent(); 238 std::vector <DominatorTree::UpdateType> Updates; 239 if (DTU) 240 Updates.reserve(SI->getNumSuccessors() - 1); 241 242 // Remove entries from PHI nodes which we no longer branch to... 243 for (BasicBlock *Succ : successors(SI)) { 244 // Found case matching a constant operand? 245 if (Succ == TheOnlyDest) { 246 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 247 } else { 248 Succ->removePredecessor(BB); 249 if (DTU) 250 Updates.push_back({DominatorTree::Delete, BB, Succ}); 251 } 252 } 253 254 // Delete the old switch. 255 Value *Cond = SI->getCondition(); 256 SI->eraseFromParent(); 257 if (DeleteDeadConditions) 258 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 259 if (DTU) 260 DTU->applyUpdatesPermissive(Updates); 261 return true; 262 } 263 264 if (SI->getNumCases() == 1) { 265 // Otherwise, we can fold this switch into a conditional branch 266 // instruction if it has only one non-default destination. 267 auto FirstCase = *SI->case_begin(); 268 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 269 FirstCase.getCaseValue(), "cond"); 270 271 // Insert the new branch. 272 BranchInst *NewBr = Builder.CreateCondBr(Cond, 273 FirstCase.getCaseSuccessor(), 274 SI->getDefaultDest()); 275 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 276 if (MD && MD->getNumOperands() == 3) { 277 ConstantInt *SICase = 278 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 279 ConstantInt *SIDef = 280 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 281 assert(SICase && SIDef); 282 // The TrueWeight should be the weight for the single case of SI. 283 NewBr->setMetadata(LLVMContext::MD_prof, 284 MDBuilder(BB->getContext()). 285 createBranchWeights(SICase->getValue().getZExtValue(), 286 SIDef->getValue().getZExtValue())); 287 } 288 289 // Update make.implicit metadata to the newly-created conditional branch. 290 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 291 if (MakeImplicitMD) 292 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 293 294 // Delete the old switch. 295 SI->eraseFromParent(); 296 return true; 297 } 298 return false; 299 } 300 301 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 302 // indirectbr blockaddress(@F, @BB) -> br label @BB 303 if (auto *BA = 304 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 305 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 306 std::vector <DominatorTree::UpdateType> Updates; 307 if (DTU) 308 Updates.reserve(IBI->getNumDestinations() - 1); 309 310 // Insert the new branch. 311 Builder.CreateBr(TheOnlyDest); 312 313 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 314 if (IBI->getDestination(i) == TheOnlyDest) { 315 TheOnlyDest = nullptr; 316 } else { 317 BasicBlock *ParentBB = IBI->getParent(); 318 BasicBlock *DestBB = IBI->getDestination(i); 319 DestBB->removePredecessor(ParentBB); 320 if (DTU) 321 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 322 } 323 } 324 Value *Address = IBI->getAddress(); 325 IBI->eraseFromParent(); 326 if (DeleteDeadConditions) 327 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 328 329 // If we didn't find our destination in the IBI successor list, then we 330 // have undefined behavior. Replace the unconditional branch with an 331 // 'unreachable' instruction. 332 if (TheOnlyDest) { 333 BB->getTerminator()->eraseFromParent(); 334 new UnreachableInst(BB->getContext(), BB); 335 } 336 337 if (DTU) 338 DTU->applyUpdatesPermissive(Updates); 339 return true; 340 } 341 } 342 343 return false; 344 } 345 346 //===----------------------------------------------------------------------===// 347 // Local dead code elimination. 348 // 349 350 /// isInstructionTriviallyDead - Return true if the result produced by the 351 /// instruction is not used, and the instruction has no side effects. 352 /// 353 bool llvm::isInstructionTriviallyDead(Instruction *I, 354 const TargetLibraryInfo *TLI) { 355 if (!I->use_empty()) 356 return false; 357 return wouldInstructionBeTriviallyDead(I, TLI); 358 } 359 360 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 361 const TargetLibraryInfo *TLI) { 362 if (I->isTerminator()) 363 return false; 364 365 // We don't want the landingpad-like instructions removed by anything this 366 // general. 367 if (I->isEHPad()) 368 return false; 369 370 // We don't want debug info removed by anything this general, unless 371 // debug info is empty. 372 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 373 if (DDI->getAddress()) 374 return false; 375 return true; 376 } 377 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 378 if (DVI->getValue()) 379 return false; 380 return true; 381 } 382 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 383 if (DLI->getLabel()) 384 return false; 385 return true; 386 } 387 388 if (!I->mayHaveSideEffects()) 389 return true; 390 391 // Special case intrinsics that "may have side effects" but can be deleted 392 // when dead. 393 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 394 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 395 if (II->getIntrinsicID() == Intrinsic::stacksave || 396 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 397 return true; 398 399 // Lifetime intrinsics are dead when their right-hand is undef. 400 if (II->isLifetimeStartOrEnd()) 401 return isa<UndefValue>(II->getArgOperand(1)); 402 403 // Assumptions are dead if their condition is trivially true. Guards on 404 // true are operationally no-ops. In the future we can consider more 405 // sophisticated tradeoffs for guards considering potential for check 406 // widening, but for now we keep things simple. 407 if (II->getIntrinsicID() == Intrinsic::assume || 408 II->getIntrinsicID() == Intrinsic::experimental_guard) { 409 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 410 return !Cond->isZero(); 411 412 return false; 413 } 414 } 415 416 if (isAllocLikeFn(I, TLI)) 417 return true; 418 419 if (CallInst *CI = isFreeCall(I, TLI)) 420 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 421 return C->isNullValue() || isa<UndefValue>(C); 422 423 if (auto *Call = dyn_cast<CallBase>(I)) 424 if (isMathLibCallNoop(Call, TLI)) 425 return true; 426 427 return false; 428 } 429 430 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 431 /// trivially dead instruction, delete it. If that makes any of its operands 432 /// trivially dead, delete them too, recursively. Return true if any 433 /// instructions were deleted. 434 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 435 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 436 Instruction *I = dyn_cast<Instruction>(V); 437 if (!I || !isInstructionTriviallyDead(I, TLI)) 438 return false; 439 440 SmallVector<Instruction*, 16> DeadInsts; 441 DeadInsts.push_back(I); 442 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 443 444 return true; 445 } 446 447 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 448 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 449 MemorySSAUpdater *MSSAU) { 450 // Process the dead instruction list until empty. 451 while (!DeadInsts.empty()) { 452 Instruction &I = *DeadInsts.pop_back_val(); 453 assert(I.use_empty() && "Instructions with uses are not dead."); 454 assert(isInstructionTriviallyDead(&I, TLI) && 455 "Live instruction found in dead worklist!"); 456 457 // Don't lose the debug info while deleting the instructions. 458 salvageDebugInfo(I); 459 460 // Null out all of the instruction's operands to see if any operand becomes 461 // dead as we go. 462 for (Use &OpU : I.operands()) { 463 Value *OpV = OpU.get(); 464 OpU.set(nullptr); 465 466 if (!OpV->use_empty()) 467 continue; 468 469 // If the operand is an instruction that became dead as we nulled out the 470 // operand, and if it is 'trivially' dead, delete it in a future loop 471 // iteration. 472 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 473 if (isInstructionTriviallyDead(OpI, TLI)) 474 DeadInsts.push_back(OpI); 475 } 476 if (MSSAU) 477 MSSAU->removeMemoryAccess(&I); 478 479 I.eraseFromParent(); 480 } 481 } 482 483 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 484 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 485 findDbgUsers(DbgUsers, I); 486 for (auto *DII : DbgUsers) { 487 Value *Undef = UndefValue::get(I->getType()); 488 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 489 ValueAsMetadata::get(Undef))); 490 } 491 return !DbgUsers.empty(); 492 } 493 494 /// areAllUsesEqual - Check whether the uses of a value are all the same. 495 /// This is similar to Instruction::hasOneUse() except this will also return 496 /// true when there are no uses or multiple uses that all refer to the same 497 /// value. 498 static bool areAllUsesEqual(Instruction *I) { 499 Value::user_iterator UI = I->user_begin(); 500 Value::user_iterator UE = I->user_end(); 501 if (UI == UE) 502 return true; 503 504 User *TheUse = *UI; 505 for (++UI; UI != UE; ++UI) { 506 if (*UI != TheUse) 507 return false; 508 } 509 return true; 510 } 511 512 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 513 /// dead PHI node, due to being a def-use chain of single-use nodes that 514 /// either forms a cycle or is terminated by a trivially dead instruction, 515 /// delete it. If that makes any of its operands trivially dead, delete them 516 /// too, recursively. Return true if a change was made. 517 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 518 const TargetLibraryInfo *TLI) { 519 SmallPtrSet<Instruction*, 4> Visited; 520 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 521 I = cast<Instruction>(*I->user_begin())) { 522 if (I->use_empty()) 523 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 524 525 // If we find an instruction more than once, we're on a cycle that 526 // won't prove fruitful. 527 if (!Visited.insert(I).second) { 528 // Break the cycle and delete the instruction and its operands. 529 I->replaceAllUsesWith(UndefValue::get(I->getType())); 530 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 531 return true; 532 } 533 } 534 return false; 535 } 536 537 static bool 538 simplifyAndDCEInstruction(Instruction *I, 539 SmallSetVector<Instruction *, 16> &WorkList, 540 const DataLayout &DL, 541 const TargetLibraryInfo *TLI) { 542 if (isInstructionTriviallyDead(I, TLI)) { 543 salvageDebugInfo(*I); 544 545 // Null out all of the instruction's operands to see if any operand becomes 546 // dead as we go. 547 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 548 Value *OpV = I->getOperand(i); 549 I->setOperand(i, nullptr); 550 551 if (!OpV->use_empty() || I == OpV) 552 continue; 553 554 // If the operand is an instruction that became dead as we nulled out the 555 // operand, and if it is 'trivially' dead, delete it in a future loop 556 // iteration. 557 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 558 if (isInstructionTriviallyDead(OpI, TLI)) 559 WorkList.insert(OpI); 560 } 561 562 I->eraseFromParent(); 563 564 return true; 565 } 566 567 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 568 // Add the users to the worklist. CAREFUL: an instruction can use itself, 569 // in the case of a phi node. 570 for (User *U : I->users()) { 571 if (U != I) { 572 WorkList.insert(cast<Instruction>(U)); 573 } 574 } 575 576 // Replace the instruction with its simplified value. 577 bool Changed = false; 578 if (!I->use_empty()) { 579 I->replaceAllUsesWith(SimpleV); 580 Changed = true; 581 } 582 if (isInstructionTriviallyDead(I, TLI)) { 583 I->eraseFromParent(); 584 Changed = true; 585 } 586 return Changed; 587 } 588 return false; 589 } 590 591 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 592 /// simplify any instructions in it and recursively delete dead instructions. 593 /// 594 /// This returns true if it changed the code, note that it can delete 595 /// instructions in other blocks as well in this block. 596 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 597 const TargetLibraryInfo *TLI) { 598 bool MadeChange = false; 599 const DataLayout &DL = BB->getModule()->getDataLayout(); 600 601 #ifndef NDEBUG 602 // In debug builds, ensure that the terminator of the block is never replaced 603 // or deleted by these simplifications. The idea of simplification is that it 604 // cannot introduce new instructions, and there is no way to replace the 605 // terminator of a block without introducing a new instruction. 606 AssertingVH<Instruction> TerminatorVH(&BB->back()); 607 #endif 608 609 SmallSetVector<Instruction *, 16> WorkList; 610 // Iterate over the original function, only adding insts to the worklist 611 // if they actually need to be revisited. This avoids having to pre-init 612 // the worklist with the entire function's worth of instructions. 613 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 614 BI != E;) { 615 assert(!BI->isTerminator()); 616 Instruction *I = &*BI; 617 ++BI; 618 619 // We're visiting this instruction now, so make sure it's not in the 620 // worklist from an earlier visit. 621 if (!WorkList.count(I)) 622 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 623 } 624 625 while (!WorkList.empty()) { 626 Instruction *I = WorkList.pop_back_val(); 627 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 628 } 629 return MadeChange; 630 } 631 632 //===----------------------------------------------------------------------===// 633 // Control Flow Graph Restructuring. 634 // 635 636 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 637 /// method is called when we're about to delete Pred as a predecessor of BB. If 638 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 639 /// 640 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 641 /// nodes that collapse into identity values. For example, if we have: 642 /// x = phi(1, 0, 0, 0) 643 /// y = and x, z 644 /// 645 /// .. and delete the predecessor corresponding to the '1', this will attempt to 646 /// recursively fold the and to 0. 647 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 648 DomTreeUpdater *DTU) { 649 // This only adjusts blocks with PHI nodes. 650 if (!isa<PHINode>(BB->begin())) 651 return; 652 653 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 654 // them down. This will leave us with single entry phi nodes and other phis 655 // that can be removed. 656 BB->removePredecessor(Pred, true); 657 658 WeakTrackingVH PhiIt = &BB->front(); 659 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 660 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 661 Value *OldPhiIt = PhiIt; 662 663 if (!recursivelySimplifyInstruction(PN)) 664 continue; 665 666 // If recursive simplification ended up deleting the next PHI node we would 667 // iterate to, then our iterator is invalid, restart scanning from the top 668 // of the block. 669 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 670 } 671 if (DTU) 672 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 673 } 674 675 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 676 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 677 /// between them, moving the instructions in the predecessor into DestBB and 678 /// deleting the predecessor block. 679 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 680 DomTreeUpdater *DTU) { 681 682 // If BB has single-entry PHI nodes, fold them. 683 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 684 Value *NewVal = PN->getIncomingValue(0); 685 // Replace self referencing PHI with undef, it must be dead. 686 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 687 PN->replaceAllUsesWith(NewVal); 688 PN->eraseFromParent(); 689 } 690 691 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 692 assert(PredBB && "Block doesn't have a single predecessor!"); 693 694 bool ReplaceEntryBB = false; 695 if (PredBB == &DestBB->getParent()->getEntryBlock()) 696 ReplaceEntryBB = true; 697 698 // DTU updates: Collect all the edges that enter 699 // PredBB. These dominator edges will be redirected to DestBB. 700 SmallVector<DominatorTree::UpdateType, 32> Updates; 701 702 if (DTU) { 703 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 704 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 705 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 706 // This predecessor of PredBB may already have DestBB as a successor. 707 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 708 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 709 } 710 } 711 712 // Zap anything that took the address of DestBB. Not doing this will give the 713 // address an invalid value. 714 if (DestBB->hasAddressTaken()) { 715 BlockAddress *BA = BlockAddress::get(DestBB); 716 Constant *Replacement = 717 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 718 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 719 BA->getType())); 720 BA->destroyConstant(); 721 } 722 723 // Anything that branched to PredBB now branches to DestBB. 724 PredBB->replaceAllUsesWith(DestBB); 725 726 // Splice all the instructions from PredBB to DestBB. 727 PredBB->getTerminator()->eraseFromParent(); 728 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 729 new UnreachableInst(PredBB->getContext(), PredBB); 730 731 // If the PredBB is the entry block of the function, move DestBB up to 732 // become the entry block after we erase PredBB. 733 if (ReplaceEntryBB) 734 DestBB->moveAfter(PredBB); 735 736 if (DTU) { 737 assert(PredBB->getInstList().size() == 1 && 738 isa<UnreachableInst>(PredBB->getTerminator()) && 739 "The successor list of PredBB isn't empty before " 740 "applying corresponding DTU updates."); 741 DTU->applyUpdatesPermissive(Updates); 742 DTU->deleteBB(PredBB); 743 // Recalculation of DomTree is needed when updating a forward DomTree and 744 // the Entry BB is replaced. 745 if (ReplaceEntryBB && DTU->hasDomTree()) { 746 // The entry block was removed and there is no external interface for 747 // the dominator tree to be notified of this change. In this corner-case 748 // we recalculate the entire tree. 749 DTU->recalculate(*(DestBB->getParent())); 750 } 751 } 752 753 else { 754 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 755 } 756 } 757 758 /// CanMergeValues - Return true if we can choose one of these values to use 759 /// in place of the other. Note that we will always choose the non-undef 760 /// value to keep. 761 static bool CanMergeValues(Value *First, Value *Second) { 762 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 763 } 764 765 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 766 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 767 /// 768 /// Assumption: Succ is the single successor for BB. 769 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 770 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 771 772 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 773 << Succ->getName() << "\n"); 774 // Shortcut, if there is only a single predecessor it must be BB and merging 775 // is always safe 776 if (Succ->getSinglePredecessor()) return true; 777 778 // Make a list of the predecessors of BB 779 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 780 781 // Look at all the phi nodes in Succ, to see if they present a conflict when 782 // merging these blocks 783 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 784 PHINode *PN = cast<PHINode>(I); 785 786 // If the incoming value from BB is again a PHINode in 787 // BB which has the same incoming value for *PI as PN does, we can 788 // merge the phi nodes and then the blocks can still be merged 789 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 790 if (BBPN && BBPN->getParent() == BB) { 791 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 792 BasicBlock *IBB = PN->getIncomingBlock(PI); 793 if (BBPreds.count(IBB) && 794 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 795 PN->getIncomingValue(PI))) { 796 LLVM_DEBUG(dbgs() 797 << "Can't fold, phi node " << PN->getName() << " in " 798 << Succ->getName() << " is conflicting with " 799 << BBPN->getName() << " with regard to common predecessor " 800 << IBB->getName() << "\n"); 801 return false; 802 } 803 } 804 } else { 805 Value* Val = PN->getIncomingValueForBlock(BB); 806 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 807 // See if the incoming value for the common predecessor is equal to the 808 // one for BB, in which case this phi node will not prevent the merging 809 // of the block. 810 BasicBlock *IBB = PN->getIncomingBlock(PI); 811 if (BBPreds.count(IBB) && 812 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 813 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 814 << " in " << Succ->getName() 815 << " is conflicting with regard to common " 816 << "predecessor " << IBB->getName() << "\n"); 817 return false; 818 } 819 } 820 } 821 } 822 823 return true; 824 } 825 826 using PredBlockVector = SmallVector<BasicBlock *, 16>; 827 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 828 829 /// Determines the value to use as the phi node input for a block. 830 /// 831 /// Select between \p OldVal any value that we know flows from \p BB 832 /// to a particular phi on the basis of which one (if either) is not 833 /// undef. Update IncomingValues based on the selected value. 834 /// 835 /// \param OldVal The value we are considering selecting. 836 /// \param BB The block that the value flows in from. 837 /// \param IncomingValues A map from block-to-value for other phi inputs 838 /// that we have examined. 839 /// 840 /// \returns the selected value. 841 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 842 IncomingValueMap &IncomingValues) { 843 if (!isa<UndefValue>(OldVal)) { 844 assert((!IncomingValues.count(BB) || 845 IncomingValues.find(BB)->second == OldVal) && 846 "Expected OldVal to match incoming value from BB!"); 847 848 IncomingValues.insert(std::make_pair(BB, OldVal)); 849 return OldVal; 850 } 851 852 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 853 if (It != IncomingValues.end()) return It->second; 854 855 return OldVal; 856 } 857 858 /// Create a map from block to value for the operands of a 859 /// given phi. 860 /// 861 /// Create a map from block to value for each non-undef value flowing 862 /// into \p PN. 863 /// 864 /// \param PN The phi we are collecting the map for. 865 /// \param IncomingValues [out] The map from block to value for this phi. 866 static void gatherIncomingValuesToPhi(PHINode *PN, 867 IncomingValueMap &IncomingValues) { 868 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 869 BasicBlock *BB = PN->getIncomingBlock(i); 870 Value *V = PN->getIncomingValue(i); 871 872 if (!isa<UndefValue>(V)) 873 IncomingValues.insert(std::make_pair(BB, V)); 874 } 875 } 876 877 /// Replace the incoming undef values to a phi with the values 878 /// from a block-to-value map. 879 /// 880 /// \param PN The phi we are replacing the undefs in. 881 /// \param IncomingValues A map from block to value. 882 static void replaceUndefValuesInPhi(PHINode *PN, 883 const IncomingValueMap &IncomingValues) { 884 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 885 Value *V = PN->getIncomingValue(i); 886 887 if (!isa<UndefValue>(V)) continue; 888 889 BasicBlock *BB = PN->getIncomingBlock(i); 890 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 891 if (It == IncomingValues.end()) continue; 892 893 PN->setIncomingValue(i, It->second); 894 } 895 } 896 897 /// Replace a value flowing from a block to a phi with 898 /// potentially multiple instances of that value flowing from the 899 /// block's predecessors to the phi. 900 /// 901 /// \param BB The block with the value flowing into the phi. 902 /// \param BBPreds The predecessors of BB. 903 /// \param PN The phi that we are updating. 904 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 905 const PredBlockVector &BBPreds, 906 PHINode *PN) { 907 Value *OldVal = PN->removeIncomingValue(BB, false); 908 assert(OldVal && "No entry in PHI for Pred BB!"); 909 910 IncomingValueMap IncomingValues; 911 912 // We are merging two blocks - BB, and the block containing PN - and 913 // as a result we need to redirect edges from the predecessors of BB 914 // to go to the block containing PN, and update PN 915 // accordingly. Since we allow merging blocks in the case where the 916 // predecessor and successor blocks both share some predecessors, 917 // and where some of those common predecessors might have undef 918 // values flowing into PN, we want to rewrite those values to be 919 // consistent with the non-undef values. 920 921 gatherIncomingValuesToPhi(PN, IncomingValues); 922 923 // If this incoming value is one of the PHI nodes in BB, the new entries 924 // in the PHI node are the entries from the old PHI. 925 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 926 PHINode *OldValPN = cast<PHINode>(OldVal); 927 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 928 // Note that, since we are merging phi nodes and BB and Succ might 929 // have common predecessors, we could end up with a phi node with 930 // identical incoming branches. This will be cleaned up later (and 931 // will trigger asserts if we try to clean it up now, without also 932 // simplifying the corresponding conditional branch). 933 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 934 Value *PredVal = OldValPN->getIncomingValue(i); 935 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 936 IncomingValues); 937 938 // And add a new incoming value for this predecessor for the 939 // newly retargeted branch. 940 PN->addIncoming(Selected, PredBB); 941 } 942 } else { 943 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 944 // Update existing incoming values in PN for this 945 // predecessor of BB. 946 BasicBlock *PredBB = BBPreds[i]; 947 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 948 IncomingValues); 949 950 // And add a new incoming value for this predecessor for the 951 // newly retargeted branch. 952 PN->addIncoming(Selected, PredBB); 953 } 954 } 955 956 replaceUndefValuesInPhi(PN, IncomingValues); 957 } 958 959 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 960 /// unconditional branch, and contains no instructions other than PHI nodes, 961 /// potential side-effect free intrinsics and the branch. If possible, 962 /// eliminate BB by rewriting all the predecessors to branch to the successor 963 /// block and return true. If we can't transform, return false. 964 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 965 DomTreeUpdater *DTU) { 966 assert(BB != &BB->getParent()->getEntryBlock() && 967 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 968 969 // We can't eliminate infinite loops. 970 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 971 if (BB == Succ) return false; 972 973 // Check to see if merging these blocks would cause conflicts for any of the 974 // phi nodes in BB or Succ. If not, we can safely merge. 975 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 976 977 // Check for cases where Succ has multiple predecessors and a PHI node in BB 978 // has uses which will not disappear when the PHI nodes are merged. It is 979 // possible to handle such cases, but difficult: it requires checking whether 980 // BB dominates Succ, which is non-trivial to calculate in the case where 981 // Succ has multiple predecessors. Also, it requires checking whether 982 // constructing the necessary self-referential PHI node doesn't introduce any 983 // conflicts; this isn't too difficult, but the previous code for doing this 984 // was incorrect. 985 // 986 // Note that if this check finds a live use, BB dominates Succ, so BB is 987 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 988 // folding the branch isn't profitable in that case anyway. 989 if (!Succ->getSinglePredecessor()) { 990 BasicBlock::iterator BBI = BB->begin(); 991 while (isa<PHINode>(*BBI)) { 992 for (Use &U : BBI->uses()) { 993 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 994 if (PN->getIncomingBlock(U) != BB) 995 return false; 996 } else { 997 return false; 998 } 999 } 1000 ++BBI; 1001 } 1002 } 1003 1004 // We cannot fold the block if it's a branch to an already present callbr 1005 // successor because that creates duplicate successors. 1006 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1007 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1008 if (Succ == CBI->getDefaultDest()) 1009 return false; 1010 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1011 if (Succ == CBI->getIndirectDest(i)) 1012 return false; 1013 } 1014 } 1015 1016 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1017 1018 SmallVector<DominatorTree::UpdateType, 32> Updates; 1019 if (DTU) { 1020 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1021 // All predecessors of BB will be moved to Succ. 1022 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1023 Updates.push_back({DominatorTree::Delete, *I, BB}); 1024 // This predecessor of BB may already have Succ as a successor. 1025 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1026 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1027 } 1028 } 1029 1030 if (isa<PHINode>(Succ->begin())) { 1031 // If there is more than one pred of succ, and there are PHI nodes in 1032 // the successor, then we need to add incoming edges for the PHI nodes 1033 // 1034 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1035 1036 // Loop over all of the PHI nodes in the successor of BB. 1037 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1038 PHINode *PN = cast<PHINode>(I); 1039 1040 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1041 } 1042 } 1043 1044 if (Succ->getSinglePredecessor()) { 1045 // BB is the only predecessor of Succ, so Succ will end up with exactly 1046 // the same predecessors BB had. 1047 1048 // Copy over any phi, debug or lifetime instruction. 1049 BB->getTerminator()->eraseFromParent(); 1050 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1051 BB->getInstList()); 1052 } else { 1053 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1054 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1055 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1056 PN->eraseFromParent(); 1057 } 1058 } 1059 1060 // If the unconditional branch we replaced contains llvm.loop metadata, we 1061 // add the metadata to the branch instructions in the predecessors. 1062 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1063 Instruction *TI = BB->getTerminator(); 1064 if (TI) 1065 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1066 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1067 BasicBlock *Pred = *PI; 1068 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1069 } 1070 1071 // Everything that jumped to BB now goes to Succ. 1072 BB->replaceAllUsesWith(Succ); 1073 if (!Succ->hasName()) Succ->takeName(BB); 1074 1075 // Clear the successor list of BB to match updates applying to DTU later. 1076 if (BB->getTerminator()) 1077 BB->getInstList().pop_back(); 1078 new UnreachableInst(BB->getContext(), BB); 1079 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1080 "applying corresponding DTU updates."); 1081 1082 if (DTU) { 1083 DTU->applyUpdatesPermissive(Updates); 1084 DTU->deleteBB(BB); 1085 } else { 1086 BB->eraseFromParent(); // Delete the old basic block. 1087 } 1088 return true; 1089 } 1090 1091 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1092 /// nodes in this block. This doesn't try to be clever about PHI nodes 1093 /// which differ only in the order of the incoming values, but instcombine 1094 /// orders them so it usually won't matter. 1095 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1096 // This implementation doesn't currently consider undef operands 1097 // specially. Theoretically, two phis which are identical except for 1098 // one having an undef where the other doesn't could be collapsed. 1099 1100 struct PHIDenseMapInfo { 1101 static PHINode *getEmptyKey() { 1102 return DenseMapInfo<PHINode *>::getEmptyKey(); 1103 } 1104 1105 static PHINode *getTombstoneKey() { 1106 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1107 } 1108 1109 static unsigned getHashValue(PHINode *PN) { 1110 // Compute a hash value on the operands. Instcombine will likely have 1111 // sorted them, which helps expose duplicates, but we have to check all 1112 // the operands to be safe in case instcombine hasn't run. 1113 return static_cast<unsigned>(hash_combine( 1114 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1115 hash_combine_range(PN->block_begin(), PN->block_end()))); 1116 } 1117 1118 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1119 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1120 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1121 return LHS == RHS; 1122 return LHS->isIdenticalTo(RHS); 1123 } 1124 }; 1125 1126 // Set of unique PHINodes. 1127 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1128 1129 // Examine each PHI. 1130 bool Changed = false; 1131 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1132 auto Inserted = PHISet.insert(PN); 1133 if (!Inserted.second) { 1134 // A duplicate. Replace this PHI with its duplicate. 1135 PN->replaceAllUsesWith(*Inserted.first); 1136 PN->eraseFromParent(); 1137 Changed = true; 1138 1139 // The RAUW can change PHIs that we already visited. Start over from the 1140 // beginning. 1141 PHISet.clear(); 1142 I = BB->begin(); 1143 } 1144 } 1145 1146 return Changed; 1147 } 1148 1149 /// enforceKnownAlignment - If the specified pointer points to an object that 1150 /// we control, modify the object's alignment to PrefAlign. This isn't 1151 /// often possible though. If alignment is important, a more reliable approach 1152 /// is to simply align all global variables and allocation instructions to 1153 /// their preferred alignment from the beginning. 1154 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1155 unsigned PrefAlign, 1156 const DataLayout &DL) { 1157 assert(PrefAlign > Align); 1158 1159 V = V->stripPointerCasts(); 1160 1161 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1162 // TODO: ideally, computeKnownBits ought to have used 1163 // AllocaInst::getAlignment() in its computation already, making 1164 // the below max redundant. But, as it turns out, 1165 // stripPointerCasts recurses through infinite layers of bitcasts, 1166 // while computeKnownBits is not allowed to traverse more than 6 1167 // levels. 1168 Align = std::max(AI->getAlignment(), Align); 1169 if (PrefAlign <= Align) 1170 return Align; 1171 1172 // If the preferred alignment is greater than the natural stack alignment 1173 // then don't round up. This avoids dynamic stack realignment. 1174 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1175 return Align; 1176 AI->setAlignment(PrefAlign); 1177 return PrefAlign; 1178 } 1179 1180 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1181 // TODO: as above, this shouldn't be necessary. 1182 Align = std::max(GO->getAlignment(), Align); 1183 if (PrefAlign <= Align) 1184 return Align; 1185 1186 // If there is a large requested alignment and we can, bump up the alignment 1187 // of the global. If the memory we set aside for the global may not be the 1188 // memory used by the final program then it is impossible for us to reliably 1189 // enforce the preferred alignment. 1190 if (!GO->canIncreaseAlignment()) 1191 return Align; 1192 1193 GO->setAlignment(PrefAlign); 1194 return PrefAlign; 1195 } 1196 1197 return Align; 1198 } 1199 1200 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1201 const DataLayout &DL, 1202 const Instruction *CxtI, 1203 AssumptionCache *AC, 1204 const DominatorTree *DT) { 1205 assert(V->getType()->isPointerTy() && 1206 "getOrEnforceKnownAlignment expects a pointer!"); 1207 1208 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1209 unsigned TrailZ = Known.countMinTrailingZeros(); 1210 1211 // Avoid trouble with ridiculously large TrailZ values, such as 1212 // those computed from a null pointer. 1213 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1214 1215 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1216 1217 // LLVM doesn't support alignments larger than this currently. 1218 Align = std::min(Align, +Value::MaximumAlignment); 1219 1220 if (PrefAlign > Align) 1221 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1222 1223 // We don't need to make any adjustment. 1224 return Align; 1225 } 1226 1227 ///===---------------------------------------------------------------------===// 1228 /// Dbg Intrinsic utilities 1229 /// 1230 1231 /// See if there is a dbg.value intrinsic for DIVar before I. 1232 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1233 Instruction *I) { 1234 // Since we can't guarantee that the original dbg.declare instrinsic 1235 // is removed by LowerDbgDeclare(), we need to make sure that we are 1236 // not inserting the same dbg.value intrinsic over and over. 1237 BasicBlock::InstListType::iterator PrevI(I); 1238 if (PrevI != I->getParent()->getInstList().begin()) { 1239 --PrevI; 1240 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1241 if (DVI->getValue() == I->getOperand(0) && 1242 DVI->getVariable() == DIVar && 1243 DVI->getExpression() == DIExpr) 1244 return true; 1245 } 1246 return false; 1247 } 1248 1249 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1250 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1251 DIExpression *DIExpr, 1252 PHINode *APN) { 1253 // Since we can't guarantee that the original dbg.declare instrinsic 1254 // is removed by LowerDbgDeclare(), we need to make sure that we are 1255 // not inserting the same dbg.value intrinsic over and over. 1256 SmallVector<DbgValueInst *, 1> DbgValues; 1257 findDbgValues(DbgValues, APN); 1258 for (auto *DVI : DbgValues) { 1259 assert(DVI->getValue() == APN); 1260 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1261 return true; 1262 } 1263 return false; 1264 } 1265 1266 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1267 /// (or fragment of the variable) described by \p DII. 1268 /// 1269 /// This is primarily intended as a helper for the different 1270 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1271 /// converted describes an alloca'd variable, so we need to use the 1272 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1273 /// identified as covering an n-bit fragment, if the store size of i1 is at 1274 /// least n bits. 1275 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1276 const DataLayout &DL = DII->getModule()->getDataLayout(); 1277 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1278 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1279 return ValueSize >= *FragmentSize; 1280 // We can't always calculate the size of the DI variable (e.g. if it is a 1281 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1282 // intead. 1283 if (DII->isAddressOfVariable()) 1284 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1285 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1286 return ValueSize >= *FragmentSize; 1287 // Could not determine size of variable. Conservatively return false. 1288 return false; 1289 } 1290 1291 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1292 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1293 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1294 /// case this DebugLoc leaks into any adjacent instructions. 1295 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1296 // Original dbg.declare must have a location. 1297 DebugLoc DeclareLoc = DII->getDebugLoc(); 1298 MDNode *Scope = DeclareLoc.getScope(); 1299 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1300 // Produce an unknown location with the correct scope / inlinedAt fields. 1301 return DebugLoc::get(0, 0, Scope, InlinedAt); 1302 } 1303 1304 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1305 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1306 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1307 StoreInst *SI, DIBuilder &Builder) { 1308 assert(DII->isAddressOfVariable()); 1309 auto *DIVar = DII->getVariable(); 1310 assert(DIVar && "Missing variable"); 1311 auto *DIExpr = DII->getExpression(); 1312 Value *DV = SI->getValueOperand(); 1313 1314 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1315 1316 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1317 // FIXME: If storing to a part of the variable described by the dbg.declare, 1318 // then we want to insert a dbg.value for the corresponding fragment. 1319 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1320 << *DII << '\n'); 1321 // For now, when there is a store to parts of the variable (but we do not 1322 // know which part) we insert an dbg.value instrinsic to indicate that we 1323 // know nothing about the variable's content. 1324 DV = UndefValue::get(DV->getType()); 1325 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1326 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1327 return; 1328 } 1329 1330 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1331 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1332 } 1333 1334 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1335 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1336 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1337 LoadInst *LI, DIBuilder &Builder) { 1338 auto *DIVar = DII->getVariable(); 1339 auto *DIExpr = DII->getExpression(); 1340 assert(DIVar && "Missing variable"); 1341 1342 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1343 return; 1344 1345 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1346 // FIXME: If only referring to a part of the variable described by the 1347 // dbg.declare, then we want to insert a dbg.value for the corresponding 1348 // fragment. 1349 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1350 << *DII << '\n'); 1351 return; 1352 } 1353 1354 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1355 1356 // We are now tracking the loaded value instead of the address. In the 1357 // future if multi-location support is added to the IR, it might be 1358 // preferable to keep tracking both the loaded value and the original 1359 // address in case the alloca can not be elided. 1360 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1361 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1362 DbgValue->insertAfter(LI); 1363 } 1364 1365 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1366 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1367 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1368 PHINode *APN, DIBuilder &Builder) { 1369 auto *DIVar = DII->getVariable(); 1370 auto *DIExpr = DII->getExpression(); 1371 assert(DIVar && "Missing variable"); 1372 1373 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1374 return; 1375 1376 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1377 // FIXME: If only referring to a part of the variable described by the 1378 // dbg.declare, then we want to insert a dbg.value for the corresponding 1379 // fragment. 1380 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1381 << *DII << '\n'); 1382 return; 1383 } 1384 1385 BasicBlock *BB = APN->getParent(); 1386 auto InsertionPt = BB->getFirstInsertionPt(); 1387 1388 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1389 1390 // The block may be a catchswitch block, which does not have a valid 1391 // insertion point. 1392 // FIXME: Insert dbg.value markers in the successors when appropriate. 1393 if (InsertionPt != BB->end()) 1394 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1395 } 1396 1397 /// Determine whether this alloca is either a VLA or an array. 1398 static bool isArray(AllocaInst *AI) { 1399 return AI->isArrayAllocation() || 1400 AI->getType()->getElementType()->isArrayTy(); 1401 } 1402 1403 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1404 /// of llvm.dbg.value intrinsics. 1405 bool llvm::LowerDbgDeclare(Function &F) { 1406 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1407 SmallVector<DbgDeclareInst *, 4> Dbgs; 1408 for (auto &FI : F) 1409 for (Instruction &BI : FI) 1410 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1411 Dbgs.push_back(DDI); 1412 1413 if (Dbgs.empty()) 1414 return false; 1415 1416 for (auto &I : Dbgs) { 1417 DbgDeclareInst *DDI = I; 1418 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1419 // If this is an alloca for a scalar variable, insert a dbg.value 1420 // at each load and store to the alloca and erase the dbg.declare. 1421 // The dbg.values allow tracking a variable even if it is not 1422 // stored on the stack, while the dbg.declare can only describe 1423 // the stack slot (and at a lexical-scope granularity). Later 1424 // passes will attempt to elide the stack slot. 1425 if (!AI || isArray(AI)) 1426 continue; 1427 1428 // A volatile load/store means that the alloca can't be elided anyway. 1429 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1430 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1431 return LI->isVolatile(); 1432 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1433 return SI->isVolatile(); 1434 return false; 1435 })) 1436 continue; 1437 1438 for (auto &AIUse : AI->uses()) { 1439 User *U = AIUse.getUser(); 1440 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1441 if (AIUse.getOperandNo() == 1) 1442 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1443 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1444 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1445 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1446 // This is a call by-value or some other instruction that takes a 1447 // pointer to the variable. Insert a *value* intrinsic that describes 1448 // the variable by dereferencing the alloca. 1449 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1450 auto *DerefExpr = 1451 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1452 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, NewLoc, 1453 CI); 1454 } 1455 } 1456 DDI->eraseFromParent(); 1457 } 1458 return true; 1459 } 1460 1461 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1462 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1463 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1464 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1465 if (InsertedPHIs.size() == 0) 1466 return; 1467 1468 // Map existing PHI nodes to their dbg.values. 1469 ValueToValueMapTy DbgValueMap; 1470 for (auto &I : *BB) { 1471 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1472 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1473 DbgValueMap.insert({Loc, DbgII}); 1474 } 1475 } 1476 if (DbgValueMap.size() == 0) 1477 return; 1478 1479 // Then iterate through the new PHIs and look to see if they use one of the 1480 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1481 // propagate the info through the new PHI. 1482 LLVMContext &C = BB->getContext(); 1483 for (auto PHI : InsertedPHIs) { 1484 BasicBlock *Parent = PHI->getParent(); 1485 // Avoid inserting an intrinsic into an EH block. 1486 if (Parent->getFirstNonPHI()->isEHPad()) 1487 continue; 1488 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1489 for (auto VI : PHI->operand_values()) { 1490 auto V = DbgValueMap.find(VI); 1491 if (V != DbgValueMap.end()) { 1492 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1493 Instruction *NewDbgII = DbgII->clone(); 1494 NewDbgII->setOperand(0, PhiMAV); 1495 auto InsertionPt = Parent->getFirstInsertionPt(); 1496 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1497 NewDbgII->insertBefore(&*InsertionPt); 1498 } 1499 } 1500 } 1501 } 1502 1503 /// Finds all intrinsics declaring local variables as living in the memory that 1504 /// 'V' points to. This may include a mix of dbg.declare and 1505 /// dbg.addr intrinsics. 1506 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1507 // This function is hot. Check whether the value has any metadata to avoid a 1508 // DenseMap lookup. 1509 if (!V->isUsedByMetadata()) 1510 return {}; 1511 auto *L = LocalAsMetadata::getIfExists(V); 1512 if (!L) 1513 return {}; 1514 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1515 if (!MDV) 1516 return {}; 1517 1518 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1519 for (User *U : MDV->users()) { 1520 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1521 if (DII->isAddressOfVariable()) 1522 Declares.push_back(DII); 1523 } 1524 1525 return Declares; 1526 } 1527 1528 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1529 // This function is hot. Check whether the value has any metadata to avoid a 1530 // DenseMap lookup. 1531 if (!V->isUsedByMetadata()) 1532 return; 1533 if (auto *L = LocalAsMetadata::getIfExists(V)) 1534 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1535 for (User *U : MDV->users()) 1536 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1537 DbgValues.push_back(DVI); 1538 } 1539 1540 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1541 Value *V) { 1542 // This function is hot. Check whether the value has any metadata to avoid a 1543 // DenseMap lookup. 1544 if (!V->isUsedByMetadata()) 1545 return; 1546 if (auto *L = LocalAsMetadata::getIfExists(V)) 1547 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1548 for (User *U : MDV->users()) 1549 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1550 DbgUsers.push_back(DII); 1551 } 1552 1553 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1554 Instruction *InsertBefore, DIBuilder &Builder, 1555 uint8_t DIExprFlags, int Offset) { 1556 auto DbgAddrs = FindDbgAddrUses(Address); 1557 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1558 DebugLoc Loc = DII->getDebugLoc(); 1559 auto *DIVar = DII->getVariable(); 1560 auto *DIExpr = DII->getExpression(); 1561 assert(DIVar && "Missing variable"); 1562 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1563 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1564 // llvm.dbg.declare. 1565 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1566 if (DII == InsertBefore) 1567 InsertBefore = InsertBefore->getNextNode(); 1568 DII->eraseFromParent(); 1569 } 1570 return !DbgAddrs.empty(); 1571 } 1572 1573 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1574 DIBuilder &Builder, uint8_t DIExprFlags, 1575 int Offset) { 1576 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1577 DIExprFlags, Offset); 1578 } 1579 1580 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1581 DIBuilder &Builder, int Offset) { 1582 DebugLoc Loc = DVI->getDebugLoc(); 1583 auto *DIVar = DVI->getVariable(); 1584 auto *DIExpr = DVI->getExpression(); 1585 assert(DIVar && "Missing variable"); 1586 1587 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1588 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1589 // it and give up. 1590 if (!DIExpr || DIExpr->getNumElements() < 1 || 1591 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1592 return; 1593 1594 // Insert the offset immediately after the first deref. 1595 // We could just change the offset argument of dbg.value, but it's unsigned... 1596 if (Offset) { 1597 SmallVector<uint64_t, 4> Ops; 1598 Ops.push_back(dwarf::DW_OP_deref); 1599 DIExpression::appendOffset(Ops, Offset); 1600 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1601 DIExpr = Builder.createExpression(Ops); 1602 } 1603 1604 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1605 DVI->eraseFromParent(); 1606 } 1607 1608 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1609 DIBuilder &Builder, int Offset) { 1610 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1611 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1612 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1613 Use &U = *UI++; 1614 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1615 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1616 } 1617 } 1618 1619 /// Wrap \p V in a ValueAsMetadata instance. 1620 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1621 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1622 } 1623 1624 bool llvm::salvageDebugInfo(Instruction &I) { 1625 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1626 findDbgUsers(DbgUsers, &I); 1627 if (DbgUsers.empty()) 1628 return false; 1629 1630 return salvageDebugInfoForDbgValues(I, DbgUsers); 1631 } 1632 1633 bool llvm::salvageDebugInfoForDbgValues( 1634 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1635 auto &Ctx = I.getContext(); 1636 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1637 1638 for (auto *DII : DbgUsers) { 1639 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1640 // are implicitly pointing out the value as a DWARF memory location 1641 // description. 1642 bool StackValue = isa<DbgValueInst>(DII); 1643 1644 DIExpression *DIExpr = 1645 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1646 1647 // salvageDebugInfoImpl should fail on examining the first element of 1648 // DbgUsers, or none of them. 1649 if (!DIExpr) 1650 return false; 1651 1652 DII->setOperand(0, wrapMD(I.getOperand(0))); 1653 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1654 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1655 } 1656 1657 return true; 1658 } 1659 1660 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1661 DIExpression *SrcDIExpr, 1662 bool WithStackValue) { 1663 auto &M = *I.getModule(); 1664 auto &DL = M.getDataLayout(); 1665 1666 // Apply a vector of opcodes to the source DIExpression. 1667 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1668 DIExpression *DIExpr = SrcDIExpr; 1669 if (!Ops.empty()) { 1670 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1671 } 1672 return DIExpr; 1673 }; 1674 1675 // Apply the given offset to the source DIExpression. 1676 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1677 SmallVector<uint64_t, 8> Ops; 1678 DIExpression::appendOffset(Ops, Offset); 1679 return doSalvage(Ops); 1680 }; 1681 1682 // initializer-list helper for applying operators to the source DIExpression. 1683 auto applyOps = 1684 [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * { 1685 SmallVector<uint64_t, 8> Ops(Opcodes); 1686 return doSalvage(Ops); 1687 }; 1688 1689 if (auto *CI = dyn_cast<CastInst>(&I)) { 1690 // No-op casts and zexts are irrelevant for debug info. 1691 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1692 return SrcDIExpr; 1693 return nullptr; 1694 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1695 unsigned BitWidth = 1696 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1697 // Rewrite a constant GEP into a DIExpression. 1698 APInt Offset(BitWidth, 0); 1699 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1700 return applyOffset(Offset.getSExtValue()); 1701 } else { 1702 return nullptr; 1703 } 1704 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1705 // Rewrite binary operations with constant integer operands. 1706 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1707 if (!ConstInt || ConstInt->getBitWidth() > 64) 1708 return nullptr; 1709 1710 uint64_t Val = ConstInt->getSExtValue(); 1711 switch (BI->getOpcode()) { 1712 case Instruction::Add: 1713 return applyOffset(Val); 1714 case Instruction::Sub: 1715 return applyOffset(-int64_t(Val)); 1716 case Instruction::Mul: 1717 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1718 case Instruction::SDiv: 1719 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1720 case Instruction::SRem: 1721 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1722 case Instruction::Or: 1723 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1724 case Instruction::And: 1725 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1726 case Instruction::Xor: 1727 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1728 case Instruction::Shl: 1729 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1730 case Instruction::LShr: 1731 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1732 case Instruction::AShr: 1733 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1734 default: 1735 // TODO: Salvage constants from each kind of binop we know about. 1736 return nullptr; 1737 } 1738 // *Not* to do: we should not attempt to salvage load instructions, 1739 // because the validity and lifetime of a dbg.value containing 1740 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1741 } 1742 return nullptr; 1743 } 1744 1745 /// A replacement for a dbg.value expression. 1746 using DbgValReplacement = Optional<DIExpression *>; 1747 1748 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1749 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1750 /// changes are made. 1751 static bool rewriteDebugUsers( 1752 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1753 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1754 // Find debug users of From. 1755 SmallVector<DbgVariableIntrinsic *, 1> Users; 1756 findDbgUsers(Users, &From); 1757 if (Users.empty()) 1758 return false; 1759 1760 // Prevent use-before-def of To. 1761 bool Changed = false; 1762 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1763 if (isa<Instruction>(&To)) { 1764 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1765 1766 for (auto *DII : Users) { 1767 // It's common to see a debug user between From and DomPoint. Move it 1768 // after DomPoint to preserve the variable update without any reordering. 1769 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1770 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1771 DII->moveAfter(&DomPoint); 1772 Changed = true; 1773 1774 // Users which otherwise aren't dominated by the replacement value must 1775 // be salvaged or deleted. 1776 } else if (!DT.dominates(&DomPoint, DII)) { 1777 DeleteOrSalvage.insert(DII); 1778 } 1779 } 1780 } 1781 1782 // Update debug users without use-before-def risk. 1783 for (auto *DII : Users) { 1784 if (DeleteOrSalvage.count(DII)) 1785 continue; 1786 1787 LLVMContext &Ctx = DII->getContext(); 1788 DbgValReplacement DVR = RewriteExpr(*DII); 1789 if (!DVR) 1790 continue; 1791 1792 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1793 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1794 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1795 Changed = true; 1796 } 1797 1798 if (!DeleteOrSalvage.empty()) { 1799 // Try to salvage the remaining debug users. 1800 Changed |= salvageDebugInfo(From); 1801 1802 // Delete the debug users which weren't salvaged. 1803 for (auto *DII : DeleteOrSalvage) { 1804 if (DII->getVariableLocation() == &From) { 1805 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1806 DII->eraseFromParent(); 1807 Changed = true; 1808 } 1809 } 1810 } 1811 1812 return Changed; 1813 } 1814 1815 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1816 /// losslessly preserve the bits and semantics of the value. This predicate is 1817 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1818 /// 1819 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1820 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1821 /// and also does not allow lossless pointer <-> integer conversions. 1822 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1823 Type *ToTy) { 1824 // Trivially compatible types. 1825 if (FromTy == ToTy) 1826 return true; 1827 1828 // Handle compatible pointer <-> integer conversions. 1829 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1830 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1831 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1832 !DL.isNonIntegralPointerType(ToTy); 1833 return SameSize && LosslessConversion; 1834 } 1835 1836 // TODO: This is not exhaustive. 1837 return false; 1838 } 1839 1840 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1841 Instruction &DomPoint, DominatorTree &DT) { 1842 // Exit early if From has no debug users. 1843 if (!From.isUsedByMetadata()) 1844 return false; 1845 1846 assert(&From != &To && "Can't replace something with itself"); 1847 1848 Type *FromTy = From.getType(); 1849 Type *ToTy = To.getType(); 1850 1851 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1852 return DII.getExpression(); 1853 }; 1854 1855 // Handle no-op conversions. 1856 Module &M = *From.getModule(); 1857 const DataLayout &DL = M.getDataLayout(); 1858 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1859 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1860 1861 // Handle integer-to-integer widening and narrowing. 1862 // FIXME: Use DW_OP_convert when it's available everywhere. 1863 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1864 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1865 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1866 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1867 1868 // When the width of the result grows, assume that a debugger will only 1869 // access the low `FromBits` bits when inspecting the source variable. 1870 if (FromBits < ToBits) 1871 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1872 1873 // The width of the result has shrunk. Use sign/zero extension to describe 1874 // the source variable's high bits. 1875 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1876 DILocalVariable *Var = DII.getVariable(); 1877 1878 // Without knowing signedness, sign/zero extension isn't possible. 1879 auto Signedness = Var->getSignedness(); 1880 if (!Signedness) 1881 return None; 1882 1883 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1884 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned; 1885 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_LLVM_convert, ToBits, TK, 1886 dwarf::DW_OP_LLVM_convert, FromBits, TK}); 1887 return DIExpression::appendToStack(DII.getExpression(), Ops); 1888 }; 1889 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1890 } 1891 1892 // TODO: Floating-point conversions, vectors. 1893 return false; 1894 } 1895 1896 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1897 unsigned NumDeadInst = 0; 1898 // Delete the instructions backwards, as it has a reduced likelihood of 1899 // having to update as many def-use and use-def chains. 1900 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1901 while (EndInst != &BB->front()) { 1902 // Delete the next to last instruction. 1903 Instruction *Inst = &*--EndInst->getIterator(); 1904 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1905 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1906 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1907 EndInst = Inst; 1908 continue; 1909 } 1910 if (!isa<DbgInfoIntrinsic>(Inst)) 1911 ++NumDeadInst; 1912 Inst->eraseFromParent(); 1913 } 1914 return NumDeadInst; 1915 } 1916 1917 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1918 bool PreserveLCSSA, DomTreeUpdater *DTU, 1919 MemorySSAUpdater *MSSAU) { 1920 BasicBlock *BB = I->getParent(); 1921 std::vector <DominatorTree::UpdateType> Updates; 1922 1923 if (MSSAU) 1924 MSSAU->changeToUnreachable(I); 1925 1926 // Loop over all of the successors, removing BB's entry from any PHI 1927 // nodes. 1928 if (DTU) 1929 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1930 for (BasicBlock *Successor : successors(BB)) { 1931 Successor->removePredecessor(BB, PreserveLCSSA); 1932 if (DTU) 1933 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1934 } 1935 // Insert a call to llvm.trap right before this. This turns the undefined 1936 // behavior into a hard fail instead of falling through into random code. 1937 if (UseLLVMTrap) { 1938 Function *TrapFn = 1939 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1940 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1941 CallTrap->setDebugLoc(I->getDebugLoc()); 1942 } 1943 auto *UI = new UnreachableInst(I->getContext(), I); 1944 UI->setDebugLoc(I->getDebugLoc()); 1945 1946 // All instructions after this are dead. 1947 unsigned NumInstrsRemoved = 0; 1948 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1949 while (BBI != BBE) { 1950 if (!BBI->use_empty()) 1951 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1952 BB->getInstList().erase(BBI++); 1953 ++NumInstrsRemoved; 1954 } 1955 if (DTU) 1956 DTU->applyUpdatesPermissive(Updates); 1957 return NumInstrsRemoved; 1958 } 1959 1960 /// changeToCall - Convert the specified invoke into a normal call. 1961 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1962 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1963 SmallVector<OperandBundleDef, 1> OpBundles; 1964 II->getOperandBundlesAsDefs(OpBundles); 1965 CallInst *NewCall = CallInst::Create( 1966 II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II); 1967 NewCall->takeName(II); 1968 NewCall->setCallingConv(II->getCallingConv()); 1969 NewCall->setAttributes(II->getAttributes()); 1970 NewCall->setDebugLoc(II->getDebugLoc()); 1971 NewCall->copyMetadata(*II); 1972 II->replaceAllUsesWith(NewCall); 1973 1974 // Follow the call by a branch to the normal destination. 1975 BasicBlock *NormalDestBB = II->getNormalDest(); 1976 BranchInst::Create(NormalDestBB, II); 1977 1978 // Update PHI nodes in the unwind destination 1979 BasicBlock *BB = II->getParent(); 1980 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1981 UnwindDestBB->removePredecessor(BB); 1982 II->eraseFromParent(); 1983 if (DTU) 1984 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 1985 } 1986 1987 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1988 BasicBlock *UnwindEdge) { 1989 BasicBlock *BB = CI->getParent(); 1990 1991 // Convert this function call into an invoke instruction. First, split the 1992 // basic block. 1993 BasicBlock *Split = 1994 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1995 1996 // Delete the unconditional branch inserted by splitBasicBlock 1997 BB->getInstList().pop_back(); 1998 1999 // Create the new invoke instruction. 2000 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2001 SmallVector<OperandBundleDef, 1> OpBundles; 2002 2003 CI->getOperandBundlesAsDefs(OpBundles); 2004 2005 // Note: we're round tripping operand bundles through memory here, and that 2006 // can potentially be avoided with a cleverer API design that we do not have 2007 // as of this time. 2008 2009 InvokeInst *II = 2010 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 2011 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2012 II->setDebugLoc(CI->getDebugLoc()); 2013 II->setCallingConv(CI->getCallingConv()); 2014 II->setAttributes(CI->getAttributes()); 2015 2016 // Make sure that anything using the call now uses the invoke! This also 2017 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2018 CI->replaceAllUsesWith(II); 2019 2020 // Delete the original call 2021 Split->getInstList().pop_front(); 2022 return Split; 2023 } 2024 2025 static bool markAliveBlocks(Function &F, 2026 SmallPtrSetImpl<BasicBlock *> &Reachable, 2027 DomTreeUpdater *DTU = nullptr) { 2028 SmallVector<BasicBlock*, 128> Worklist; 2029 BasicBlock *BB = &F.front(); 2030 Worklist.push_back(BB); 2031 Reachable.insert(BB); 2032 bool Changed = false; 2033 do { 2034 BB = Worklist.pop_back_val(); 2035 2036 // Do a quick scan of the basic block, turning any obviously unreachable 2037 // instructions into LLVM unreachable insts. The instruction combining pass 2038 // canonicalizes unreachable insts into stores to null or undef. 2039 for (Instruction &I : *BB) { 2040 if (auto *CI = dyn_cast<CallInst>(&I)) { 2041 Value *Callee = CI->getCalledValue(); 2042 // Handle intrinsic calls. 2043 if (Function *F = dyn_cast<Function>(Callee)) { 2044 auto IntrinsicID = F->getIntrinsicID(); 2045 // Assumptions that are known to be false are equivalent to 2046 // unreachable. Also, if the condition is undefined, then we make the 2047 // choice most beneficial to the optimizer, and choose that to also be 2048 // unreachable. 2049 if (IntrinsicID == Intrinsic::assume) { 2050 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2051 // Don't insert a call to llvm.trap right before the unreachable. 2052 changeToUnreachable(CI, false, false, DTU); 2053 Changed = true; 2054 break; 2055 } 2056 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2057 // A call to the guard intrinsic bails out of the current 2058 // compilation unit if the predicate passed to it is false. If the 2059 // predicate is a constant false, then we know the guard will bail 2060 // out of the current compile unconditionally, so all code following 2061 // it is dead. 2062 // 2063 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2064 // guards to treat `undef` as `false` since a guard on `undef` can 2065 // still be useful for widening. 2066 if (match(CI->getArgOperand(0), m_Zero())) 2067 if (!isa<UnreachableInst>(CI->getNextNode())) { 2068 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2069 false, DTU); 2070 Changed = true; 2071 break; 2072 } 2073 } 2074 } else if ((isa<ConstantPointerNull>(Callee) && 2075 !NullPointerIsDefined(CI->getFunction())) || 2076 isa<UndefValue>(Callee)) { 2077 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2078 Changed = true; 2079 break; 2080 } 2081 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2082 // If we found a call to a no-return function, insert an unreachable 2083 // instruction after it. Make sure there isn't *already* one there 2084 // though. 2085 if (!isa<UnreachableInst>(CI->getNextNode())) { 2086 // Don't insert a call to llvm.trap right before the unreachable. 2087 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2088 Changed = true; 2089 } 2090 break; 2091 } 2092 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2093 // Store to undef and store to null are undefined and used to signal 2094 // that they should be changed to unreachable by passes that can't 2095 // modify the CFG. 2096 2097 // Don't touch volatile stores. 2098 if (SI->isVolatile()) continue; 2099 2100 Value *Ptr = SI->getOperand(1); 2101 2102 if (isa<UndefValue>(Ptr) || 2103 (isa<ConstantPointerNull>(Ptr) && 2104 !NullPointerIsDefined(SI->getFunction(), 2105 SI->getPointerAddressSpace()))) { 2106 changeToUnreachable(SI, true, false, DTU); 2107 Changed = true; 2108 break; 2109 } 2110 } 2111 } 2112 2113 Instruction *Terminator = BB->getTerminator(); 2114 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2115 // Turn invokes that call 'nounwind' functions into ordinary calls. 2116 Value *Callee = II->getCalledValue(); 2117 if ((isa<ConstantPointerNull>(Callee) && 2118 !NullPointerIsDefined(BB->getParent())) || 2119 isa<UndefValue>(Callee)) { 2120 changeToUnreachable(II, true, false, DTU); 2121 Changed = true; 2122 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2123 if (II->use_empty() && II->onlyReadsMemory()) { 2124 // jump to the normal destination branch. 2125 BasicBlock *NormalDestBB = II->getNormalDest(); 2126 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2127 BranchInst::Create(NormalDestBB, II); 2128 UnwindDestBB->removePredecessor(II->getParent()); 2129 II->eraseFromParent(); 2130 if (DTU) 2131 DTU->applyUpdatesPermissive( 2132 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2133 } else 2134 changeToCall(II, DTU); 2135 Changed = true; 2136 } 2137 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2138 // Remove catchpads which cannot be reached. 2139 struct CatchPadDenseMapInfo { 2140 static CatchPadInst *getEmptyKey() { 2141 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2142 } 2143 2144 static CatchPadInst *getTombstoneKey() { 2145 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2146 } 2147 2148 static unsigned getHashValue(CatchPadInst *CatchPad) { 2149 return static_cast<unsigned>(hash_combine_range( 2150 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2151 } 2152 2153 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2154 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2155 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2156 return LHS == RHS; 2157 return LHS->isIdenticalTo(RHS); 2158 } 2159 }; 2160 2161 // Set of unique CatchPads. 2162 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2163 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2164 HandlerSet; 2165 detail::DenseSetEmpty Empty; 2166 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2167 E = CatchSwitch->handler_end(); 2168 I != E; ++I) { 2169 BasicBlock *HandlerBB = *I; 2170 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2171 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2172 CatchSwitch->removeHandler(I); 2173 --I; 2174 --E; 2175 Changed = true; 2176 } 2177 } 2178 } 2179 2180 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2181 for (BasicBlock *Successor : successors(BB)) 2182 if (Reachable.insert(Successor).second) 2183 Worklist.push_back(Successor); 2184 } while (!Worklist.empty()); 2185 return Changed; 2186 } 2187 2188 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2189 Instruction *TI = BB->getTerminator(); 2190 2191 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2192 changeToCall(II, DTU); 2193 return; 2194 } 2195 2196 Instruction *NewTI; 2197 BasicBlock *UnwindDest; 2198 2199 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2200 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2201 UnwindDest = CRI->getUnwindDest(); 2202 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2203 auto *NewCatchSwitch = CatchSwitchInst::Create( 2204 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2205 CatchSwitch->getName(), CatchSwitch); 2206 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2207 NewCatchSwitch->addHandler(PadBB); 2208 2209 NewTI = NewCatchSwitch; 2210 UnwindDest = CatchSwitch->getUnwindDest(); 2211 } else { 2212 llvm_unreachable("Could not find unwind successor"); 2213 } 2214 2215 NewTI->takeName(TI); 2216 NewTI->setDebugLoc(TI->getDebugLoc()); 2217 UnwindDest->removePredecessor(BB); 2218 TI->replaceAllUsesWith(NewTI); 2219 TI->eraseFromParent(); 2220 if (DTU) 2221 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2222 } 2223 2224 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2225 /// if they are in a dead cycle. Return true if a change was made, false 2226 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2227 /// after modifying the CFG. 2228 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2229 DomTreeUpdater *DTU, 2230 MemorySSAUpdater *MSSAU) { 2231 SmallPtrSet<BasicBlock*, 16> Reachable; 2232 bool Changed = markAliveBlocks(F, Reachable, DTU); 2233 2234 // If there are unreachable blocks in the CFG... 2235 if (Reachable.size() == F.size()) 2236 return Changed; 2237 2238 assert(Reachable.size() < F.size()); 2239 NumRemoved += F.size()-Reachable.size(); 2240 2241 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2242 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2243 auto *BB = &*I; 2244 if (Reachable.count(BB)) 2245 continue; 2246 DeadBlockSet.insert(BB); 2247 } 2248 2249 if (MSSAU) 2250 MSSAU->removeBlocks(DeadBlockSet); 2251 2252 // Loop over all of the basic blocks that are not reachable, dropping all of 2253 // their internal references. Update DTU and LVI if available. 2254 std::vector<DominatorTree::UpdateType> Updates; 2255 for (auto *BB : DeadBlockSet) { 2256 for (BasicBlock *Successor : successors(BB)) { 2257 if (!DeadBlockSet.count(Successor)) 2258 Successor->removePredecessor(BB); 2259 if (DTU) 2260 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2261 } 2262 if (LVI) 2263 LVI->eraseBlock(BB); 2264 BB->dropAllReferences(); 2265 } 2266 for (Function::iterator I = ++F.begin(); I != F.end();) { 2267 auto *BB = &*I; 2268 if (Reachable.count(BB)) { 2269 ++I; 2270 continue; 2271 } 2272 if (DTU) { 2273 // Remove the terminator of BB to clear the successor list of BB. 2274 if (BB->getTerminator()) 2275 BB->getInstList().pop_back(); 2276 new UnreachableInst(BB->getContext(), BB); 2277 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2278 "applying corresponding DTU updates."); 2279 ++I; 2280 } else { 2281 I = F.getBasicBlockList().erase(I); 2282 } 2283 } 2284 2285 if (DTU) { 2286 DTU->applyUpdatesPermissive(Updates); 2287 bool Deleted = false; 2288 for (auto *BB : DeadBlockSet) { 2289 if (DTU->isBBPendingDeletion(BB)) 2290 --NumRemoved; 2291 else 2292 Deleted = true; 2293 DTU->deleteBB(BB); 2294 } 2295 if (!Deleted) 2296 return false; 2297 } 2298 return true; 2299 } 2300 2301 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2302 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2303 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2304 K->dropUnknownNonDebugMetadata(KnownIDs); 2305 K->getAllMetadataOtherThanDebugLoc(Metadata); 2306 for (const auto &MD : Metadata) { 2307 unsigned Kind = MD.first; 2308 MDNode *JMD = J->getMetadata(Kind); 2309 MDNode *KMD = MD.second; 2310 2311 switch (Kind) { 2312 default: 2313 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2314 break; 2315 case LLVMContext::MD_dbg: 2316 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2317 case LLVMContext::MD_tbaa: 2318 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2319 break; 2320 case LLVMContext::MD_alias_scope: 2321 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2322 break; 2323 case LLVMContext::MD_noalias: 2324 case LLVMContext::MD_mem_parallel_loop_access: 2325 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2326 break; 2327 case LLVMContext::MD_access_group: 2328 K->setMetadata(LLVMContext::MD_access_group, 2329 intersectAccessGroups(K, J)); 2330 break; 2331 case LLVMContext::MD_range: 2332 2333 // If K does move, use most generic range. Otherwise keep the range of 2334 // K. 2335 if (DoesKMove) 2336 // FIXME: If K does move, we should drop the range info and nonnull. 2337 // Currently this function is used with DoesKMove in passes 2338 // doing hoisting/sinking and the current behavior of using the 2339 // most generic range is correct in those cases. 2340 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2341 break; 2342 case LLVMContext::MD_fpmath: 2343 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2344 break; 2345 case LLVMContext::MD_invariant_load: 2346 // Only set the !invariant.load if it is present in both instructions. 2347 K->setMetadata(Kind, JMD); 2348 break; 2349 case LLVMContext::MD_nonnull: 2350 // If K does move, keep nonull if it is present in both instructions. 2351 if (DoesKMove) 2352 K->setMetadata(Kind, JMD); 2353 break; 2354 case LLVMContext::MD_invariant_group: 2355 // Preserve !invariant.group in K. 2356 break; 2357 case LLVMContext::MD_align: 2358 K->setMetadata(Kind, 2359 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2360 break; 2361 case LLVMContext::MD_dereferenceable: 2362 case LLVMContext::MD_dereferenceable_or_null: 2363 K->setMetadata(Kind, 2364 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2365 break; 2366 } 2367 } 2368 // Set !invariant.group from J if J has it. If both instructions have it 2369 // then we will just pick it from J - even when they are different. 2370 // Also make sure that K is load or store - f.e. combining bitcast with load 2371 // could produce bitcast with invariant.group metadata, which is invalid. 2372 // FIXME: we should try to preserve both invariant.group md if they are 2373 // different, but right now instruction can only have one invariant.group. 2374 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2375 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2376 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2377 } 2378 2379 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2380 bool KDominatesJ) { 2381 unsigned KnownIDs[] = { 2382 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2383 LLVMContext::MD_noalias, LLVMContext::MD_range, 2384 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2385 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2386 LLVMContext::MD_dereferenceable, 2387 LLVMContext::MD_dereferenceable_or_null, 2388 LLVMContext::MD_access_group}; 2389 combineMetadata(K, J, KnownIDs, KDominatesJ); 2390 } 2391 2392 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2393 auto *ReplInst = dyn_cast<Instruction>(Repl); 2394 if (!ReplInst) 2395 return; 2396 2397 // Patch the replacement so that it is not more restrictive than the value 2398 // being replaced. 2399 // Note that if 'I' is a load being replaced by some operation, 2400 // for example, by an arithmetic operation, then andIRFlags() 2401 // would just erase all math flags from the original arithmetic 2402 // operation, which is clearly not wanted and not needed. 2403 if (!isa<LoadInst>(I)) 2404 ReplInst->andIRFlags(I); 2405 2406 // FIXME: If both the original and replacement value are part of the 2407 // same control-flow region (meaning that the execution of one 2408 // guarantees the execution of the other), then we can combine the 2409 // noalias scopes here and do better than the general conservative 2410 // answer used in combineMetadata(). 2411 2412 // In general, GVN unifies expressions over different control-flow 2413 // regions, and so we need a conservative combination of the noalias 2414 // scopes. 2415 static const unsigned KnownIDs[] = { 2416 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2417 LLVMContext::MD_noalias, LLVMContext::MD_range, 2418 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2419 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2420 LLVMContext::MD_access_group}; 2421 combineMetadata(ReplInst, I, KnownIDs, false); 2422 } 2423 2424 template <typename RootType, typename DominatesFn> 2425 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2426 const RootType &Root, 2427 const DominatesFn &Dominates) { 2428 assert(From->getType() == To->getType()); 2429 2430 unsigned Count = 0; 2431 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2432 UI != UE;) { 2433 Use &U = *UI++; 2434 if (!Dominates(Root, U)) 2435 continue; 2436 U.set(To); 2437 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2438 << "' as " << *To << " in " << *U << "\n"); 2439 ++Count; 2440 } 2441 return Count; 2442 } 2443 2444 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2445 assert(From->getType() == To->getType()); 2446 auto *BB = From->getParent(); 2447 unsigned Count = 0; 2448 2449 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2450 UI != UE;) { 2451 Use &U = *UI++; 2452 auto *I = cast<Instruction>(U.getUser()); 2453 if (I->getParent() == BB) 2454 continue; 2455 U.set(To); 2456 ++Count; 2457 } 2458 return Count; 2459 } 2460 2461 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2462 DominatorTree &DT, 2463 const BasicBlockEdge &Root) { 2464 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2465 return DT.dominates(Root, U); 2466 }; 2467 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2468 } 2469 2470 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2471 DominatorTree &DT, 2472 const BasicBlock *BB) { 2473 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2474 auto *I = cast<Instruction>(U.getUser())->getParent(); 2475 return DT.properlyDominates(BB, I); 2476 }; 2477 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2478 } 2479 2480 bool llvm::callsGCLeafFunction(const CallBase *Call, 2481 const TargetLibraryInfo &TLI) { 2482 // Check if the function is specifically marked as a gc leaf function. 2483 if (Call->hasFnAttr("gc-leaf-function")) 2484 return true; 2485 if (const Function *F = Call->getCalledFunction()) { 2486 if (F->hasFnAttribute("gc-leaf-function")) 2487 return true; 2488 2489 if (auto IID = F->getIntrinsicID()) 2490 // Most LLVM intrinsics do not take safepoints. 2491 return IID != Intrinsic::experimental_gc_statepoint && 2492 IID != Intrinsic::experimental_deoptimize; 2493 } 2494 2495 // Lib calls can be materialized by some passes, and won't be 2496 // marked as 'gc-leaf-function.' All available Libcalls are 2497 // GC-leaf. 2498 LibFunc LF; 2499 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) { 2500 return TLI.has(LF); 2501 } 2502 2503 return false; 2504 } 2505 2506 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2507 LoadInst &NewLI) { 2508 auto *NewTy = NewLI.getType(); 2509 2510 // This only directly applies if the new type is also a pointer. 2511 if (NewTy->isPointerTy()) { 2512 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2513 return; 2514 } 2515 2516 // The only other translation we can do is to integral loads with !range 2517 // metadata. 2518 if (!NewTy->isIntegerTy()) 2519 return; 2520 2521 MDBuilder MDB(NewLI.getContext()); 2522 const Value *Ptr = OldLI.getPointerOperand(); 2523 auto *ITy = cast<IntegerType>(NewTy); 2524 auto *NullInt = ConstantExpr::getPtrToInt( 2525 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2526 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2527 NewLI.setMetadata(LLVMContext::MD_range, 2528 MDB.createRange(NonNullInt, NullInt)); 2529 } 2530 2531 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2532 MDNode *N, LoadInst &NewLI) { 2533 auto *NewTy = NewLI.getType(); 2534 2535 // Give up unless it is converted to a pointer where there is a single very 2536 // valuable mapping we can do reliably. 2537 // FIXME: It would be nice to propagate this in more ways, but the type 2538 // conversions make it hard. 2539 if (!NewTy->isPointerTy()) 2540 return; 2541 2542 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2543 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2544 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2545 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2546 } 2547 } 2548 2549 void llvm::dropDebugUsers(Instruction &I) { 2550 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2551 findDbgUsers(DbgUsers, &I); 2552 for (auto *DII : DbgUsers) 2553 DII->eraseFromParent(); 2554 } 2555 2556 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2557 BasicBlock *BB) { 2558 // Since we are moving the instructions out of its basic block, we do not 2559 // retain their original debug locations (DILocations) and debug intrinsic 2560 // instructions. 2561 // 2562 // Doing so would degrade the debugging experience and adversely affect the 2563 // accuracy of profiling information. 2564 // 2565 // Currently, when hoisting the instructions, we take the following actions: 2566 // - Remove their debug intrinsic instructions. 2567 // - Set their debug locations to the values from the insertion point. 2568 // 2569 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2570 // need to be deleted, is because there will not be any instructions with a 2571 // DILocation in either branch left after performing the transformation. We 2572 // can only insert a dbg.value after the two branches are joined again. 2573 // 2574 // See PR38762, PR39243 for more details. 2575 // 2576 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2577 // encode predicated DIExpressions that yield different results on different 2578 // code paths. 2579 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2580 Instruction *I = &*II; 2581 I->dropUnknownNonDebugMetadata(); 2582 if (I->isUsedByMetadata()) 2583 dropDebugUsers(*I); 2584 if (isa<DbgInfoIntrinsic>(I)) { 2585 // Remove DbgInfo Intrinsics. 2586 II = I->eraseFromParent(); 2587 continue; 2588 } 2589 I->setDebugLoc(InsertPt->getDebugLoc()); 2590 ++II; 2591 } 2592 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2593 BB->begin(), 2594 BB->getTerminator()->getIterator()); 2595 } 2596 2597 namespace { 2598 2599 /// A potential constituent of a bitreverse or bswap expression. See 2600 /// collectBitParts for a fuller explanation. 2601 struct BitPart { 2602 BitPart(Value *P, unsigned BW) : Provider(P) { 2603 Provenance.resize(BW); 2604 } 2605 2606 /// The Value that this is a bitreverse/bswap of. 2607 Value *Provider; 2608 2609 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2610 /// in Provider becomes bit B in the result of this expression. 2611 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2612 2613 enum { Unset = -1 }; 2614 }; 2615 2616 } // end anonymous namespace 2617 2618 /// Analyze the specified subexpression and see if it is capable of providing 2619 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2620 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2621 /// the output of the expression came from a corresponding bit in some other 2622 /// value. This function is recursive, and the end result is a mapping of 2623 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2624 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2625 /// 2626 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2627 /// that the expression deposits the low byte of %X into the high byte of the 2628 /// result and that all other bits are zero. This expression is accepted and a 2629 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2630 /// [0-7]. 2631 /// 2632 /// To avoid revisiting values, the BitPart results are memoized into the 2633 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2634 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2635 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2636 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2637 /// type instead to provide the same functionality. 2638 /// 2639 /// Because we pass around references into \c BPS, we must use a container that 2640 /// does not invalidate internal references (std::map instead of DenseMap). 2641 static const Optional<BitPart> & 2642 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2643 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2644 auto I = BPS.find(V); 2645 if (I != BPS.end()) 2646 return I->second; 2647 2648 auto &Result = BPS[V] = None; 2649 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2650 2651 // Prevent stack overflow by limiting the recursion depth 2652 if (Depth == BitPartRecursionMaxDepth) { 2653 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2654 return Result; 2655 } 2656 2657 if (Instruction *I = dyn_cast<Instruction>(V)) { 2658 // If this is an or instruction, it may be an inner node of the bswap. 2659 if (I->getOpcode() == Instruction::Or) { 2660 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2661 MatchBitReversals, BPS, Depth + 1); 2662 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2663 MatchBitReversals, BPS, Depth + 1); 2664 if (!A || !B) 2665 return Result; 2666 2667 // Try and merge the two together. 2668 if (!A->Provider || A->Provider != B->Provider) 2669 return Result; 2670 2671 Result = BitPart(A->Provider, BitWidth); 2672 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2673 if (A->Provenance[i] != BitPart::Unset && 2674 B->Provenance[i] != BitPart::Unset && 2675 A->Provenance[i] != B->Provenance[i]) 2676 return Result = None; 2677 2678 if (A->Provenance[i] == BitPart::Unset) 2679 Result->Provenance[i] = B->Provenance[i]; 2680 else 2681 Result->Provenance[i] = A->Provenance[i]; 2682 } 2683 2684 return Result; 2685 } 2686 2687 // If this is a logical shift by a constant, recurse then shift the result. 2688 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2689 unsigned BitShift = 2690 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2691 // Ensure the shift amount is defined. 2692 if (BitShift > BitWidth) 2693 return Result; 2694 2695 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2696 MatchBitReversals, BPS, Depth + 1); 2697 if (!Res) 2698 return Result; 2699 Result = Res; 2700 2701 // Perform the "shift" on BitProvenance. 2702 auto &P = Result->Provenance; 2703 if (I->getOpcode() == Instruction::Shl) { 2704 P.erase(std::prev(P.end(), BitShift), P.end()); 2705 P.insert(P.begin(), BitShift, BitPart::Unset); 2706 } else { 2707 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2708 P.insert(P.end(), BitShift, BitPart::Unset); 2709 } 2710 2711 return Result; 2712 } 2713 2714 // If this is a logical 'and' with a mask that clears bits, recurse then 2715 // unset the appropriate bits. 2716 if (I->getOpcode() == Instruction::And && 2717 isa<ConstantInt>(I->getOperand(1))) { 2718 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2719 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2720 2721 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2722 // early exit. 2723 unsigned NumMaskedBits = AndMask.countPopulation(); 2724 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2725 return Result; 2726 2727 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2728 MatchBitReversals, BPS, Depth + 1); 2729 if (!Res) 2730 return Result; 2731 Result = Res; 2732 2733 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2734 // If the AndMask is zero for this bit, clear the bit. 2735 if ((AndMask & Bit) == 0) 2736 Result->Provenance[i] = BitPart::Unset; 2737 return Result; 2738 } 2739 2740 // If this is a zext instruction zero extend the result. 2741 if (I->getOpcode() == Instruction::ZExt) { 2742 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2743 MatchBitReversals, BPS, Depth + 1); 2744 if (!Res) 2745 return Result; 2746 2747 Result = BitPart(Res->Provider, BitWidth); 2748 auto NarrowBitWidth = 2749 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2750 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2751 Result->Provenance[i] = Res->Provenance[i]; 2752 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2753 Result->Provenance[i] = BitPart::Unset; 2754 return Result; 2755 } 2756 } 2757 2758 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2759 // the input value to the bswap/bitreverse. 2760 Result = BitPart(V, BitWidth); 2761 for (unsigned i = 0; i < BitWidth; ++i) 2762 Result->Provenance[i] = i; 2763 return Result; 2764 } 2765 2766 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2767 unsigned BitWidth) { 2768 if (From % 8 != To % 8) 2769 return false; 2770 // Convert from bit indices to byte indices and check for a byte reversal. 2771 From >>= 3; 2772 To >>= 3; 2773 BitWidth >>= 3; 2774 return From == BitWidth - To - 1; 2775 } 2776 2777 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2778 unsigned BitWidth) { 2779 return From == BitWidth - To - 1; 2780 } 2781 2782 bool llvm::recognizeBSwapOrBitReverseIdiom( 2783 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2784 SmallVectorImpl<Instruction *> &InsertedInsts) { 2785 if (Operator::getOpcode(I) != Instruction::Or) 2786 return false; 2787 if (!MatchBSwaps && !MatchBitReversals) 2788 return false; 2789 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2790 if (!ITy || ITy->getBitWidth() > 128) 2791 return false; // Can't do vectors or integers > 128 bits. 2792 unsigned BW = ITy->getBitWidth(); 2793 2794 unsigned DemandedBW = BW; 2795 IntegerType *DemandedTy = ITy; 2796 if (I->hasOneUse()) { 2797 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2798 DemandedTy = cast<IntegerType>(Trunc->getType()); 2799 DemandedBW = DemandedTy->getBitWidth(); 2800 } 2801 } 2802 2803 // Try to find all the pieces corresponding to the bswap. 2804 std::map<Value *, Optional<BitPart>> BPS; 2805 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2806 if (!Res) 2807 return false; 2808 auto &BitProvenance = Res->Provenance; 2809 2810 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2811 // only byteswap values with an even number of bytes. 2812 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2813 for (unsigned i = 0; i < DemandedBW; ++i) { 2814 OKForBSwap &= 2815 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2816 OKForBitReverse &= 2817 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2818 } 2819 2820 Intrinsic::ID Intrin; 2821 if (OKForBSwap && MatchBSwaps) 2822 Intrin = Intrinsic::bswap; 2823 else if (OKForBitReverse && MatchBitReversals) 2824 Intrin = Intrinsic::bitreverse; 2825 else 2826 return false; 2827 2828 if (ITy != DemandedTy) { 2829 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2830 Value *Provider = Res->Provider; 2831 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2832 // We may need to truncate the provider. 2833 if (DemandedTy != ProviderTy) { 2834 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2835 "trunc", I); 2836 InsertedInsts.push_back(Trunc); 2837 Provider = Trunc; 2838 } 2839 auto *CI = CallInst::Create(F, Provider, "rev", I); 2840 InsertedInsts.push_back(CI); 2841 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2842 InsertedInsts.push_back(ExtInst); 2843 return true; 2844 } 2845 2846 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2847 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2848 return true; 2849 } 2850 2851 // CodeGen has special handling for some string functions that may replace 2852 // them with target-specific intrinsics. Since that'd skip our interceptors 2853 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2854 // we mark affected calls as NoBuiltin, which will disable optimization 2855 // in CodeGen. 2856 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2857 CallInst *CI, const TargetLibraryInfo *TLI) { 2858 Function *F = CI->getCalledFunction(); 2859 LibFunc Func; 2860 if (F && !F->hasLocalLinkage() && F->hasName() && 2861 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2862 !F->doesNotAccessMemory()) 2863 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2864 } 2865 2866 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2867 // We can't have a PHI with a metadata type. 2868 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2869 return false; 2870 2871 // Early exit. 2872 if (!isa<Constant>(I->getOperand(OpIdx))) 2873 return true; 2874 2875 switch (I->getOpcode()) { 2876 default: 2877 return true; 2878 case Instruction::Call: 2879 case Instruction::Invoke: 2880 // Can't handle inline asm. Skip it. 2881 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2882 return false; 2883 // Many arithmetic intrinsics have no issue taking a 2884 // variable, however it's hard to distingish these from 2885 // specials such as @llvm.frameaddress that require a constant. 2886 if (isa<IntrinsicInst>(I)) 2887 return false; 2888 2889 // Constant bundle operands may need to retain their constant-ness for 2890 // correctness. 2891 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2892 return false; 2893 return true; 2894 case Instruction::ShuffleVector: 2895 // Shufflevector masks are constant. 2896 return OpIdx != 2; 2897 case Instruction::Switch: 2898 case Instruction::ExtractValue: 2899 // All operands apart from the first are constant. 2900 return OpIdx == 0; 2901 case Instruction::InsertValue: 2902 // All operands apart from the first and the second are constant. 2903 return OpIdx < 2; 2904 case Instruction::Alloca: 2905 // Static allocas (constant size in the entry block) are handled by 2906 // prologue/epilogue insertion so they're free anyway. We definitely don't 2907 // want to make them non-constant. 2908 return !cast<AllocaInst>(I)->isStaticAlloca(); 2909 case Instruction::GetElementPtr: 2910 if (OpIdx == 0) 2911 return true; 2912 gep_type_iterator It = gep_type_begin(I); 2913 for (auto E = std::next(It, OpIdx); It != E; ++It) 2914 if (It.isStruct()) 2915 return false; 2916 return true; 2917 } 2918 } 2919 2920 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2921 AllocaInst *llvm::findAllocaForValue(Value *V, 2922 AllocaForValueMapTy &AllocaForValue) { 2923 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2924 return AI; 2925 // See if we've already calculated (or started to calculate) alloca for a 2926 // given value. 2927 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2928 if (I != AllocaForValue.end()) 2929 return I->second; 2930 // Store 0 while we're calculating alloca for value V to avoid 2931 // infinite recursion if the value references itself. 2932 AllocaForValue[V] = nullptr; 2933 AllocaInst *Res = nullptr; 2934 if (CastInst *CI = dyn_cast<CastInst>(V)) 2935 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 2936 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2937 for (Value *IncValue : PN->incoming_values()) { 2938 // Allow self-referencing phi-nodes. 2939 if (IncValue == PN) 2940 continue; 2941 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 2942 // AI for incoming values should exist and should all be equal. 2943 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2944 return nullptr; 2945 Res = IncValueAI; 2946 } 2947 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 2948 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 2949 } else { 2950 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 2951 << *V << "\n"); 2952 } 2953 if (Res) 2954 AllocaForValue[V] = Res; 2955 return Res; 2956 } 2957