xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumeBundleQueries.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/BinaryFormat/Dwarf.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DIBuilder.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalObject.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/IntrinsicsWebAssembly.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/ProfDataUtils.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <optional>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 extern cl::opt<bool> UseNewDbgInfoFormat;
92 
93 #define DEBUG_TYPE "local"
94 
95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
97 
98 static cl::opt<bool> PHICSEDebugHash(
99     "phicse-debug-hash",
100 #ifdef EXPENSIVE_CHECKS
101     cl::init(true),
102 #else
103     cl::init(false),
104 #endif
105     cl::Hidden,
106     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
107              "function is well-behaved w.r.t. its isEqual predicate"));
108 
109 static cl::opt<unsigned> PHICSENumPHISmallSize(
110     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
111     cl::desc(
112         "When the basic block contains not more than this number of PHI nodes, "
113         "perform a (faster!) exhaustive search instead of set-driven one."));
114 
115 // Max recursion depth for collectBitParts used when detecting bswap and
116 // bitreverse idioms.
117 static const unsigned BitPartRecursionMaxDepth = 48;
118 
119 //===----------------------------------------------------------------------===//
120 //  Local constant propagation.
121 //
122 
123 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
124 /// constant value, convert it into an unconditional branch to the constant
125 /// destination.  This is a nontrivial operation because the successors of this
126 /// basic block must have their PHI nodes updated.
127 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
128 /// conditions and indirectbr addresses this might make dead if
129 /// DeleteDeadConditions is true.
130 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
131                                   const TargetLibraryInfo *TLI,
132                                   DomTreeUpdater *DTU) {
133   Instruction *T = BB->getTerminator();
134   IRBuilder<> Builder(T);
135 
136   // Branch - See if we are conditional jumping on constant
137   if (auto *BI = dyn_cast<BranchInst>(T)) {
138     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
139 
140     BasicBlock *Dest1 = BI->getSuccessor(0);
141     BasicBlock *Dest2 = BI->getSuccessor(1);
142 
143     if (Dest2 == Dest1) {       // Conditional branch to same location?
144       // This branch matches something like this:
145       //     br bool %cond, label %Dest, label %Dest
146       // and changes it into:  br label %Dest
147 
148       // Let the basic block know that we are letting go of one copy of it.
149       assert(BI->getParent() && "Terminator not inserted in block!");
150       Dest1->removePredecessor(BI->getParent());
151 
152       // Replace the conditional branch with an unconditional one.
153       BranchInst *NewBI = Builder.CreateBr(Dest1);
154 
155       // Transfer the metadata to the new branch instruction.
156       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
157                                 LLVMContext::MD_annotation});
158 
159       Value *Cond = BI->getCondition();
160       BI->eraseFromParent();
161       if (DeleteDeadConditions)
162         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
163       return true;
164     }
165 
166     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
167       // Are we branching on constant?
168       // YES.  Change to unconditional branch...
169       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
170       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
171 
172       // Let the basic block know that we are letting go of it.  Based on this,
173       // it will adjust it's PHI nodes.
174       OldDest->removePredecessor(BB);
175 
176       // Replace the conditional branch with an unconditional one.
177       BranchInst *NewBI = Builder.CreateBr(Destination);
178 
179       // Transfer the metadata to the new branch instruction.
180       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
181                                 LLVMContext::MD_annotation});
182 
183       BI->eraseFromParent();
184       if (DTU)
185         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
186       return true;
187     }
188 
189     return false;
190   }
191 
192   if (auto *SI = dyn_cast<SwitchInst>(T)) {
193     // If we are switching on a constant, we can convert the switch to an
194     // unconditional branch.
195     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
196     BasicBlock *DefaultDest = SI->getDefaultDest();
197     BasicBlock *TheOnlyDest = DefaultDest;
198 
199     // If the default is unreachable, ignore it when searching for TheOnlyDest.
200     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
201         SI->getNumCases() > 0) {
202       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
203     }
204 
205     bool Changed = false;
206 
207     // Figure out which case it goes to.
208     for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) {
209       // Found case matching a constant operand?
210       if (It->getCaseValue() == CI) {
211         TheOnlyDest = It->getCaseSuccessor();
212         break;
213       }
214 
215       // Check to see if this branch is going to the same place as the default
216       // dest.  If so, eliminate it as an explicit compare.
217       if (It->getCaseSuccessor() == DefaultDest) {
218         MDNode *MD = getValidBranchWeightMDNode(*SI);
219         unsigned NCases = SI->getNumCases();
220         // Fold the case metadata into the default if there will be any branches
221         // left, unless the metadata doesn't match the switch.
222         if (NCases > 1 && MD) {
223           // Collect branch weights into a vector.
224           SmallVector<uint32_t, 8> Weights;
225           extractBranchWeights(MD, Weights);
226 
227           // Merge weight of this case to the default weight.
228           unsigned Idx = It->getCaseIndex();
229           // TODO: Add overflow check.
230           Weights[0] += Weights[Idx + 1];
231           // Remove weight for this case.
232           std::swap(Weights[Idx + 1], Weights.back());
233           Weights.pop_back();
234           setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD));
235         }
236         // Remove this entry.
237         BasicBlock *ParentBB = SI->getParent();
238         DefaultDest->removePredecessor(ParentBB);
239         It = SI->removeCase(It);
240         End = SI->case_end();
241 
242         // Removing this case may have made the condition constant. In that
243         // case, update CI and restart iteration through the cases.
244         if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) {
245           CI = NewCI;
246           It = SI->case_begin();
247         }
248 
249         Changed = true;
250         continue;
251       }
252 
253       // Otherwise, check to see if the switch only branches to one destination.
254       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
255       // destinations.
256       if (It->getCaseSuccessor() != TheOnlyDest)
257         TheOnlyDest = nullptr;
258 
259       // Increment this iterator as we haven't removed the case.
260       ++It;
261     }
262 
263     if (CI && !TheOnlyDest) {
264       // Branching on a constant, but not any of the cases, go to the default
265       // successor.
266       TheOnlyDest = SI->getDefaultDest();
267     }
268 
269     // If we found a single destination that we can fold the switch into, do so
270     // now.
271     if (TheOnlyDest) {
272       // Insert the new branch.
273       Builder.CreateBr(TheOnlyDest);
274       BasicBlock *BB = SI->getParent();
275 
276       SmallSet<BasicBlock *, 8> RemovedSuccessors;
277 
278       // Remove entries from PHI nodes which we no longer branch to...
279       BasicBlock *SuccToKeep = TheOnlyDest;
280       for (BasicBlock *Succ : successors(SI)) {
281         if (DTU && Succ != TheOnlyDest)
282           RemovedSuccessors.insert(Succ);
283         // Found case matching a constant operand?
284         if (Succ == SuccToKeep) {
285           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
286         } else {
287           Succ->removePredecessor(BB);
288         }
289       }
290 
291       // Delete the old switch.
292       Value *Cond = SI->getCondition();
293       SI->eraseFromParent();
294       if (DeleteDeadConditions)
295         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
296       if (DTU) {
297         std::vector<DominatorTree::UpdateType> Updates;
298         Updates.reserve(RemovedSuccessors.size());
299         for (auto *RemovedSuccessor : RemovedSuccessors)
300           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
301         DTU->applyUpdates(Updates);
302       }
303       return true;
304     }
305 
306     if (SI->getNumCases() == 1) {
307       // Otherwise, we can fold this switch into a conditional branch
308       // instruction if it has only one non-default destination.
309       auto FirstCase = *SI->case_begin();
310       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
311           FirstCase.getCaseValue(), "cond");
312 
313       // Insert the new branch.
314       BranchInst *NewBr = Builder.CreateCondBr(Cond,
315                                                FirstCase.getCaseSuccessor(),
316                                                SI->getDefaultDest());
317       SmallVector<uint32_t> Weights;
318       if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) {
319         uint32_t DefWeight = Weights[0];
320         uint32_t CaseWeight = Weights[1];
321         // The TrueWeight should be the weight for the single case of SI.
322         NewBr->setMetadata(LLVMContext::MD_prof,
323                            MDBuilder(BB->getContext())
324                                .createBranchWeights(CaseWeight, DefWeight));
325       }
326 
327       // Update make.implicit metadata to the newly-created conditional branch.
328       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
329       if (MakeImplicitMD)
330         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
331 
332       // Delete the old switch.
333       SI->eraseFromParent();
334       return true;
335     }
336     return Changed;
337   }
338 
339   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
340     // indirectbr blockaddress(@F, @BB) -> br label @BB
341     if (auto *BA =
342           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
343       BasicBlock *TheOnlyDest = BA->getBasicBlock();
344       SmallSet<BasicBlock *, 8> RemovedSuccessors;
345 
346       // Insert the new branch.
347       Builder.CreateBr(TheOnlyDest);
348 
349       BasicBlock *SuccToKeep = TheOnlyDest;
350       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
351         BasicBlock *DestBB = IBI->getDestination(i);
352         if (DTU && DestBB != TheOnlyDest)
353           RemovedSuccessors.insert(DestBB);
354         if (IBI->getDestination(i) == SuccToKeep) {
355           SuccToKeep = nullptr;
356         } else {
357           DestBB->removePredecessor(BB);
358         }
359       }
360       Value *Address = IBI->getAddress();
361       IBI->eraseFromParent();
362       if (DeleteDeadConditions)
363         // Delete pointer cast instructions.
364         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
365 
366       // Also zap the blockaddress constant if there are no users remaining,
367       // otherwise the destination is still marked as having its address taken.
368       if (BA->use_empty())
369         BA->destroyConstant();
370 
371       // If we didn't find our destination in the IBI successor list, then we
372       // have undefined behavior.  Replace the unconditional branch with an
373       // 'unreachable' instruction.
374       if (SuccToKeep) {
375         BB->getTerminator()->eraseFromParent();
376         new UnreachableInst(BB->getContext(), BB);
377       }
378 
379       if (DTU) {
380         std::vector<DominatorTree::UpdateType> Updates;
381         Updates.reserve(RemovedSuccessors.size());
382         for (auto *RemovedSuccessor : RemovedSuccessors)
383           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
384         DTU->applyUpdates(Updates);
385       }
386       return true;
387     }
388   }
389 
390   return false;
391 }
392 
393 //===----------------------------------------------------------------------===//
394 //  Local dead code elimination.
395 //
396 
397 /// isInstructionTriviallyDead - Return true if the result produced by the
398 /// instruction is not used, and the instruction has no side effects.
399 ///
400 bool llvm::isInstructionTriviallyDead(Instruction *I,
401                                       const TargetLibraryInfo *TLI) {
402   if (!I->use_empty())
403     return false;
404   return wouldInstructionBeTriviallyDead(I, TLI);
405 }
406 
407 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
408     Instruction *I, const TargetLibraryInfo *TLI) {
409   // Instructions that are "markers" and have implied meaning on code around
410   // them (without explicit uses), are not dead on unused paths.
411   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
412     if (II->getIntrinsicID() == Intrinsic::stacksave ||
413         II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
414         II->isLifetimeStartOrEnd())
415       return false;
416   return wouldInstructionBeTriviallyDead(I, TLI);
417 }
418 
419 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I,
420                                            const TargetLibraryInfo *TLI) {
421   if (I->isTerminator())
422     return false;
423 
424   // We don't want the landingpad-like instructions removed by anything this
425   // general.
426   if (I->isEHPad())
427     return false;
428 
429   // We don't want debug info removed by anything this general.
430   if (isa<DbgVariableIntrinsic>(I))
431     return false;
432 
433   if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
434     if (DLI->getLabel())
435       return false;
436     return true;
437   }
438 
439   if (auto *CB = dyn_cast<CallBase>(I))
440     if (isRemovableAlloc(CB, TLI))
441       return true;
442 
443   if (!I->willReturn()) {
444     auto *II = dyn_cast<IntrinsicInst>(I);
445     if (!II)
446       return false;
447 
448     switch (II->getIntrinsicID()) {
449     case Intrinsic::experimental_guard: {
450       // Guards on true are operationally no-ops.  In the future we can
451       // consider more sophisticated tradeoffs for guards considering potential
452       // for check widening, but for now we keep things simple.
453       auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0));
454       return Cond && Cond->isOne();
455     }
456     // TODO: These intrinsics are not safe to remove, because this may remove
457     // a well-defined trap.
458     case Intrinsic::wasm_trunc_signed:
459     case Intrinsic::wasm_trunc_unsigned:
460     case Intrinsic::ptrauth_auth:
461     case Intrinsic::ptrauth_resign:
462       return true;
463     default:
464       return false;
465     }
466   }
467 
468   if (!I->mayHaveSideEffects())
469     return true;
470 
471   // Special case intrinsics that "may have side effects" but can be deleted
472   // when dead.
473   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
474     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
475     if (II->getIntrinsicID() == Intrinsic::stacksave ||
476         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
477       return true;
478 
479     // Intrinsics declare sideeffects to prevent them from moving, but they are
480     // nops without users.
481     if (II->getIntrinsicID() == Intrinsic::allow_runtime_check ||
482         II->getIntrinsicID() == Intrinsic::allow_ubsan_check)
483       return true;
484 
485     if (II->isLifetimeStartOrEnd()) {
486       auto *Arg = II->getArgOperand(1);
487       // Lifetime intrinsics are dead when their right-hand is undef.
488       if (isa<UndefValue>(Arg))
489         return true;
490       // If the right-hand is an alloc, global, or argument and the only uses
491       // are lifetime intrinsics then the intrinsics are dead.
492       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
493         return llvm::all_of(Arg->uses(), [](Use &Use) {
494           if (IntrinsicInst *IntrinsicUse =
495                   dyn_cast<IntrinsicInst>(Use.getUser()))
496             return IntrinsicUse->isLifetimeStartOrEnd();
497           return false;
498         });
499       return false;
500     }
501 
502     // Assumptions are dead if their condition is trivially true.
503     if (II->getIntrinsicID() == Intrinsic::assume &&
504         isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) {
505       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
506         return !Cond->isZero();
507 
508       return false;
509     }
510 
511     if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
512       std::optional<fp::ExceptionBehavior> ExBehavior =
513           FPI->getExceptionBehavior();
514       return *ExBehavior != fp::ebStrict;
515     }
516   }
517 
518   if (auto *Call = dyn_cast<CallBase>(I)) {
519     if (Value *FreedOp = getFreedOperand(Call, TLI))
520       if (Constant *C = dyn_cast<Constant>(FreedOp))
521         return C->isNullValue() || isa<UndefValue>(C);
522     if (isMathLibCallNoop(Call, TLI))
523       return true;
524   }
525 
526   // Non-volatile atomic loads from constants can be removed.
527   if (auto *LI = dyn_cast<LoadInst>(I))
528     if (auto *GV = dyn_cast<GlobalVariable>(
529             LI->getPointerOperand()->stripPointerCasts()))
530       if (!LI->isVolatile() && GV->isConstant())
531         return true;
532 
533   return false;
534 }
535 
536 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
537 /// trivially dead instruction, delete it.  If that makes any of its operands
538 /// trivially dead, delete them too, recursively.  Return true if any
539 /// instructions were deleted.
540 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
541     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
542     std::function<void(Value *)> AboutToDeleteCallback) {
543   Instruction *I = dyn_cast<Instruction>(V);
544   if (!I || !isInstructionTriviallyDead(I, TLI))
545     return false;
546 
547   SmallVector<WeakTrackingVH, 16> DeadInsts;
548   DeadInsts.push_back(I);
549   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
550                                              AboutToDeleteCallback);
551 
552   return true;
553 }
554 
555 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
556     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
557     MemorySSAUpdater *MSSAU,
558     std::function<void(Value *)> AboutToDeleteCallback) {
559   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
560   for (; S != E; ++S) {
561     auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]);
562     if (!I || !isInstructionTriviallyDead(I)) {
563       DeadInsts[S] = nullptr;
564       ++Alive;
565     }
566   }
567   if (Alive == E)
568     return false;
569   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
570                                              AboutToDeleteCallback);
571   return true;
572 }
573 
574 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
575     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
576     MemorySSAUpdater *MSSAU,
577     std::function<void(Value *)> AboutToDeleteCallback) {
578   // Process the dead instruction list until empty.
579   while (!DeadInsts.empty()) {
580     Value *V = DeadInsts.pop_back_val();
581     Instruction *I = cast_or_null<Instruction>(V);
582     if (!I)
583       continue;
584     assert(isInstructionTriviallyDead(I, TLI) &&
585            "Live instruction found in dead worklist!");
586     assert(I->use_empty() && "Instructions with uses are not dead.");
587 
588     // Don't lose the debug info while deleting the instructions.
589     salvageDebugInfo(*I);
590 
591     if (AboutToDeleteCallback)
592       AboutToDeleteCallback(I);
593 
594     // Null out all of the instruction's operands to see if any operand becomes
595     // dead as we go.
596     for (Use &OpU : I->operands()) {
597       Value *OpV = OpU.get();
598       OpU.set(nullptr);
599 
600       if (!OpV->use_empty())
601         continue;
602 
603       // If the operand is an instruction that became dead as we nulled out the
604       // operand, and if it is 'trivially' dead, delete it in a future loop
605       // iteration.
606       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
607         if (isInstructionTriviallyDead(OpI, TLI))
608           DeadInsts.push_back(OpI);
609     }
610     if (MSSAU)
611       MSSAU->removeMemoryAccess(I);
612 
613     I->eraseFromParent();
614   }
615 }
616 
617 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
618   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
619   SmallVector<DbgVariableRecord *, 1> DPUsers;
620   findDbgUsers(DbgUsers, I, &DPUsers);
621   for (auto *DII : DbgUsers)
622     DII->setKillLocation();
623   for (auto *DVR : DPUsers)
624     DVR->setKillLocation();
625   return !DbgUsers.empty() || !DPUsers.empty();
626 }
627 
628 /// areAllUsesEqual - Check whether the uses of a value are all the same.
629 /// This is similar to Instruction::hasOneUse() except this will also return
630 /// true when there are no uses or multiple uses that all refer to the same
631 /// value.
632 static bool areAllUsesEqual(Instruction *I) {
633   Value::user_iterator UI = I->user_begin();
634   Value::user_iterator UE = I->user_end();
635   if (UI == UE)
636     return true;
637 
638   User *TheUse = *UI;
639   for (++UI; UI != UE; ++UI) {
640     if (*UI != TheUse)
641       return false;
642   }
643   return true;
644 }
645 
646 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
647 /// dead PHI node, due to being a def-use chain of single-use nodes that
648 /// either forms a cycle or is terminated by a trivially dead instruction,
649 /// delete it.  If that makes any of its operands trivially dead, delete them
650 /// too, recursively.  Return true if a change was made.
651 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
652                                         const TargetLibraryInfo *TLI,
653                                         llvm::MemorySSAUpdater *MSSAU) {
654   SmallPtrSet<Instruction*, 4> Visited;
655   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
656        I = cast<Instruction>(*I->user_begin())) {
657     if (I->use_empty())
658       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
659 
660     // If we find an instruction more than once, we're on a cycle that
661     // won't prove fruitful.
662     if (!Visited.insert(I).second) {
663       // Break the cycle and delete the instruction and its operands.
664       I->replaceAllUsesWith(PoisonValue::get(I->getType()));
665       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
666       return true;
667     }
668   }
669   return false;
670 }
671 
672 static bool
673 simplifyAndDCEInstruction(Instruction *I,
674                           SmallSetVector<Instruction *, 16> &WorkList,
675                           const DataLayout &DL,
676                           const TargetLibraryInfo *TLI) {
677   if (isInstructionTriviallyDead(I, TLI)) {
678     salvageDebugInfo(*I);
679 
680     // Null out all of the instruction's operands to see if any operand becomes
681     // dead as we go.
682     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
683       Value *OpV = I->getOperand(i);
684       I->setOperand(i, nullptr);
685 
686       if (!OpV->use_empty() || I == OpV)
687         continue;
688 
689       // If the operand is an instruction that became dead as we nulled out the
690       // operand, and if it is 'trivially' dead, delete it in a future loop
691       // iteration.
692       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
693         if (isInstructionTriviallyDead(OpI, TLI))
694           WorkList.insert(OpI);
695     }
696 
697     I->eraseFromParent();
698 
699     return true;
700   }
701 
702   if (Value *SimpleV = simplifyInstruction(I, DL)) {
703     // Add the users to the worklist. CAREFUL: an instruction can use itself,
704     // in the case of a phi node.
705     for (User *U : I->users()) {
706       if (U != I) {
707         WorkList.insert(cast<Instruction>(U));
708       }
709     }
710 
711     // Replace the instruction with its simplified value.
712     bool Changed = false;
713     if (!I->use_empty()) {
714       I->replaceAllUsesWith(SimpleV);
715       Changed = true;
716     }
717     if (isInstructionTriviallyDead(I, TLI)) {
718       I->eraseFromParent();
719       Changed = true;
720     }
721     return Changed;
722   }
723   return false;
724 }
725 
726 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
727 /// simplify any instructions in it and recursively delete dead instructions.
728 ///
729 /// This returns true if it changed the code, note that it can delete
730 /// instructions in other blocks as well in this block.
731 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
732                                        const TargetLibraryInfo *TLI) {
733   bool MadeChange = false;
734   const DataLayout &DL = BB->getDataLayout();
735 
736 #ifndef NDEBUG
737   // In debug builds, ensure that the terminator of the block is never replaced
738   // or deleted by these simplifications. The idea of simplification is that it
739   // cannot introduce new instructions, and there is no way to replace the
740   // terminator of a block without introducing a new instruction.
741   AssertingVH<Instruction> TerminatorVH(&BB->back());
742 #endif
743 
744   SmallSetVector<Instruction *, 16> WorkList;
745   // Iterate over the original function, only adding insts to the worklist
746   // if they actually need to be revisited. This avoids having to pre-init
747   // the worklist with the entire function's worth of instructions.
748   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
749        BI != E;) {
750     assert(!BI->isTerminator());
751     Instruction *I = &*BI;
752     ++BI;
753 
754     // We're visiting this instruction now, so make sure it's not in the
755     // worklist from an earlier visit.
756     if (!WorkList.count(I))
757       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
758   }
759 
760   while (!WorkList.empty()) {
761     Instruction *I = WorkList.pop_back_val();
762     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
763   }
764   return MadeChange;
765 }
766 
767 //===----------------------------------------------------------------------===//
768 //  Control Flow Graph Restructuring.
769 //
770 
771 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
772                                        DomTreeUpdater *DTU) {
773 
774   // If BB has single-entry PHI nodes, fold them.
775   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
776     Value *NewVal = PN->getIncomingValue(0);
777     // Replace self referencing PHI with poison, it must be dead.
778     if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
779     PN->replaceAllUsesWith(NewVal);
780     PN->eraseFromParent();
781   }
782 
783   BasicBlock *PredBB = DestBB->getSinglePredecessor();
784   assert(PredBB && "Block doesn't have a single predecessor!");
785 
786   bool ReplaceEntryBB = PredBB->isEntryBlock();
787 
788   // DTU updates: Collect all the edges that enter
789   // PredBB. These dominator edges will be redirected to DestBB.
790   SmallVector<DominatorTree::UpdateType, 32> Updates;
791 
792   if (DTU) {
793     // To avoid processing the same predecessor more than once.
794     SmallPtrSet<BasicBlock *, 2> SeenPreds;
795     Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
796     for (BasicBlock *PredOfPredBB : predecessors(PredBB))
797       // This predecessor of PredBB may already have DestBB as a successor.
798       if (PredOfPredBB != PredBB)
799         if (SeenPreds.insert(PredOfPredBB).second)
800           Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
801     SeenPreds.clear();
802     for (BasicBlock *PredOfPredBB : predecessors(PredBB))
803       if (SeenPreds.insert(PredOfPredBB).second)
804         Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
805     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
806   }
807 
808   // Zap anything that took the address of DestBB.  Not doing this will give the
809   // address an invalid value.
810   if (DestBB->hasAddressTaken()) {
811     BlockAddress *BA = BlockAddress::get(DestBB);
812     Constant *Replacement =
813       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
814     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
815                                                      BA->getType()));
816     BA->destroyConstant();
817   }
818 
819   // Anything that branched to PredBB now branches to DestBB.
820   PredBB->replaceAllUsesWith(DestBB);
821 
822   // Splice all the instructions from PredBB to DestBB.
823   PredBB->getTerminator()->eraseFromParent();
824   DestBB->splice(DestBB->begin(), PredBB);
825   new UnreachableInst(PredBB->getContext(), PredBB);
826 
827   // If the PredBB is the entry block of the function, move DestBB up to
828   // become the entry block after we erase PredBB.
829   if (ReplaceEntryBB)
830     DestBB->moveAfter(PredBB);
831 
832   if (DTU) {
833     assert(PredBB->size() == 1 &&
834            isa<UnreachableInst>(PredBB->getTerminator()) &&
835            "The successor list of PredBB isn't empty before "
836            "applying corresponding DTU updates.");
837     DTU->applyUpdatesPermissive(Updates);
838     DTU->deleteBB(PredBB);
839     // Recalculation of DomTree is needed when updating a forward DomTree and
840     // the Entry BB is replaced.
841     if (ReplaceEntryBB && DTU->hasDomTree()) {
842       // The entry block was removed and there is no external interface for
843       // the dominator tree to be notified of this change. In this corner-case
844       // we recalculate the entire tree.
845       DTU->recalculate(*(DestBB->getParent()));
846     }
847   }
848 
849   else {
850     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
851   }
852 }
853 
854 /// Return true if we can choose one of these values to use in place of the
855 /// other. Note that we will always choose the non-undef value to keep.
856 static bool CanMergeValues(Value *First, Value *Second) {
857   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
858 }
859 
860 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
861 /// branch to Succ, into Succ.
862 ///
863 /// Assumption: Succ is the single successor for BB.
864 static bool
865 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ,
866                                 const SmallPtrSetImpl<BasicBlock *> &BBPreds) {
867   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
868 
869   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
870                     << Succ->getName() << "\n");
871   // Shortcut, if there is only a single predecessor it must be BB and merging
872   // is always safe
873   if (Succ->getSinglePredecessor())
874     return true;
875 
876   // Look at all the phi nodes in Succ, to see if they present a conflict when
877   // merging these blocks
878   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
879     PHINode *PN = cast<PHINode>(I);
880 
881     // If the incoming value from BB is again a PHINode in
882     // BB which has the same incoming value for *PI as PN does, we can
883     // merge the phi nodes and then the blocks can still be merged
884     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
885     if (BBPN && BBPN->getParent() == BB) {
886       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
887         BasicBlock *IBB = PN->getIncomingBlock(PI);
888         if (BBPreds.count(IBB) &&
889             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
890                             PN->getIncomingValue(PI))) {
891           LLVM_DEBUG(dbgs()
892                      << "Can't fold, phi node " << PN->getName() << " in "
893                      << Succ->getName() << " is conflicting with "
894                      << BBPN->getName() << " with regard to common predecessor "
895                      << IBB->getName() << "\n");
896           return false;
897         }
898       }
899     } else {
900       Value* Val = PN->getIncomingValueForBlock(BB);
901       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
902         // See if the incoming value for the common predecessor is equal to the
903         // one for BB, in which case this phi node will not prevent the merging
904         // of the block.
905         BasicBlock *IBB = PN->getIncomingBlock(PI);
906         if (BBPreds.count(IBB) &&
907             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
908           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
909                             << " in " << Succ->getName()
910                             << " is conflicting with regard to common "
911                             << "predecessor " << IBB->getName() << "\n");
912           return false;
913         }
914       }
915     }
916   }
917 
918   return true;
919 }
920 
921 using PredBlockVector = SmallVector<BasicBlock *, 16>;
922 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
923 
924 /// Determines the value to use as the phi node input for a block.
925 ///
926 /// Select between \p OldVal any value that we know flows from \p BB
927 /// to a particular phi on the basis of which one (if either) is not
928 /// undef. Update IncomingValues based on the selected value.
929 ///
930 /// \param OldVal The value we are considering selecting.
931 /// \param BB The block that the value flows in from.
932 /// \param IncomingValues A map from block-to-value for other phi inputs
933 /// that we have examined.
934 ///
935 /// \returns the selected value.
936 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
937                                           IncomingValueMap &IncomingValues) {
938   if (!isa<UndefValue>(OldVal)) {
939     assert((!IncomingValues.count(BB) ||
940             IncomingValues.find(BB)->second == OldVal) &&
941            "Expected OldVal to match incoming value from BB!");
942 
943     IncomingValues.insert(std::make_pair(BB, OldVal));
944     return OldVal;
945   }
946 
947   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
948   if (It != IncomingValues.end()) return It->second;
949 
950   return OldVal;
951 }
952 
953 /// Create a map from block to value for the operands of a
954 /// given phi.
955 ///
956 /// Create a map from block to value for each non-undef value flowing
957 /// into \p PN.
958 ///
959 /// \param PN The phi we are collecting the map for.
960 /// \param IncomingValues [out] The map from block to value for this phi.
961 static void gatherIncomingValuesToPhi(PHINode *PN,
962                                       IncomingValueMap &IncomingValues) {
963   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
964     BasicBlock *BB = PN->getIncomingBlock(i);
965     Value *V = PN->getIncomingValue(i);
966 
967     if (!isa<UndefValue>(V))
968       IncomingValues.insert(std::make_pair(BB, V));
969   }
970 }
971 
972 /// Replace the incoming undef values to a phi with the values
973 /// from a block-to-value map.
974 ///
975 /// \param PN The phi we are replacing the undefs in.
976 /// \param IncomingValues A map from block to value.
977 static void replaceUndefValuesInPhi(PHINode *PN,
978                                     const IncomingValueMap &IncomingValues) {
979   SmallVector<unsigned> TrueUndefOps;
980   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
981     Value *V = PN->getIncomingValue(i);
982 
983     if (!isa<UndefValue>(V)) continue;
984 
985     BasicBlock *BB = PN->getIncomingBlock(i);
986     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
987 
988     // Keep track of undef/poison incoming values. Those must match, so we fix
989     // them up below if needed.
990     // Note: this is conservatively correct, but we could try harder and group
991     // the undef values per incoming basic block.
992     if (It == IncomingValues.end()) {
993       TrueUndefOps.push_back(i);
994       continue;
995     }
996 
997     // There is a defined value for this incoming block, so map this undef
998     // incoming value to the defined value.
999     PN->setIncomingValue(i, It->second);
1000   }
1001 
1002   // If there are both undef and poison values incoming, then convert those
1003   // values to undef. It is invalid to have different values for the same
1004   // incoming block.
1005   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
1006     return isa<PoisonValue>(PN->getIncomingValue(i));
1007   });
1008   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
1009     for (unsigned i : TrueUndefOps)
1010       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
1011   }
1012 }
1013 
1014 // Only when they shares a single common predecessor, return true.
1015 // Only handles cases when BB can't be merged while its predecessors can be
1016 // redirected.
1017 static bool
1018 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ,
1019                                 const SmallPtrSetImpl<BasicBlock *> &BBPreds,
1020                                 const SmallPtrSetImpl<BasicBlock *> &SuccPreds,
1021                                 BasicBlock *&CommonPred) {
1022 
1023   // There must be phis in BB, otherwise BB will be merged into Succ directly
1024   if (BB->phis().empty() || Succ->phis().empty())
1025     return false;
1026 
1027   // BB must have predecessors not shared that can be redirected to Succ
1028   if (!BB->hasNPredecessorsOrMore(2))
1029     return false;
1030 
1031   if (any_of(BBPreds, [](const BasicBlock *Pred) {
1032         return isa<IndirectBrInst>(Pred->getTerminator());
1033       }))
1034     return false;
1035 
1036   // Get the single common predecessor of both BB and Succ. Return false
1037   // when there are more than one common predecessors.
1038   for (BasicBlock *SuccPred : SuccPreds) {
1039     if (BBPreds.count(SuccPred)) {
1040       if (CommonPred)
1041         return false;
1042       CommonPred = SuccPred;
1043     }
1044   }
1045 
1046   return true;
1047 }
1048 
1049 /// Replace a value flowing from a block to a phi with
1050 /// potentially multiple instances of that value flowing from the
1051 /// block's predecessors to the phi.
1052 ///
1053 /// \param BB The block with the value flowing into the phi.
1054 /// \param BBPreds The predecessors of BB.
1055 /// \param PN The phi that we are updating.
1056 /// \param CommonPred The common predecessor of BB and PN's BasicBlock
1057 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
1058                                                 const PredBlockVector &BBPreds,
1059                                                 PHINode *PN,
1060                                                 BasicBlock *CommonPred) {
1061   Value *OldVal = PN->removeIncomingValue(BB, false);
1062   assert(OldVal && "No entry in PHI for Pred BB!");
1063 
1064   IncomingValueMap IncomingValues;
1065 
1066   // We are merging two blocks - BB, and the block containing PN - and
1067   // as a result we need to redirect edges from the predecessors of BB
1068   // to go to the block containing PN, and update PN
1069   // accordingly. Since we allow merging blocks in the case where the
1070   // predecessor and successor blocks both share some predecessors,
1071   // and where some of those common predecessors might have undef
1072   // values flowing into PN, we want to rewrite those values to be
1073   // consistent with the non-undef values.
1074 
1075   gatherIncomingValuesToPhi(PN, IncomingValues);
1076 
1077   // If this incoming value is one of the PHI nodes in BB, the new entries
1078   // in the PHI node are the entries from the old PHI.
1079   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1080     PHINode *OldValPN = cast<PHINode>(OldVal);
1081     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1082       // Note that, since we are merging phi nodes and BB and Succ might
1083       // have common predecessors, we could end up with a phi node with
1084       // identical incoming branches. This will be cleaned up later (and
1085       // will trigger asserts if we try to clean it up now, without also
1086       // simplifying the corresponding conditional branch).
1087       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1088 
1089       if (PredBB == CommonPred)
1090         continue;
1091 
1092       Value *PredVal = OldValPN->getIncomingValue(i);
1093       Value *Selected =
1094           selectIncomingValueForBlock(PredVal, PredBB, IncomingValues);
1095 
1096       // And add a new incoming value for this predecessor for the
1097       // newly retargeted branch.
1098       PN->addIncoming(Selected, PredBB);
1099     }
1100     if (CommonPred)
1101       PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB);
1102 
1103   } else {
1104     for (BasicBlock *PredBB : BBPreds) {
1105       // Update existing incoming values in PN for this
1106       // predecessor of BB.
1107       if (PredBB == CommonPred)
1108         continue;
1109 
1110       Value *Selected =
1111           selectIncomingValueForBlock(OldVal, PredBB, IncomingValues);
1112 
1113       // And add a new incoming value for this predecessor for the
1114       // newly retargeted branch.
1115       PN->addIncoming(Selected, PredBB);
1116     }
1117     if (CommonPred)
1118       PN->addIncoming(OldVal, BB);
1119   }
1120 
1121   replaceUndefValuesInPhi(PN, IncomingValues);
1122 }
1123 
1124 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1125                                                    DomTreeUpdater *DTU) {
1126   assert(BB != &BB->getParent()->getEntryBlock() &&
1127          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1128 
1129   // We can't simplify infinite loops.
1130   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1131   if (BB == Succ)
1132     return false;
1133 
1134   SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB));
1135   SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ));
1136 
1137   // The single common predecessor of BB and Succ when BB cannot be killed
1138   BasicBlock *CommonPred = nullptr;
1139 
1140   bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds);
1141 
1142   // Even if we can not fold BB into Succ, we may be able to redirect the
1143   // predecessors of BB to Succ.
1144   bool BBPhisMergeable =
1145       BBKillable ||
1146       CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred);
1147 
1148   if (!BBKillable && !BBPhisMergeable)
1149     return false;
1150 
1151   // Check to see if merging these blocks/phis would cause conflicts for any of
1152   // the phi nodes in BB or Succ. If not, we can safely merge.
1153 
1154   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1155   // has uses which will not disappear when the PHI nodes are merged.  It is
1156   // possible to handle such cases, but difficult: it requires checking whether
1157   // BB dominates Succ, which is non-trivial to calculate in the case where
1158   // Succ has multiple predecessors.  Also, it requires checking whether
1159   // constructing the necessary self-referential PHI node doesn't introduce any
1160   // conflicts; this isn't too difficult, but the previous code for doing this
1161   // was incorrect.
1162   //
1163   // Note that if this check finds a live use, BB dominates Succ, so BB is
1164   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1165   // folding the branch isn't profitable in that case anyway.
1166   if (!Succ->getSinglePredecessor()) {
1167     BasicBlock::iterator BBI = BB->begin();
1168     while (isa<PHINode>(*BBI)) {
1169       for (Use &U : BBI->uses()) {
1170         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1171           if (PN->getIncomingBlock(U) != BB)
1172             return false;
1173         } else {
1174           return false;
1175         }
1176       }
1177       ++BBI;
1178     }
1179   }
1180 
1181   if (BBPhisMergeable && CommonPred)
1182     LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName()
1183                       << " and " << Succ->getName() << " : "
1184                       << CommonPred->getName() << "\n");
1185 
1186   // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop
1187   // metadata.
1188   //
1189   // FIXME: This is a stop-gap solution to preserve inner-loop metadata given
1190   // current status (that loop metadata is implemented as metadata attached to
1191   // the branch instruction in the loop latch block). To quote from review
1192   // comments, "the current representation of loop metadata (using a loop latch
1193   // terminator attachment) is known to be fundamentally broken. Loop latches
1194   // are not uniquely associated with loops (both in that a latch can be part of
1195   // multiple loops and a loop may have multiple latches). Loop headers are. The
1196   // solution to this problem is also known: Add support for basic block
1197   // metadata, and attach loop metadata to the loop header."
1198   //
1199   // Why bail out:
1200   // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is
1201   // the latch for inner-loop (see reason below), so bail out to prerserve
1202   // inner-loop metadata rather than eliminating 'BB' and attaching its metadata
1203   // to this inner-loop.
1204   // - The reason we believe 'BB' and 'BB->Pred' have different inner-most
1205   // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L,
1206   // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of
1207   // one self-looping basic block, which is contradictory with the assumption.
1208   //
1209   // To illustrate how inner-loop metadata is dropped:
1210   //
1211   // CFG Before
1212   //
1213   // BB is while.cond.exit, attached with loop metdata md2.
1214   // BB->Pred is for.body, attached with loop metadata md1.
1215   //
1216   //      entry
1217   //        |
1218   //        v
1219   // ---> while.cond   ------------->  while.end
1220   // |       |
1221   // |       v
1222   // |   while.body
1223   // |       |
1224   // |       v
1225   // |    for.body <---- (md1)
1226   // |       |  |______|
1227   // |       v
1228   // |    while.cond.exit (md2)
1229   // |       |
1230   // |_______|
1231   //
1232   // CFG After
1233   //
1234   // while.cond1 is the merge of while.cond.exit and while.cond above.
1235   // for.body is attached with md2, and md1 is dropped.
1236   // If LoopSimplify runs later (as a part of loop pass), it could create
1237   // dedicated exits for inner-loop (essentially adding `while.cond.exit`
1238   // back), but won't it won't see 'md1' nor restore it for the inner-loop.
1239   //
1240   //       entry
1241   //         |
1242   //         v
1243   // ---> while.cond1  ------------->  while.end
1244   // |       |
1245   // |       v
1246   // |   while.body
1247   // |       |
1248   // |       v
1249   // |    for.body <---- (md2)
1250   // |_______|  |______|
1251   if (Instruction *TI = BB->getTerminator())
1252     if (TI->hasMetadata(LLVMContext::MD_loop))
1253       for (BasicBlock *Pred : predecessors(BB))
1254         if (Instruction *PredTI = Pred->getTerminator())
1255           if (PredTI->hasMetadata(LLVMContext::MD_loop))
1256             return false;
1257 
1258   if (BBKillable)
1259     LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1260   else if (BBPhisMergeable)
1261     LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB);
1262 
1263   SmallVector<DominatorTree::UpdateType, 32> Updates;
1264 
1265   if (DTU) {
1266     // To avoid processing the same predecessor more than once.
1267     SmallPtrSet<BasicBlock *, 8> SeenPreds;
1268     // All predecessors of BB (except the common predecessor) will be moved to
1269     // Succ.
1270     Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
1271 
1272     for (auto *PredOfBB : predecessors(BB)) {
1273       // Do not modify those common predecessors of BB and Succ
1274       if (!SuccPreds.contains(PredOfBB))
1275         if (SeenPreds.insert(PredOfBB).second)
1276           Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1277     }
1278 
1279     SeenPreds.clear();
1280 
1281     for (auto *PredOfBB : predecessors(BB))
1282       // When BB cannot be killed, do not remove the edge between BB and
1283       // CommonPred.
1284       if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred)
1285         Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1286 
1287     if (BBKillable)
1288       Updates.push_back({DominatorTree::Delete, BB, Succ});
1289   }
1290 
1291   if (isa<PHINode>(Succ->begin())) {
1292     // If there is more than one pred of succ, and there are PHI nodes in
1293     // the successor, then we need to add incoming edges for the PHI nodes
1294     //
1295     const PredBlockVector BBPreds(predecessors(BB));
1296 
1297     // Loop over all of the PHI nodes in the successor of BB.
1298     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1299       PHINode *PN = cast<PHINode>(I);
1300       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred);
1301     }
1302   }
1303 
1304   if (Succ->getSinglePredecessor()) {
1305     // BB is the only predecessor of Succ, so Succ will end up with exactly
1306     // the same predecessors BB had.
1307     // Copy over any phi, debug or lifetime instruction.
1308     BB->getTerminator()->eraseFromParent();
1309     Succ->splice(Succ->getFirstNonPHIIt(), BB);
1310   } else {
1311     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1312       // We explicitly check for such uses for merging phis.
1313       assert(PN->use_empty() && "There shouldn't be any uses here!");
1314       PN->eraseFromParent();
1315     }
1316   }
1317 
1318   // If the unconditional branch we replaced contains llvm.loop metadata, we
1319   // add the metadata to the branch instructions in the predecessors.
1320   if (Instruction *TI = BB->getTerminator())
1321     if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop))
1322       for (BasicBlock *Pred : predecessors(BB))
1323         Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD);
1324 
1325   if (BBKillable) {
1326     // Everything that jumped to BB now goes to Succ.
1327     BB->replaceAllUsesWith(Succ);
1328 
1329     if (!Succ->hasName())
1330       Succ->takeName(BB);
1331 
1332     // Clear the successor list of BB to match updates applying to DTU later.
1333     if (BB->getTerminator())
1334       BB->back().eraseFromParent();
1335 
1336     new UnreachableInst(BB->getContext(), BB);
1337     assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1338                              "applying corresponding DTU updates.");
1339   } else if (BBPhisMergeable) {
1340     //  Everything except CommonPred that jumped to BB now goes to Succ.
1341     BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool {
1342       if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser()))
1343         return UseInst->getParent() != CommonPred &&
1344                BBPreds.contains(UseInst->getParent());
1345       return false;
1346     });
1347   }
1348 
1349   if (DTU)
1350     DTU->applyUpdates(Updates);
1351 
1352   if (BBKillable)
1353     DeleteDeadBlock(BB, DTU);
1354 
1355   return true;
1356 }
1357 
1358 static bool
1359 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB,
1360                                     SmallPtrSetImpl<PHINode *> &ToRemove) {
1361   // This implementation doesn't currently consider undef operands
1362   // specially. Theoretically, two phis which are identical except for
1363   // one having an undef where the other doesn't could be collapsed.
1364 
1365   bool Changed = false;
1366 
1367   // Examine each PHI.
1368   // Note that increment of I must *NOT* be in the iteration_expression, since
1369   // we don't want to immediately advance when we restart from the beginning.
1370   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1371     ++I;
1372     // Is there an identical PHI node in this basic block?
1373     // Note that we only look in the upper square's triangle,
1374     // we already checked that the lower triangle PHI's aren't identical.
1375     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1376       if (ToRemove.contains(DuplicatePN))
1377         continue;
1378       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1379         continue;
1380       // A duplicate. Replace this PHI with the base PHI.
1381       ++NumPHICSEs;
1382       DuplicatePN->replaceAllUsesWith(PN);
1383       ToRemove.insert(DuplicatePN);
1384       Changed = true;
1385 
1386       // The RAUW can change PHIs that we already visited.
1387       I = BB->begin();
1388       break; // Start over from the beginning.
1389     }
1390   }
1391   return Changed;
1392 }
1393 
1394 static bool
1395 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB,
1396                                        SmallPtrSetImpl<PHINode *> &ToRemove) {
1397   // This implementation doesn't currently consider undef operands
1398   // specially. Theoretically, two phis which are identical except for
1399   // one having an undef where the other doesn't could be collapsed.
1400 
1401   struct PHIDenseMapInfo {
1402     static PHINode *getEmptyKey() {
1403       return DenseMapInfo<PHINode *>::getEmptyKey();
1404     }
1405 
1406     static PHINode *getTombstoneKey() {
1407       return DenseMapInfo<PHINode *>::getTombstoneKey();
1408     }
1409 
1410     static bool isSentinel(PHINode *PN) {
1411       return PN == getEmptyKey() || PN == getTombstoneKey();
1412     }
1413 
1414     // WARNING: this logic must be kept in sync with
1415     //          Instruction::isIdenticalToWhenDefined()!
1416     static unsigned getHashValueImpl(PHINode *PN) {
1417       // Compute a hash value on the operands. Instcombine will likely have
1418       // sorted them, which helps expose duplicates, but we have to check all
1419       // the operands to be safe in case instcombine hasn't run.
1420       return static_cast<unsigned>(hash_combine(
1421           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1422           hash_combine_range(PN->block_begin(), PN->block_end())));
1423     }
1424 
1425     static unsigned getHashValue(PHINode *PN) {
1426 #ifndef NDEBUG
1427       // If -phicse-debug-hash was specified, return a constant -- this
1428       // will force all hashing to collide, so we'll exhaustively search
1429       // the table for a match, and the assertion in isEqual will fire if
1430       // there's a bug causing equal keys to hash differently.
1431       if (PHICSEDebugHash)
1432         return 0;
1433 #endif
1434       return getHashValueImpl(PN);
1435     }
1436 
1437     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1438       if (isSentinel(LHS) || isSentinel(RHS))
1439         return LHS == RHS;
1440       return LHS->isIdenticalTo(RHS);
1441     }
1442 
1443     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1444       // These comparisons are nontrivial, so assert that equality implies
1445       // hash equality (DenseMap demands this as an invariant).
1446       bool Result = isEqualImpl(LHS, RHS);
1447       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1448              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1449       return Result;
1450     }
1451   };
1452 
1453   // Set of unique PHINodes.
1454   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1455   PHISet.reserve(4 * PHICSENumPHISmallSize);
1456 
1457   // Examine each PHI.
1458   bool Changed = false;
1459   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1460     if (ToRemove.contains(PN))
1461       continue;
1462     auto Inserted = PHISet.insert(PN);
1463     if (!Inserted.second) {
1464       // A duplicate. Replace this PHI with its duplicate.
1465       ++NumPHICSEs;
1466       PN->replaceAllUsesWith(*Inserted.first);
1467       ToRemove.insert(PN);
1468       Changed = true;
1469 
1470       // The RAUW can change PHIs that we already visited. Start over from the
1471       // beginning.
1472       PHISet.clear();
1473       I = BB->begin();
1474     }
1475   }
1476 
1477   return Changed;
1478 }
1479 
1480 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB,
1481                                       SmallPtrSetImpl<PHINode *> &ToRemove) {
1482   if (
1483 #ifndef NDEBUG
1484       !PHICSEDebugHash &&
1485 #endif
1486       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1487     return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove);
1488   return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove);
1489 }
1490 
1491 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1492   SmallPtrSet<PHINode *, 8> ToRemove;
1493   bool Changed = EliminateDuplicatePHINodes(BB, ToRemove);
1494   for (PHINode *PN : ToRemove)
1495     PN->eraseFromParent();
1496   return Changed;
1497 }
1498 
1499 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign,
1500                                 const DataLayout &DL) {
1501   V = V->stripPointerCasts();
1502 
1503   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1504     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1505     // than the current alignment, as the known bits calculation should have
1506     // already taken it into account. However, this is not always the case,
1507     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1508     // doesn't.
1509     Align CurrentAlign = AI->getAlign();
1510     if (PrefAlign <= CurrentAlign)
1511       return CurrentAlign;
1512 
1513     // If the preferred alignment is greater than the natural stack alignment
1514     // then don't round up. This avoids dynamic stack realignment.
1515     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1516       return CurrentAlign;
1517     AI->setAlignment(PrefAlign);
1518     return PrefAlign;
1519   }
1520 
1521   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1522     // TODO: as above, this shouldn't be necessary.
1523     Align CurrentAlign = GO->getPointerAlignment(DL);
1524     if (PrefAlign <= CurrentAlign)
1525       return CurrentAlign;
1526 
1527     // If there is a large requested alignment and we can, bump up the alignment
1528     // of the global.  If the memory we set aside for the global may not be the
1529     // memory used by the final program then it is impossible for us to reliably
1530     // enforce the preferred alignment.
1531     if (!GO->canIncreaseAlignment())
1532       return CurrentAlign;
1533 
1534     if (GO->isThreadLocal()) {
1535       unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT;
1536       if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign))
1537         PrefAlign = Align(MaxTLSAlign);
1538     }
1539 
1540     GO->setAlignment(PrefAlign);
1541     return PrefAlign;
1542   }
1543 
1544   return Align(1);
1545 }
1546 
1547 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1548                                        const DataLayout &DL,
1549                                        const Instruction *CxtI,
1550                                        AssumptionCache *AC,
1551                                        const DominatorTree *DT) {
1552   assert(V->getType()->isPointerTy() &&
1553          "getOrEnforceKnownAlignment expects a pointer!");
1554 
1555   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1556   unsigned TrailZ = Known.countMinTrailingZeros();
1557 
1558   // Avoid trouble with ridiculously large TrailZ values, such as
1559   // those computed from a null pointer.
1560   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1561   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1562 
1563   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1564 
1565   if (PrefAlign && *PrefAlign > Alignment)
1566     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1567 
1568   // We don't need to make any adjustment.
1569   return Alignment;
1570 }
1571 
1572 ///===---------------------------------------------------------------------===//
1573 ///  Dbg Intrinsic utilities
1574 ///
1575 
1576 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1577 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1578                              DIExpression *DIExpr,
1579                              PHINode *APN) {
1580   // Since we can't guarantee that the original dbg.declare intrinsic
1581   // is removed by LowerDbgDeclare(), we need to make sure that we are
1582   // not inserting the same dbg.value intrinsic over and over.
1583   SmallVector<DbgValueInst *, 1> DbgValues;
1584   SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
1585   findDbgValues(DbgValues, APN, &DbgVariableRecords);
1586   for (auto *DVI : DbgValues) {
1587     assert(is_contained(DVI->getValues(), APN));
1588     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1589       return true;
1590   }
1591   for (auto *DVR : DbgVariableRecords) {
1592     assert(is_contained(DVR->location_ops(), APN));
1593     if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr))
1594       return true;
1595   }
1596   return false;
1597 }
1598 
1599 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1600 /// (or fragment of the variable) described by \p DII.
1601 ///
1602 /// This is primarily intended as a helper for the different
1603 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted
1604 /// describes an alloca'd variable, so we need to use the alloc size of the
1605 /// value when doing the comparison. E.g. an i1 value will be identified as
1606 /// covering an n-bit fragment, if the store size of i1 is at least n bits.
1607 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1608   const DataLayout &DL = DII->getDataLayout();
1609   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1610   if (std::optional<uint64_t> FragmentSize =
1611           DII->getExpression()->getActiveBits(DII->getVariable()))
1612     return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
1613 
1614   // We can't always calculate the size of the DI variable (e.g. if it is a
1615   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1616   // intead.
1617   if (DII->isAddressOfVariable()) {
1618     // DII should have exactly 1 location when it is an address.
1619     assert(DII->getNumVariableLocationOps() == 1 &&
1620            "address of variable must have exactly 1 location operand.");
1621     if (auto *AI =
1622             dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1623       if (std::optional<TypeSize> FragmentSize =
1624               AI->getAllocationSizeInBits(DL)) {
1625         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1626       }
1627     }
1628   }
1629   // Could not determine size of variable. Conservatively return false.
1630   return false;
1631 }
1632 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords,
1633 // the replacement for dbg.values.
1634 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) {
1635   const DataLayout &DL = DVR->getModule()->getDataLayout();
1636   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1637   if (std::optional<uint64_t> FragmentSize =
1638           DVR->getExpression()->getActiveBits(DVR->getVariable()))
1639     return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
1640 
1641   // We can't always calculate the size of the DI variable (e.g. if it is a
1642   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1643   // intead.
1644   if (DVR->isAddressOfVariable()) {
1645     // DVR should have exactly 1 location when it is an address.
1646     assert(DVR->getNumVariableLocationOps() == 1 &&
1647            "address of variable must have exactly 1 location operand.");
1648     if (auto *AI =
1649             dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) {
1650       if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1651         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1652       }
1653     }
1654   }
1655   // Could not determine size of variable. Conservatively return false.
1656   return false;
1657 }
1658 
1659 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV,
1660                                               DILocalVariable *DIVar,
1661                                               DIExpression *DIExpr,
1662                                               const DebugLoc &NewLoc,
1663                                               BasicBlock::iterator Instr) {
1664   if (!UseNewDbgInfoFormat) {
1665     auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
1666                                                   (Instruction *)nullptr);
1667     DbgVal.get<Instruction *>()->insertBefore(Instr);
1668   } else {
1669     // RemoveDIs: if we're using the new debug-info format, allocate a
1670     // DbgVariableRecord directly instead of a dbg.value intrinsic.
1671     ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1672     DbgVariableRecord *DV =
1673         new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1674     Instr->getParent()->insertDbgRecordBefore(DV, Instr);
1675   }
1676 }
1677 
1678 static void insertDbgValueOrDbgVariableRecordAfter(
1679     DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr,
1680     const DebugLoc &NewLoc, BasicBlock::iterator Instr) {
1681   if (!UseNewDbgInfoFormat) {
1682     auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
1683                                                   (Instruction *)nullptr);
1684     DbgVal.get<Instruction *>()->insertAfter(&*Instr);
1685   } else {
1686     // RemoveDIs: if we're using the new debug-info format, allocate a
1687     // DbgVariableRecord directly instead of a dbg.value intrinsic.
1688     ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1689     DbgVariableRecord *DV =
1690         new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1691     Instr->getParent()->insertDbgRecordAfter(DV, &*Instr);
1692   }
1693 }
1694 
1695 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1696 /// that has an associated llvm.dbg.declare intrinsic.
1697 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1698                                            StoreInst *SI, DIBuilder &Builder) {
1699   assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII));
1700   auto *DIVar = DII->getVariable();
1701   assert(DIVar && "Missing variable");
1702   auto *DIExpr = DII->getExpression();
1703   Value *DV = SI->getValueOperand();
1704 
1705   DebugLoc NewLoc = getDebugValueLoc(DII);
1706 
1707   // If the alloca describes the variable itself, i.e. the expression in the
1708   // dbg.declare doesn't start with a dereference, we can perform the
1709   // conversion if the value covers the entire fragment of DII.
1710   // If the alloca describes the *address* of DIVar, i.e. DIExpr is
1711   // *just* a DW_OP_deref, we use DV as is for the dbg.value.
1712   // We conservatively ignore other dereferences, because the following two are
1713   // not equivalent:
1714   //     dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
1715   //     dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
1716   // The former is adding 2 to the address of the variable, whereas the latter
1717   // is adding 2 to the value of the variable. As such, we insist on just a
1718   // deref expression.
1719   bool CanConvert =
1720       DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
1721                             valueCoversEntireFragment(DV->getType(), DII));
1722   if (CanConvert) {
1723     insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1724                                       SI->getIterator());
1725     return;
1726   }
1727 
1728   // FIXME: If storing to a part of the variable described by the dbg.declare,
1729   // then we want to insert a dbg.value for the corresponding fragment.
1730   LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII
1731                     << '\n');
1732   // For now, when there is a store to parts of the variable (but we do not
1733   // know which part) we insert an dbg.value intrinsic to indicate that we
1734   // know nothing about the variable's content.
1735   DV = UndefValue::get(DV->getType());
1736   insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1737                                     SI->getIterator());
1738 }
1739 
1740 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1741 /// that has an associated llvm.dbg.declare intrinsic.
1742 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1743                                            LoadInst *LI, DIBuilder &Builder) {
1744   auto *DIVar = DII->getVariable();
1745   auto *DIExpr = DII->getExpression();
1746   assert(DIVar && "Missing variable");
1747 
1748   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1749     // FIXME: If only referring to a part of the variable described by the
1750     // dbg.declare, then we want to insert a dbg.value for the corresponding
1751     // fragment.
1752     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1753                       << *DII << '\n');
1754     return;
1755   }
1756 
1757   DebugLoc NewLoc = getDebugValueLoc(DII);
1758 
1759   // We are now tracking the loaded value instead of the address. In the
1760   // future if multi-location support is added to the IR, it might be
1761   // preferable to keep tracking both the loaded value and the original
1762   // address in case the alloca can not be elided.
1763   insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc,
1764                                          LI->getIterator());
1765 }
1766 
1767 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR,
1768                                            StoreInst *SI, DIBuilder &Builder) {
1769   assert(DVR->isAddressOfVariable() || DVR->isDbgAssign());
1770   auto *DIVar = DVR->getVariable();
1771   assert(DIVar && "Missing variable");
1772   auto *DIExpr = DVR->getExpression();
1773   Value *DV = SI->getValueOperand();
1774 
1775   DebugLoc NewLoc = getDebugValueLoc(DVR);
1776 
1777   // If the alloca describes the variable itself, i.e. the expression in the
1778   // dbg.declare doesn't start with a dereference, we can perform the
1779   // conversion if the value covers the entire fragment of DII.
1780   // If the alloca describes the *address* of DIVar, i.e. DIExpr is
1781   // *just* a DW_OP_deref, we use DV as is for the dbg.value.
1782   // We conservatively ignore other dereferences, because the following two are
1783   // not equivalent:
1784   //     dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
1785   //     dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
1786   // The former is adding 2 to the address of the variable, whereas the latter
1787   // is adding 2 to the value of the variable. As such, we insist on just a
1788   // deref expression.
1789   bool CanConvert =
1790       DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
1791                             valueCoversEntireFragment(DV->getType(), DVR));
1792   if (CanConvert) {
1793     insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1794                                       SI->getIterator());
1795     return;
1796   }
1797 
1798   // FIXME: If storing to a part of the variable described by the dbg.declare,
1799   // then we want to insert a dbg.value for the corresponding fragment.
1800   LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR
1801                     << '\n');
1802   assert(UseNewDbgInfoFormat);
1803 
1804   // For now, when there is a store to parts of the variable (but we do not
1805   // know which part) we insert an dbg.value intrinsic to indicate that we
1806   // know nothing about the variable's content.
1807   DV = UndefValue::get(DV->getType());
1808   ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1809   DbgVariableRecord *NewDVR =
1810       new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1811   SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator());
1812 }
1813 
1814 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1815 /// llvm.dbg.declare intrinsic.
1816 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1817                                            PHINode *APN, DIBuilder &Builder) {
1818   auto *DIVar = DII->getVariable();
1819   auto *DIExpr = DII->getExpression();
1820   assert(DIVar && "Missing variable");
1821 
1822   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1823     return;
1824 
1825   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1826     // FIXME: If only referring to a part of the variable described by the
1827     // dbg.declare, then we want to insert a dbg.value for the corresponding
1828     // fragment.
1829     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1830                       << *DII << '\n');
1831     return;
1832   }
1833 
1834   BasicBlock *BB = APN->getParent();
1835   auto InsertionPt = BB->getFirstInsertionPt();
1836 
1837   DebugLoc NewLoc = getDebugValueLoc(DII);
1838 
1839   // The block may be a catchswitch block, which does not have a valid
1840   // insertion point.
1841   // FIXME: Insert dbg.value markers in the successors when appropriate.
1842   if (InsertionPt != BB->end()) {
1843     insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc,
1844                                       InsertionPt);
1845   }
1846 }
1847 
1848 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI,
1849                                            DIBuilder &Builder) {
1850   auto *DIVar = DVR->getVariable();
1851   auto *DIExpr = DVR->getExpression();
1852   assert(DIVar && "Missing variable");
1853 
1854   if (!valueCoversEntireFragment(LI->getType(), DVR)) {
1855     // FIXME: If only referring to a part of the variable described by the
1856     // dbg.declare, then we want to insert a DbgVariableRecord for the
1857     // corresponding fragment.
1858     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: "
1859                       << *DVR << '\n');
1860     return;
1861   }
1862 
1863   DebugLoc NewLoc = getDebugValueLoc(DVR);
1864 
1865   // We are now tracking the loaded value instead of the address. In the
1866   // future if multi-location support is added to the IR, it might be
1867   // preferable to keep tracking both the loaded value and the original
1868   // address in case the alloca can not be elided.
1869   assert(UseNewDbgInfoFormat);
1870 
1871   // Create a DbgVariableRecord directly and insert.
1872   ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI);
1873   DbgVariableRecord *DV =
1874       new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get());
1875   LI->getParent()->insertDbgRecordAfter(DV, LI);
1876 }
1877 
1878 /// Determine whether this alloca is either a VLA or an array.
1879 static bool isArray(AllocaInst *AI) {
1880   return AI->isArrayAllocation() ||
1881          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1882 }
1883 
1884 /// Determine whether this alloca is a structure.
1885 static bool isStructure(AllocaInst *AI) {
1886   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1887 }
1888 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN,
1889                                            DIBuilder &Builder) {
1890   auto *DIVar = DVR->getVariable();
1891   auto *DIExpr = DVR->getExpression();
1892   assert(DIVar && "Missing variable");
1893 
1894   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1895     return;
1896 
1897   if (!valueCoversEntireFragment(APN->getType(), DVR)) {
1898     // FIXME: If only referring to a part of the variable described by the
1899     // dbg.declare, then we want to insert a DbgVariableRecord for the
1900     // corresponding fragment.
1901     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: "
1902                       << *DVR << '\n');
1903     return;
1904   }
1905 
1906   BasicBlock *BB = APN->getParent();
1907   auto InsertionPt = BB->getFirstInsertionPt();
1908 
1909   DebugLoc NewLoc = getDebugValueLoc(DVR);
1910 
1911   // The block may be a catchswitch block, which does not have a valid
1912   // insertion point.
1913   // FIXME: Insert DbgVariableRecord markers in the successors when appropriate.
1914   if (InsertionPt != BB->end()) {
1915     insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc,
1916                                       InsertionPt);
1917   }
1918 }
1919 
1920 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1921 /// of llvm.dbg.value intrinsics.
1922 bool llvm::LowerDbgDeclare(Function &F) {
1923   bool Changed = false;
1924   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1925   SmallVector<DbgDeclareInst *, 4> Dbgs;
1926   SmallVector<DbgVariableRecord *> DVRs;
1927   for (auto &FI : F) {
1928     for (Instruction &BI : FI) {
1929       if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI))
1930         Dbgs.push_back(DDI);
1931       for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) {
1932         if (DVR.getType() == DbgVariableRecord::LocationType::Declare)
1933           DVRs.push_back(&DVR);
1934       }
1935     }
1936   }
1937 
1938   if (Dbgs.empty() && DVRs.empty())
1939     return Changed;
1940 
1941   auto LowerOne = [&](auto *DDI) {
1942     AllocaInst *AI =
1943         dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0));
1944     // If this is an alloca for a scalar variable, insert a dbg.value
1945     // at each load and store to the alloca and erase the dbg.declare.
1946     // The dbg.values allow tracking a variable even if it is not
1947     // stored on the stack, while the dbg.declare can only describe
1948     // the stack slot (and at a lexical-scope granularity). Later
1949     // passes will attempt to elide the stack slot.
1950     if (!AI || isArray(AI) || isStructure(AI))
1951       return;
1952 
1953     // A volatile load/store means that the alloca can't be elided anyway.
1954     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1955           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1956             return LI->isVolatile();
1957           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1958             return SI->isVolatile();
1959           return false;
1960         }))
1961       return;
1962 
1963     SmallVector<const Value *, 8> WorkList;
1964     WorkList.push_back(AI);
1965     while (!WorkList.empty()) {
1966       const Value *V = WorkList.pop_back_val();
1967       for (const auto &AIUse : V->uses()) {
1968         User *U = AIUse.getUser();
1969         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1970           if (AIUse.getOperandNo() == 1)
1971             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1972         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1973           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1974         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1975           // This is a call by-value or some other instruction that takes a
1976           // pointer to the variable. Insert a *value* intrinsic that describes
1977           // the variable by dereferencing the alloca.
1978           if (!CI->isLifetimeStartOrEnd()) {
1979             DebugLoc NewLoc = getDebugValueLoc(DDI);
1980             auto *DerefExpr =
1981                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1982             insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(),
1983                                               DerefExpr, NewLoc,
1984                                               CI->getIterator());
1985           }
1986         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1987           if (BI->getType()->isPointerTy())
1988             WorkList.push_back(BI);
1989         }
1990       }
1991     }
1992     DDI->eraseFromParent();
1993     Changed = true;
1994   };
1995 
1996   for_each(Dbgs, LowerOne);
1997   for_each(DVRs, LowerOne);
1998 
1999   if (Changed)
2000     for (BasicBlock &BB : F)
2001       RemoveRedundantDbgInstrs(&BB);
2002 
2003   return Changed;
2004 }
2005 
2006 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the
2007 // debug-info out of the block's DbgVariableRecords rather than dbg.value
2008 // intrinsics.
2009 static void
2010 insertDbgVariableRecordsForPHIs(BasicBlock *BB,
2011                                 SmallVectorImpl<PHINode *> &InsertedPHIs) {
2012   assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from.");
2013   if (InsertedPHIs.size() == 0)
2014     return;
2015 
2016   // Map existing PHI nodes to their DbgVariableRecords.
2017   DenseMap<Value *, DbgVariableRecord *> DbgValueMap;
2018   for (auto &I : *BB) {
2019     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
2020       for (Value *V : DVR.location_ops())
2021         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
2022           DbgValueMap.insert({Loc, &DVR});
2023     }
2024   }
2025   if (DbgValueMap.size() == 0)
2026     return;
2027 
2028   // Map a pair of the destination BB and old DbgVariableRecord to the new
2029   // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use
2030   // more than one of the inserted PHIs in the same destination BB, we can
2031   // update the same DbgVariableRecord with all the new PHIs instead of creating
2032   // one copy for each.
2033   MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *>
2034       NewDbgValueMap;
2035   // Then iterate through the new PHIs and look to see if they use one of the
2036   // previously mapped PHIs. If so, create a new DbgVariableRecord that will
2037   // propagate the info through the new PHI. If we use more than one new PHI in
2038   // a single destination BB with the same old dbg.value, merge the updates so
2039   // that we get a single new DbgVariableRecord with all the new PHIs.
2040   for (auto PHI : InsertedPHIs) {
2041     BasicBlock *Parent = PHI->getParent();
2042     // Avoid inserting a debug-info record into an EH block.
2043     if (Parent->getFirstNonPHI()->isEHPad())
2044       continue;
2045     for (auto VI : PHI->operand_values()) {
2046       auto V = DbgValueMap.find(VI);
2047       if (V != DbgValueMap.end()) {
2048         DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second);
2049         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
2050         if (NewDI == NewDbgValueMap.end()) {
2051           DbgVariableRecord *NewDbgII = DbgII->clone();
2052           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
2053         }
2054         DbgVariableRecord *NewDbgII = NewDI->second;
2055         // If PHI contains VI as an operand more than once, we may
2056         // replaced it in NewDbgII; confirm that it is present.
2057         if (is_contained(NewDbgII->location_ops(), VI))
2058           NewDbgII->replaceVariableLocationOp(VI, PHI);
2059       }
2060     }
2061   }
2062   // Insert the new DbgVariableRecords into their destination blocks.
2063   for (auto DI : NewDbgValueMap) {
2064     BasicBlock *Parent = DI.first.first;
2065     DbgVariableRecord *NewDbgII = DI.second;
2066     auto InsertionPt = Parent->getFirstInsertionPt();
2067     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
2068 
2069     Parent->insertDbgRecordBefore(NewDbgII, InsertionPt);
2070   }
2071 }
2072 
2073 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
2074 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
2075                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
2076   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
2077   if (InsertedPHIs.size() == 0)
2078     return;
2079 
2080   insertDbgVariableRecordsForPHIs(BB, InsertedPHIs);
2081 
2082   // Map existing PHI nodes to their dbg.values.
2083   ValueToValueMapTy DbgValueMap;
2084   for (auto &I : *BB) {
2085     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2086       for (Value *V : DbgII->location_ops())
2087         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
2088           DbgValueMap.insert({Loc, DbgII});
2089     }
2090   }
2091   if (DbgValueMap.size() == 0)
2092     return;
2093 
2094   // Map a pair of the destination BB and old dbg.value to the new dbg.value,
2095   // so that if a dbg.value is being rewritten to use more than one of the
2096   // inserted PHIs in the same destination BB, we can update the same dbg.value
2097   // with all the new PHIs instead of creating one copy for each.
2098   MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
2099             DbgVariableIntrinsic *>
2100       NewDbgValueMap;
2101   // Then iterate through the new PHIs and look to see if they use one of the
2102   // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
2103   // propagate the info through the new PHI. If we use more than one new PHI in
2104   // a single destination BB with the same old dbg.value, merge the updates so
2105   // that we get a single new dbg.value with all the new PHIs.
2106   for (auto *PHI : InsertedPHIs) {
2107     BasicBlock *Parent = PHI->getParent();
2108     // Avoid inserting an intrinsic into an EH block.
2109     if (Parent->getFirstNonPHI()->isEHPad())
2110       continue;
2111     for (auto *VI : PHI->operand_values()) {
2112       auto V = DbgValueMap.find(VI);
2113       if (V != DbgValueMap.end()) {
2114         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
2115         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
2116         if (NewDI == NewDbgValueMap.end()) {
2117           auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
2118           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
2119         }
2120         DbgVariableIntrinsic *NewDbgII = NewDI->second;
2121         // If PHI contains VI as an operand more than once, we may
2122         // replaced it in NewDbgII; confirm that it is present.
2123         if (is_contained(NewDbgII->location_ops(), VI))
2124           NewDbgII->replaceVariableLocationOp(VI, PHI);
2125       }
2126     }
2127   }
2128   // Insert thew new dbg.values into their destination blocks.
2129   for (auto DI : NewDbgValueMap) {
2130     BasicBlock *Parent = DI.first.first;
2131     auto *NewDbgII = DI.second;
2132     auto InsertionPt = Parent->getFirstInsertionPt();
2133     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
2134     NewDbgII->insertBefore(&*InsertionPt);
2135   }
2136 }
2137 
2138 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
2139                              DIBuilder &Builder, uint8_t DIExprFlags,
2140                              int Offset) {
2141   TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address);
2142   TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address);
2143 
2144   auto ReplaceOne = [&](auto *DII) {
2145     assert(DII->getVariable() && "Missing variable");
2146     auto *DIExpr = DII->getExpression();
2147     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
2148     DII->setExpression(DIExpr);
2149     DII->replaceVariableLocationOp(Address, NewAddress);
2150   };
2151 
2152   for_each(DbgDeclares, ReplaceOne);
2153   for_each(DVRDeclares, ReplaceOne);
2154 
2155   return !DbgDeclares.empty() || !DVRDeclares.empty();
2156 }
2157 
2158 static void updateOneDbgValueForAlloca(const DebugLoc &Loc,
2159                                        DILocalVariable *DIVar,
2160                                        DIExpression *DIExpr, Value *NewAddress,
2161                                        DbgValueInst *DVI,
2162                                        DbgVariableRecord *DVR,
2163                                        DIBuilder &Builder, int Offset) {
2164   assert(DIVar && "Missing variable");
2165 
2166   // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it
2167   // should do with the alloca pointer is dereference it. Otherwise we don't
2168   // know how to handle it and give up.
2169   if (!DIExpr || DIExpr->getNumElements() < 1 ||
2170       DIExpr->getElement(0) != dwarf::DW_OP_deref)
2171     return;
2172 
2173   // Insert the offset before the first deref.
2174   if (Offset)
2175     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
2176 
2177   if (DVI) {
2178     DVI->setExpression(DIExpr);
2179     DVI->replaceVariableLocationOp(0u, NewAddress);
2180   } else {
2181     assert(DVR);
2182     DVR->setExpression(DIExpr);
2183     DVR->replaceVariableLocationOp(0u, NewAddress);
2184   }
2185 }
2186 
2187 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
2188                                     DIBuilder &Builder, int Offset) {
2189   SmallVector<DbgValueInst *, 1> DbgUsers;
2190   SmallVector<DbgVariableRecord *, 1> DPUsers;
2191   findDbgValues(DbgUsers, AI, &DPUsers);
2192 
2193   // Attempt to replace dbg.values that use this alloca.
2194   for (auto *DVI : DbgUsers)
2195     updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(),
2196                                DVI->getExpression(), NewAllocaAddress, DVI,
2197                                nullptr, Builder, Offset);
2198 
2199   // Replace any DbgVariableRecords that use this alloca.
2200   for (DbgVariableRecord *DVR : DPUsers)
2201     updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(),
2202                                DVR->getExpression(), NewAllocaAddress, nullptr,
2203                                DVR, Builder, Offset);
2204 }
2205 
2206 /// Where possible to salvage debug information for \p I do so.
2207 /// If not possible mark undef.
2208 void llvm::salvageDebugInfo(Instruction &I) {
2209   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2210   SmallVector<DbgVariableRecord *, 1> DPUsers;
2211   findDbgUsers(DbgUsers, &I, &DPUsers);
2212   salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers);
2213 }
2214 
2215 template <typename T> static void salvageDbgAssignAddress(T *Assign) {
2216   Instruction *I = dyn_cast<Instruction>(Assign->getAddress());
2217   // Only instructions can be salvaged at the moment.
2218   if (!I)
2219     return;
2220 
2221   assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() &&
2222          "address-expression shouldn't have fragment info");
2223 
2224   // The address component of a dbg.assign cannot be variadic.
2225   uint64_t CurrentLocOps = 0;
2226   SmallVector<Value *, 4> AdditionalValues;
2227   SmallVector<uint64_t, 16> Ops;
2228   Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues);
2229 
2230   // Check if the salvage failed.
2231   if (!NewV)
2232     return;
2233 
2234   DIExpression *SalvagedExpr = DIExpression::appendOpsToArg(
2235       Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false);
2236   assert(!SalvagedExpr->getFragmentInfo().has_value() &&
2237          "address-expression shouldn't have fragment info");
2238 
2239   SalvagedExpr = SalvagedExpr->foldConstantMath();
2240 
2241   // Salvage succeeds if no additional values are required.
2242   if (AdditionalValues.empty()) {
2243     Assign->setAddress(NewV);
2244     Assign->setAddressExpression(SalvagedExpr);
2245   } else {
2246     Assign->setKillAddress();
2247   }
2248 }
2249 
2250 void llvm::salvageDebugInfoForDbgValues(
2251     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers,
2252     ArrayRef<DbgVariableRecord *> DPUsers) {
2253   // These are arbitrary chosen limits on the maximum number of values and the
2254   // maximum size of a debug expression we can salvage up to, used for
2255   // performance reasons.
2256   const unsigned MaxDebugArgs = 16;
2257   const unsigned MaxExpressionSize = 128;
2258   bool Salvaged = false;
2259 
2260   for (auto *DII : DbgUsers) {
2261     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) {
2262       if (DAI->getAddress() == &I) {
2263         salvageDbgAssignAddress(DAI);
2264         Salvaged = true;
2265       }
2266       if (DAI->getValue() != &I)
2267         continue;
2268     }
2269 
2270     // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly
2271     // pointing out the value as a DWARF memory location description.
2272     bool StackValue = isa<DbgValueInst>(DII);
2273     auto DIILocation = DII->location_ops();
2274     assert(
2275         is_contained(DIILocation, &I) &&
2276         "DbgVariableIntrinsic must use salvaged instruction as its location");
2277     SmallVector<Value *, 4> AdditionalValues;
2278     // `I` may appear more than once in DII's location ops, and each use of `I`
2279     // must be updated in the DIExpression and potentially have additional
2280     // values added; thus we call salvageDebugInfoImpl for each `I` instance in
2281     // DIILocation.
2282     Value *Op0 = nullptr;
2283     DIExpression *SalvagedExpr = DII->getExpression();
2284     auto LocItr = find(DIILocation, &I);
2285     while (SalvagedExpr && LocItr != DIILocation.end()) {
2286       SmallVector<uint64_t, 16> Ops;
2287       unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
2288       uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
2289       Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
2290       if (!Op0)
2291         break;
2292       SalvagedExpr =
2293           DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
2294       LocItr = std::find(++LocItr, DIILocation.end(), &I);
2295     }
2296     // salvageDebugInfoImpl should fail on examining the first element of
2297     // DbgUsers, or none of them.
2298     if (!Op0)
2299       break;
2300 
2301     SalvagedExpr = SalvagedExpr->foldConstantMath();
2302     DII->replaceVariableLocationOp(&I, Op0);
2303     bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
2304     if (AdditionalValues.empty() && IsValidSalvageExpr) {
2305       DII->setExpression(SalvagedExpr);
2306     } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr &&
2307                DII->getNumVariableLocationOps() + AdditionalValues.size() <=
2308                    MaxDebugArgs) {
2309       DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
2310     } else {
2311       // Do not salvage using DIArgList for dbg.declare, as it is not currently
2312       // supported in those instructions. Also do not salvage if the resulting
2313       // DIArgList would contain an unreasonably large number of values.
2314       DII->setKillLocation();
2315     }
2316     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
2317     Salvaged = true;
2318   }
2319   // Duplicate of above block for DbgVariableRecords.
2320   for (auto *DVR : DPUsers) {
2321     if (DVR->isDbgAssign()) {
2322       if (DVR->getAddress() == &I) {
2323         salvageDbgAssignAddress(DVR);
2324         Salvaged = true;
2325       }
2326       if (DVR->getValue() != &I)
2327         continue;
2328     }
2329 
2330     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
2331     // are implicitly pointing out the value as a DWARF memory location
2332     // description.
2333     bool StackValue =
2334         DVR->getType() != DbgVariableRecord::LocationType::Declare;
2335     auto DVRLocation = DVR->location_ops();
2336     assert(
2337         is_contained(DVRLocation, &I) &&
2338         "DbgVariableIntrinsic must use salvaged instruction as its location");
2339     SmallVector<Value *, 4> AdditionalValues;
2340     // 'I' may appear more than once in DVR's location ops, and each use of 'I'
2341     // must be updated in the DIExpression and potentially have additional
2342     // values added; thus we call salvageDebugInfoImpl for each 'I' instance in
2343     // DVRLocation.
2344     Value *Op0 = nullptr;
2345     DIExpression *SalvagedExpr = DVR->getExpression();
2346     auto LocItr = find(DVRLocation, &I);
2347     while (SalvagedExpr && LocItr != DVRLocation.end()) {
2348       SmallVector<uint64_t, 16> Ops;
2349       unsigned LocNo = std::distance(DVRLocation.begin(), LocItr);
2350       uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
2351       Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
2352       if (!Op0)
2353         break;
2354       SalvagedExpr =
2355           DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
2356       LocItr = std::find(++LocItr, DVRLocation.end(), &I);
2357     }
2358     // salvageDebugInfoImpl should fail on examining the first element of
2359     // DbgUsers, or none of them.
2360     if (!Op0)
2361       break;
2362 
2363     SalvagedExpr = SalvagedExpr->foldConstantMath();
2364     DVR->replaceVariableLocationOp(&I, Op0);
2365     bool IsValidSalvageExpr =
2366         SalvagedExpr->getNumElements() <= MaxExpressionSize;
2367     if (AdditionalValues.empty() && IsValidSalvageExpr) {
2368       DVR->setExpression(SalvagedExpr);
2369     } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare &&
2370                IsValidSalvageExpr &&
2371                DVR->getNumVariableLocationOps() + AdditionalValues.size() <=
2372                    MaxDebugArgs) {
2373       DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr);
2374     } else {
2375       // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
2376       // currently only valid for stack value expressions.
2377       // Also do not salvage if the resulting DIArgList would contain an
2378       // unreasonably large number of values.
2379       DVR->setKillLocation();
2380     }
2381     LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n');
2382     Salvaged = true;
2383   }
2384 
2385   if (Salvaged)
2386     return;
2387 
2388   for (auto *DII : DbgUsers)
2389     DII->setKillLocation();
2390 
2391   for (auto *DVR : DPUsers)
2392     DVR->setKillLocation();
2393 }
2394 
2395 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
2396                            uint64_t CurrentLocOps,
2397                            SmallVectorImpl<uint64_t> &Opcodes,
2398                            SmallVectorImpl<Value *> &AdditionalValues) {
2399   unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
2400   // Rewrite a GEP into a DIExpression.
2401   MapVector<Value *, APInt> VariableOffsets;
2402   APInt ConstantOffset(BitWidth, 0);
2403   if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
2404     return nullptr;
2405   if (!VariableOffsets.empty() && !CurrentLocOps) {
2406     Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
2407     CurrentLocOps = 1;
2408   }
2409   for (const auto &Offset : VariableOffsets) {
2410     AdditionalValues.push_back(Offset.first);
2411     assert(Offset.second.isStrictlyPositive() &&
2412            "Expected strictly positive multiplier for offset.");
2413     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
2414                     Offset.second.getZExtValue(), dwarf::DW_OP_mul,
2415                     dwarf::DW_OP_plus});
2416   }
2417   DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
2418   return GEP->getOperand(0);
2419 }
2420 
2421 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
2422   switch (Opcode) {
2423   case Instruction::Add:
2424     return dwarf::DW_OP_plus;
2425   case Instruction::Sub:
2426     return dwarf::DW_OP_minus;
2427   case Instruction::Mul:
2428     return dwarf::DW_OP_mul;
2429   case Instruction::SDiv:
2430     return dwarf::DW_OP_div;
2431   case Instruction::SRem:
2432     return dwarf::DW_OP_mod;
2433   case Instruction::Or:
2434     return dwarf::DW_OP_or;
2435   case Instruction::And:
2436     return dwarf::DW_OP_and;
2437   case Instruction::Xor:
2438     return dwarf::DW_OP_xor;
2439   case Instruction::Shl:
2440     return dwarf::DW_OP_shl;
2441   case Instruction::LShr:
2442     return dwarf::DW_OP_shr;
2443   case Instruction::AShr:
2444     return dwarf::DW_OP_shra;
2445   default:
2446     // TODO: Salvage from each kind of binop we know about.
2447     return 0;
2448   }
2449 }
2450 
2451 static void handleSSAValueOperands(uint64_t CurrentLocOps,
2452                                    SmallVectorImpl<uint64_t> &Opcodes,
2453                                    SmallVectorImpl<Value *> &AdditionalValues,
2454                                    Instruction *I) {
2455   if (!CurrentLocOps) {
2456     Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
2457     CurrentLocOps = 1;
2458   }
2459   Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
2460   AdditionalValues.push_back(I->getOperand(1));
2461 }
2462 
2463 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
2464                              SmallVectorImpl<uint64_t> &Opcodes,
2465                              SmallVectorImpl<Value *> &AdditionalValues) {
2466   // Handle binary operations with constant integer operands as a special case.
2467   auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
2468   // Values wider than 64 bits cannot be represented within a DIExpression.
2469   if (ConstInt && ConstInt->getBitWidth() > 64)
2470     return nullptr;
2471 
2472   Instruction::BinaryOps BinOpcode = BI->getOpcode();
2473   // Push any Constant Int operand onto the expression stack.
2474   if (ConstInt) {
2475     uint64_t Val = ConstInt->getSExtValue();
2476     // Add or Sub Instructions with a constant operand can potentially be
2477     // simplified.
2478     if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
2479       uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
2480       DIExpression::appendOffset(Opcodes, Offset);
2481       return BI->getOperand(0);
2482     }
2483     Opcodes.append({dwarf::DW_OP_constu, Val});
2484   } else {
2485     handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI);
2486   }
2487 
2488   // Add salvaged binary operator to expression stack, if it has a valid
2489   // representation in a DIExpression.
2490   uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
2491   if (!DwarfBinOp)
2492     return nullptr;
2493   Opcodes.push_back(DwarfBinOp);
2494   return BI->getOperand(0);
2495 }
2496 
2497 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) {
2498   // The signedness of the operation is implicit in the typed stack, signed and
2499   // unsigned instructions map to the same DWARF opcode.
2500   switch (Pred) {
2501   case CmpInst::ICMP_EQ:
2502     return dwarf::DW_OP_eq;
2503   case CmpInst::ICMP_NE:
2504     return dwarf::DW_OP_ne;
2505   case CmpInst::ICMP_UGT:
2506   case CmpInst::ICMP_SGT:
2507     return dwarf::DW_OP_gt;
2508   case CmpInst::ICMP_UGE:
2509   case CmpInst::ICMP_SGE:
2510     return dwarf::DW_OP_ge;
2511   case CmpInst::ICMP_ULT:
2512   case CmpInst::ICMP_SLT:
2513     return dwarf::DW_OP_lt;
2514   case CmpInst::ICMP_ULE:
2515   case CmpInst::ICMP_SLE:
2516     return dwarf::DW_OP_le;
2517   default:
2518     return 0;
2519   }
2520 }
2521 
2522 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps,
2523                               SmallVectorImpl<uint64_t> &Opcodes,
2524                               SmallVectorImpl<Value *> &AdditionalValues) {
2525   // Handle icmp operations with constant integer operands as a special case.
2526   auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1));
2527   // Values wider than 64 bits cannot be represented within a DIExpression.
2528   if (ConstInt && ConstInt->getBitWidth() > 64)
2529     return nullptr;
2530   // Push any Constant Int operand onto the expression stack.
2531   if (ConstInt) {
2532     if (Icmp->isSigned())
2533       Opcodes.push_back(dwarf::DW_OP_consts);
2534     else
2535       Opcodes.push_back(dwarf::DW_OP_constu);
2536     uint64_t Val = ConstInt->getSExtValue();
2537     Opcodes.push_back(Val);
2538   } else {
2539     handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp);
2540   }
2541 
2542   // Add salvaged binary operator to expression stack, if it has a valid
2543   // representation in a DIExpression.
2544   uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate());
2545   if (!DwarfIcmpOp)
2546     return nullptr;
2547   Opcodes.push_back(DwarfIcmpOp);
2548   return Icmp->getOperand(0);
2549 }
2550 
2551 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
2552                                   SmallVectorImpl<uint64_t> &Ops,
2553                                   SmallVectorImpl<Value *> &AdditionalValues) {
2554   auto &M = *I.getModule();
2555   auto &DL = M.getDataLayout();
2556 
2557   if (auto *CI = dyn_cast<CastInst>(&I)) {
2558     Value *FromValue = CI->getOperand(0);
2559     // No-op casts are irrelevant for debug info.
2560     if (CI->isNoopCast(DL)) {
2561       return FromValue;
2562     }
2563 
2564     Type *Type = CI->getType();
2565     if (Type->isPointerTy())
2566       Type = DL.getIntPtrType(Type);
2567     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
2568     if (Type->isVectorTy() ||
2569         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
2570           isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
2571       return nullptr;
2572 
2573     llvm::Type *FromType = FromValue->getType();
2574     if (FromType->isPointerTy())
2575       FromType = DL.getIntPtrType(FromType);
2576 
2577     unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
2578     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
2579 
2580     auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
2581                                           isa<SExtInst>(&I));
2582     Ops.append(ExtOps.begin(), ExtOps.end());
2583     return FromValue;
2584   }
2585 
2586   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
2587     return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
2588   if (auto *BI = dyn_cast<BinaryOperator>(&I))
2589     return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
2590   if (auto *IC = dyn_cast<ICmpInst>(&I))
2591     return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues);
2592 
2593   // *Not* to do: we should not attempt to salvage load instructions,
2594   // because the validity and lifetime of a dbg.value containing
2595   // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
2596   return nullptr;
2597 }
2598 
2599 /// A replacement for a dbg.value expression.
2600 using DbgValReplacement = std::optional<DIExpression *>;
2601 
2602 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
2603 /// possibly moving/undefing users to prevent use-before-def. Returns true if
2604 /// changes are made.
2605 static bool rewriteDebugUsers(
2606     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
2607     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr,
2608     function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) {
2609   // Find debug users of From.
2610   SmallVector<DbgVariableIntrinsic *, 1> Users;
2611   SmallVector<DbgVariableRecord *, 1> DPUsers;
2612   findDbgUsers(Users, &From, &DPUsers);
2613   if (Users.empty() && DPUsers.empty())
2614     return false;
2615 
2616   // Prevent use-before-def of To.
2617   bool Changed = false;
2618 
2619   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
2620   SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR;
2621   if (isa<Instruction>(&To)) {
2622     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
2623 
2624     for (auto *DII : Users) {
2625       // It's common to see a debug user between From and DomPoint. Move it
2626       // after DomPoint to preserve the variable update without any reordering.
2627       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
2628         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
2629         DII->moveAfter(&DomPoint);
2630         Changed = true;
2631 
2632       // Users which otherwise aren't dominated by the replacement value must
2633       // be salvaged or deleted.
2634       } else if (!DT.dominates(&DomPoint, DII)) {
2635         UndefOrSalvage.insert(DII);
2636       }
2637     }
2638 
2639     // DbgVariableRecord implementation of the above.
2640     for (auto *DVR : DPUsers) {
2641       Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr;
2642       Instruction *NextNonDebug = MarkedInstr;
2643       // The next instruction might still be a dbg.declare, skip over it.
2644       if (isa<DbgVariableIntrinsic>(NextNonDebug))
2645         NextNonDebug = NextNonDebug->getNextNonDebugInstruction();
2646 
2647       if (DomPointAfterFrom && NextNonDebug == &DomPoint) {
2648         LLVM_DEBUG(dbgs() << "MOVE:  " << *DVR << '\n');
2649         DVR->removeFromParent();
2650         // Ensure there's a marker.
2651         DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint);
2652         Changed = true;
2653       } else if (!DT.dominates(&DomPoint, MarkedInstr)) {
2654         UndefOrSalvageDVR.insert(DVR);
2655       }
2656     }
2657   }
2658 
2659   // Update debug users without use-before-def risk.
2660   for (auto *DII : Users) {
2661     if (UndefOrSalvage.count(DII))
2662       continue;
2663 
2664     DbgValReplacement DVRepl = RewriteExpr(*DII);
2665     if (!DVRepl)
2666       continue;
2667 
2668     DII->replaceVariableLocationOp(&From, &To);
2669     DII->setExpression(*DVRepl);
2670     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
2671     Changed = true;
2672   }
2673   for (auto *DVR : DPUsers) {
2674     if (UndefOrSalvageDVR.count(DVR))
2675       continue;
2676 
2677     DbgValReplacement DVRepl = RewriteDVRExpr(*DVR);
2678     if (!DVRepl)
2679       continue;
2680 
2681     DVR->replaceVariableLocationOp(&From, &To);
2682     DVR->setExpression(*DVRepl);
2683     LLVM_DEBUG(dbgs() << "REWRITE:  " << DVR << '\n');
2684     Changed = true;
2685   }
2686 
2687   if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) {
2688     // Try to salvage the remaining debug users.
2689     salvageDebugInfo(From);
2690     Changed = true;
2691   }
2692 
2693   return Changed;
2694 }
2695 
2696 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2697 /// losslessly preserve the bits and semantics of the value. This predicate is
2698 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2699 ///
2700 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2701 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2702 /// and also does not allow lossless pointer <-> integer conversions.
2703 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2704                                          Type *ToTy) {
2705   // Trivially compatible types.
2706   if (FromTy == ToTy)
2707     return true;
2708 
2709   // Handle compatible pointer <-> integer conversions.
2710   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2711     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2712     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2713                               !DL.isNonIntegralPointerType(ToTy);
2714     return SameSize && LosslessConversion;
2715   }
2716 
2717   // TODO: This is not exhaustive.
2718   return false;
2719 }
2720 
2721 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2722                                  Instruction &DomPoint, DominatorTree &DT) {
2723   // Exit early if From has no debug users.
2724   if (!From.isUsedByMetadata())
2725     return false;
2726 
2727   assert(&From != &To && "Can't replace something with itself");
2728 
2729   Type *FromTy = From.getType();
2730   Type *ToTy = To.getType();
2731 
2732   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2733     return DII.getExpression();
2734   };
2735   auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement {
2736     return DVR.getExpression();
2737   };
2738 
2739   // Handle no-op conversions.
2740   Module &M = *From.getModule();
2741   const DataLayout &DL = M.getDataLayout();
2742   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2743     return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR);
2744 
2745   // Handle integer-to-integer widening and narrowing.
2746   // FIXME: Use DW_OP_convert when it's available everywhere.
2747   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2748     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2749     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2750     assert(FromBits != ToBits && "Unexpected no-op conversion");
2751 
2752     // When the width of the result grows, assume that a debugger will only
2753     // access the low `FromBits` bits when inspecting the source variable.
2754     if (FromBits < ToBits)
2755       return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR);
2756 
2757     // The width of the result has shrunk. Use sign/zero extension to describe
2758     // the source variable's high bits.
2759     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2760       DILocalVariable *Var = DII.getVariable();
2761 
2762       // Without knowing signedness, sign/zero extension isn't possible.
2763       auto Signedness = Var->getSignedness();
2764       if (!Signedness)
2765         return std::nullopt;
2766 
2767       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2768       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2769                                      Signed);
2770     };
2771     // RemoveDIs: duplicate implementation working on DbgVariableRecords rather
2772     // than on dbg.value intrinsics.
2773     auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement {
2774       DILocalVariable *Var = DVR.getVariable();
2775 
2776       // Without knowing signedness, sign/zero extension isn't possible.
2777       auto Signedness = Var->getSignedness();
2778       if (!Signedness)
2779         return std::nullopt;
2780 
2781       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2782       return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits,
2783                                      Signed);
2784     };
2785     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt,
2786                              SignOrZeroExtDVR);
2787   }
2788 
2789   // TODO: Floating-point conversions, vectors.
2790   return false;
2791 }
2792 
2793 bool llvm::handleUnreachableTerminator(
2794     Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) {
2795   bool Changed = false;
2796   // RemoveDIs: erase debug-info on this instruction manually.
2797   I->dropDbgRecords();
2798   for (Use &U : I->operands()) {
2799     Value *Op = U.get();
2800     if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) {
2801       U.set(PoisonValue::get(Op->getType()));
2802       PoisonedValues.push_back(Op);
2803       Changed = true;
2804     }
2805   }
2806 
2807   return Changed;
2808 }
2809 
2810 std::pair<unsigned, unsigned>
2811 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2812   unsigned NumDeadInst = 0;
2813   unsigned NumDeadDbgInst = 0;
2814   // Delete the instructions backwards, as it has a reduced likelihood of
2815   // having to update as many def-use and use-def chains.
2816   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2817   SmallVector<Value *> Uses;
2818   handleUnreachableTerminator(EndInst, Uses);
2819 
2820   while (EndInst != &BB->front()) {
2821     // Delete the next to last instruction.
2822     Instruction *Inst = &*--EndInst->getIterator();
2823     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2824       Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
2825     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2826       // EHPads can't have DbgVariableRecords attached to them, but it might be
2827       // possible for things with token type.
2828       Inst->dropDbgRecords();
2829       EndInst = Inst;
2830       continue;
2831     }
2832     if (isa<DbgInfoIntrinsic>(Inst))
2833       ++NumDeadDbgInst;
2834     else
2835       ++NumDeadInst;
2836     // RemoveDIs: erasing debug-info must be done manually.
2837     Inst->dropDbgRecords();
2838     Inst->eraseFromParent();
2839   }
2840   return {NumDeadInst, NumDeadDbgInst};
2841 }
2842 
2843 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
2844                                    DomTreeUpdater *DTU,
2845                                    MemorySSAUpdater *MSSAU) {
2846   BasicBlock *BB = I->getParent();
2847 
2848   if (MSSAU)
2849     MSSAU->changeToUnreachable(I);
2850 
2851   SmallSet<BasicBlock *, 8> UniqueSuccessors;
2852 
2853   // Loop over all of the successors, removing BB's entry from any PHI
2854   // nodes.
2855   for (BasicBlock *Successor : successors(BB)) {
2856     Successor->removePredecessor(BB, PreserveLCSSA);
2857     if (DTU)
2858       UniqueSuccessors.insert(Successor);
2859   }
2860   auto *UI = new UnreachableInst(I->getContext(), I->getIterator());
2861   UI->setDebugLoc(I->getDebugLoc());
2862 
2863   // All instructions after this are dead.
2864   unsigned NumInstrsRemoved = 0;
2865   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2866   while (BBI != BBE) {
2867     if (!BBI->use_empty())
2868       BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
2869     BBI++->eraseFromParent();
2870     ++NumInstrsRemoved;
2871   }
2872   if (DTU) {
2873     SmallVector<DominatorTree::UpdateType, 8> Updates;
2874     Updates.reserve(UniqueSuccessors.size());
2875     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2876       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2877     DTU->applyUpdates(Updates);
2878   }
2879   BB->flushTerminatorDbgRecords();
2880   return NumInstrsRemoved;
2881 }
2882 
2883 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2884   SmallVector<Value *, 8> Args(II->args());
2885   SmallVector<OperandBundleDef, 1> OpBundles;
2886   II->getOperandBundlesAsDefs(OpBundles);
2887   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2888                                        II->getCalledOperand(), Args, OpBundles);
2889   NewCall->setCallingConv(II->getCallingConv());
2890   NewCall->setAttributes(II->getAttributes());
2891   NewCall->setDebugLoc(II->getDebugLoc());
2892   NewCall->copyMetadata(*II);
2893 
2894   // If the invoke had profile metadata, try converting them for CallInst.
2895   uint64_t TotalWeight;
2896   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2897     // Set the total weight if it fits into i32, otherwise reset.
2898     MDBuilder MDB(NewCall->getContext());
2899     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2900                           ? nullptr
2901                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2902     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2903   }
2904 
2905   return NewCall;
2906 }
2907 
2908 // changeToCall - Convert the specified invoke into a normal call.
2909 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2910   CallInst *NewCall = createCallMatchingInvoke(II);
2911   NewCall->takeName(II);
2912   NewCall->insertBefore(II);
2913   II->replaceAllUsesWith(NewCall);
2914 
2915   // Follow the call by a branch to the normal destination.
2916   BasicBlock *NormalDestBB = II->getNormalDest();
2917   BranchInst::Create(NormalDestBB, II->getIterator());
2918 
2919   // Update PHI nodes in the unwind destination
2920   BasicBlock *BB = II->getParent();
2921   BasicBlock *UnwindDestBB = II->getUnwindDest();
2922   UnwindDestBB->removePredecessor(BB);
2923   II->eraseFromParent();
2924   if (DTU)
2925     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2926   return NewCall;
2927 }
2928 
2929 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2930                                                    BasicBlock *UnwindEdge,
2931                                                    DomTreeUpdater *DTU) {
2932   BasicBlock *BB = CI->getParent();
2933 
2934   // Convert this function call into an invoke instruction.  First, split the
2935   // basic block.
2936   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2937                                  CI->getName() + ".noexc");
2938 
2939   // Delete the unconditional branch inserted by SplitBlock
2940   BB->back().eraseFromParent();
2941 
2942   // Create the new invoke instruction.
2943   SmallVector<Value *, 8> InvokeArgs(CI->args());
2944   SmallVector<OperandBundleDef, 1> OpBundles;
2945 
2946   CI->getOperandBundlesAsDefs(OpBundles);
2947 
2948   // Note: we're round tripping operand bundles through memory here, and that
2949   // can potentially be avoided with a cleverer API design that we do not have
2950   // as of this time.
2951 
2952   InvokeInst *II =
2953       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2954                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2955   II->setDebugLoc(CI->getDebugLoc());
2956   II->setCallingConv(CI->getCallingConv());
2957   II->setAttributes(CI->getAttributes());
2958   II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
2959 
2960   if (DTU)
2961     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2962 
2963   // Make sure that anything using the call now uses the invoke!  This also
2964   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2965   CI->replaceAllUsesWith(II);
2966 
2967   // Delete the original call
2968   Split->front().eraseFromParent();
2969   return Split;
2970 }
2971 
2972 static bool markAliveBlocks(Function &F,
2973                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2974                             DomTreeUpdater *DTU = nullptr) {
2975   SmallVector<BasicBlock*, 128> Worklist;
2976   BasicBlock *BB = &F.front();
2977   Worklist.push_back(BB);
2978   Reachable.insert(BB);
2979   bool Changed = false;
2980   do {
2981     BB = Worklist.pop_back_val();
2982 
2983     // Do a quick scan of the basic block, turning any obviously unreachable
2984     // instructions into LLVM unreachable insts.  The instruction combining pass
2985     // canonicalizes unreachable insts into stores to null or undef.
2986     for (Instruction &I : *BB) {
2987       if (auto *CI = dyn_cast<CallInst>(&I)) {
2988         Value *Callee = CI->getCalledOperand();
2989         // Handle intrinsic calls.
2990         if (Function *F = dyn_cast<Function>(Callee)) {
2991           auto IntrinsicID = F->getIntrinsicID();
2992           // Assumptions that are known to be false are equivalent to
2993           // unreachable. Also, if the condition is undefined, then we make the
2994           // choice most beneficial to the optimizer, and choose that to also be
2995           // unreachable.
2996           if (IntrinsicID == Intrinsic::assume) {
2997             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2998               // Don't insert a call to llvm.trap right before the unreachable.
2999               changeToUnreachable(CI, false, DTU);
3000               Changed = true;
3001               break;
3002             }
3003           } else if (IntrinsicID == Intrinsic::experimental_guard) {
3004             // A call to the guard intrinsic bails out of the current
3005             // compilation unit if the predicate passed to it is false. If the
3006             // predicate is a constant false, then we know the guard will bail
3007             // out of the current compile unconditionally, so all code following
3008             // it is dead.
3009             //
3010             // Note: unlike in llvm.assume, it is not "obviously profitable" for
3011             // guards to treat `undef` as `false` since a guard on `undef` can
3012             // still be useful for widening.
3013             if (match(CI->getArgOperand(0), m_Zero()))
3014               if (!isa<UnreachableInst>(CI->getNextNode())) {
3015                 changeToUnreachable(CI->getNextNode(), false, DTU);
3016                 Changed = true;
3017                 break;
3018               }
3019           }
3020         } else if ((isa<ConstantPointerNull>(Callee) &&
3021                     !NullPointerIsDefined(CI->getFunction(),
3022                                           cast<PointerType>(Callee->getType())
3023                                               ->getAddressSpace())) ||
3024                    isa<UndefValue>(Callee)) {
3025           changeToUnreachable(CI, false, DTU);
3026           Changed = true;
3027           break;
3028         }
3029         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
3030           // If we found a call to a no-return function, insert an unreachable
3031           // instruction after it.  Make sure there isn't *already* one there
3032           // though.
3033           if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) {
3034             // Don't insert a call to llvm.trap right before the unreachable.
3035             changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU);
3036             Changed = true;
3037           }
3038           break;
3039         }
3040       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
3041         // Store to undef and store to null are undefined and used to signal
3042         // that they should be changed to unreachable by passes that can't
3043         // modify the CFG.
3044 
3045         // Don't touch volatile stores.
3046         if (SI->isVolatile()) continue;
3047 
3048         Value *Ptr = SI->getOperand(1);
3049 
3050         if (isa<UndefValue>(Ptr) ||
3051             (isa<ConstantPointerNull>(Ptr) &&
3052              !NullPointerIsDefined(SI->getFunction(),
3053                                    SI->getPointerAddressSpace()))) {
3054           changeToUnreachable(SI, false, DTU);
3055           Changed = true;
3056           break;
3057         }
3058       }
3059     }
3060 
3061     Instruction *Terminator = BB->getTerminator();
3062     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
3063       // Turn invokes that call 'nounwind' functions into ordinary calls.
3064       Value *Callee = II->getCalledOperand();
3065       if ((isa<ConstantPointerNull>(Callee) &&
3066            !NullPointerIsDefined(BB->getParent())) ||
3067           isa<UndefValue>(Callee)) {
3068         changeToUnreachable(II, false, DTU);
3069         Changed = true;
3070       } else {
3071         if (II->doesNotReturn() &&
3072             !isa<UnreachableInst>(II->getNormalDest()->front())) {
3073           // If we found an invoke of a no-return function,
3074           // create a new empty basic block with an `unreachable` terminator,
3075           // and set it as the normal destination for the invoke,
3076           // unless that is already the case.
3077           // Note that the original normal destination could have other uses.
3078           BasicBlock *OrigNormalDest = II->getNormalDest();
3079           OrigNormalDest->removePredecessor(II->getParent());
3080           LLVMContext &Ctx = II->getContext();
3081           BasicBlock *UnreachableNormalDest = BasicBlock::Create(
3082               Ctx, OrigNormalDest->getName() + ".unreachable",
3083               II->getFunction(), OrigNormalDest);
3084           new UnreachableInst(Ctx, UnreachableNormalDest);
3085           II->setNormalDest(UnreachableNormalDest);
3086           if (DTU)
3087             DTU->applyUpdates(
3088                 {{DominatorTree::Delete, BB, OrigNormalDest},
3089                  {DominatorTree::Insert, BB, UnreachableNormalDest}});
3090           Changed = true;
3091         }
3092         if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
3093           if (II->use_empty() && !II->mayHaveSideEffects()) {
3094             // jump to the normal destination branch.
3095             BasicBlock *NormalDestBB = II->getNormalDest();
3096             BasicBlock *UnwindDestBB = II->getUnwindDest();
3097             BranchInst::Create(NormalDestBB, II->getIterator());
3098             UnwindDestBB->removePredecessor(II->getParent());
3099             II->eraseFromParent();
3100             if (DTU)
3101               DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
3102           } else
3103             changeToCall(II, DTU);
3104           Changed = true;
3105         }
3106       }
3107     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
3108       // Remove catchpads which cannot be reached.
3109       struct CatchPadDenseMapInfo {
3110         static CatchPadInst *getEmptyKey() {
3111           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
3112         }
3113 
3114         static CatchPadInst *getTombstoneKey() {
3115           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
3116         }
3117 
3118         static unsigned getHashValue(CatchPadInst *CatchPad) {
3119           return static_cast<unsigned>(hash_combine_range(
3120               CatchPad->value_op_begin(), CatchPad->value_op_end()));
3121         }
3122 
3123         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
3124           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
3125               RHS == getEmptyKey() || RHS == getTombstoneKey())
3126             return LHS == RHS;
3127           return LHS->isIdenticalTo(RHS);
3128         }
3129       };
3130 
3131       SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
3132       // Set of unique CatchPads.
3133       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
3134                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
3135           HandlerSet;
3136       detail::DenseSetEmpty Empty;
3137       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
3138                                              E = CatchSwitch->handler_end();
3139            I != E; ++I) {
3140         BasicBlock *HandlerBB = *I;
3141         if (DTU)
3142           ++NumPerSuccessorCases[HandlerBB];
3143         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
3144         if (!HandlerSet.insert({CatchPad, Empty}).second) {
3145           if (DTU)
3146             --NumPerSuccessorCases[HandlerBB];
3147           CatchSwitch->removeHandler(I);
3148           --I;
3149           --E;
3150           Changed = true;
3151         }
3152       }
3153       if (DTU) {
3154         std::vector<DominatorTree::UpdateType> Updates;
3155         for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
3156           if (I.second == 0)
3157             Updates.push_back({DominatorTree::Delete, BB, I.first});
3158         DTU->applyUpdates(Updates);
3159       }
3160     }
3161 
3162     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
3163     for (BasicBlock *Successor : successors(BB))
3164       if (Reachable.insert(Successor).second)
3165         Worklist.push_back(Successor);
3166   } while (!Worklist.empty());
3167   return Changed;
3168 }
3169 
3170 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
3171   Instruction *TI = BB->getTerminator();
3172 
3173   if (auto *II = dyn_cast<InvokeInst>(TI))
3174     return changeToCall(II, DTU);
3175 
3176   Instruction *NewTI;
3177   BasicBlock *UnwindDest;
3178 
3179   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3180     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator());
3181     UnwindDest = CRI->getUnwindDest();
3182   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
3183     auto *NewCatchSwitch = CatchSwitchInst::Create(
3184         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
3185         CatchSwitch->getName(), CatchSwitch->getIterator());
3186     for (BasicBlock *PadBB : CatchSwitch->handlers())
3187       NewCatchSwitch->addHandler(PadBB);
3188 
3189     NewTI = NewCatchSwitch;
3190     UnwindDest = CatchSwitch->getUnwindDest();
3191   } else {
3192     llvm_unreachable("Could not find unwind successor");
3193   }
3194 
3195   NewTI->takeName(TI);
3196   NewTI->setDebugLoc(TI->getDebugLoc());
3197   UnwindDest->removePredecessor(BB);
3198   TI->replaceAllUsesWith(NewTI);
3199   TI->eraseFromParent();
3200   if (DTU)
3201     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
3202   return NewTI;
3203 }
3204 
3205 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
3206 /// if they are in a dead cycle.  Return true if a change was made, false
3207 /// otherwise.
3208 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
3209                                    MemorySSAUpdater *MSSAU) {
3210   SmallPtrSet<BasicBlock *, 16> Reachable;
3211   bool Changed = markAliveBlocks(F, Reachable, DTU);
3212 
3213   // If there are unreachable blocks in the CFG...
3214   if (Reachable.size() == F.size())
3215     return Changed;
3216 
3217   assert(Reachable.size() < F.size());
3218 
3219   // Are there any blocks left to actually delete?
3220   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
3221   for (BasicBlock &BB : F) {
3222     // Skip reachable basic blocks
3223     if (Reachable.count(&BB))
3224       continue;
3225     // Skip already-deleted blocks
3226     if (DTU && DTU->isBBPendingDeletion(&BB))
3227       continue;
3228     BlocksToRemove.insert(&BB);
3229   }
3230 
3231   if (BlocksToRemove.empty())
3232     return Changed;
3233 
3234   Changed = true;
3235   NumRemoved += BlocksToRemove.size();
3236 
3237   if (MSSAU)
3238     MSSAU->removeBlocks(BlocksToRemove);
3239 
3240   DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
3241 
3242   return Changed;
3243 }
3244 
3245 void llvm::combineMetadata(Instruction *K, const Instruction *J,
3246                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
3247   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
3248   K->dropUnknownNonDebugMetadata(KnownIDs);
3249   K->getAllMetadataOtherThanDebugLoc(Metadata);
3250   for (const auto &MD : Metadata) {
3251     unsigned Kind = MD.first;
3252     MDNode *JMD = J->getMetadata(Kind);
3253     MDNode *KMD = MD.second;
3254 
3255     switch (Kind) {
3256       default:
3257         K->setMetadata(Kind, nullptr); // Remove unknown metadata
3258         break;
3259       case LLVMContext::MD_dbg:
3260         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
3261       case LLVMContext::MD_DIAssignID:
3262         K->mergeDIAssignID(J);
3263         break;
3264       case LLVMContext::MD_tbaa:
3265         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
3266         break;
3267       case LLVMContext::MD_alias_scope:
3268         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
3269         break;
3270       case LLVMContext::MD_noalias:
3271       case LLVMContext::MD_mem_parallel_loop_access:
3272         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
3273         break;
3274       case LLVMContext::MD_access_group:
3275         K->setMetadata(LLVMContext::MD_access_group,
3276                        intersectAccessGroups(K, J));
3277         break;
3278       case LLVMContext::MD_range:
3279         if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3280           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
3281         break;
3282       case LLVMContext::MD_fpmath:
3283         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
3284         break;
3285       case LLVMContext::MD_invariant_load:
3286         // If K moves, only set the !invariant.load if it is present in both
3287         // instructions.
3288         if (DoesKMove)
3289           K->setMetadata(Kind, JMD);
3290         break;
3291       case LLVMContext::MD_nonnull:
3292         if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3293           K->setMetadata(Kind, JMD);
3294         break;
3295       case LLVMContext::MD_invariant_group:
3296         // Preserve !invariant.group in K.
3297         break;
3298       case LLVMContext::MD_mmra:
3299         // Combine MMRAs
3300         break;
3301       case LLVMContext::MD_align:
3302         if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3303           K->setMetadata(
3304               Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
3305         break;
3306       case LLVMContext::MD_dereferenceable:
3307       case LLVMContext::MD_dereferenceable_or_null:
3308         if (DoesKMove)
3309           K->setMetadata(Kind,
3310             MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
3311         break;
3312       case LLVMContext::MD_preserve_access_index:
3313         // Preserve !preserve.access.index in K.
3314         break;
3315       case LLVMContext::MD_noundef:
3316         // If K does move, keep noundef if it is present in both instructions.
3317         if (DoesKMove)
3318           K->setMetadata(Kind, JMD);
3319         break;
3320       case LLVMContext::MD_nontemporal:
3321         // Preserve !nontemporal if it is present on both instructions.
3322         K->setMetadata(Kind, JMD);
3323         break;
3324       case LLVMContext::MD_prof:
3325         if (DoesKMove)
3326           K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J));
3327         break;
3328     }
3329   }
3330   // Set !invariant.group from J if J has it. If both instructions have it
3331   // then we will just pick it from J - even when they are different.
3332   // Also make sure that K is load or store - f.e. combining bitcast with load
3333   // could produce bitcast with invariant.group metadata, which is invalid.
3334   // FIXME: we should try to preserve both invariant.group md if they are
3335   // different, but right now instruction can only have one invariant.group.
3336   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
3337     if (isa<LoadInst>(K) || isa<StoreInst>(K))
3338       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
3339 
3340   // Merge MMRAs.
3341   // This is handled separately because we also want to handle cases where K
3342   // doesn't have tags but J does.
3343   auto JMMRA = J->getMetadata(LLVMContext::MD_mmra);
3344   auto KMMRA = K->getMetadata(LLVMContext::MD_mmra);
3345   if (JMMRA || KMMRA) {
3346     K->setMetadata(LLVMContext::MD_mmra,
3347                    MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA));
3348   }
3349 }
3350 
3351 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
3352                                  bool KDominatesJ) {
3353   unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
3354                          LLVMContext::MD_alias_scope,
3355                          LLVMContext::MD_noalias,
3356                          LLVMContext::MD_range,
3357                          LLVMContext::MD_fpmath,
3358                          LLVMContext::MD_invariant_load,
3359                          LLVMContext::MD_nonnull,
3360                          LLVMContext::MD_invariant_group,
3361                          LLVMContext::MD_align,
3362                          LLVMContext::MD_dereferenceable,
3363                          LLVMContext::MD_dereferenceable_or_null,
3364                          LLVMContext::MD_access_group,
3365                          LLVMContext::MD_preserve_access_index,
3366                          LLVMContext::MD_prof,
3367                          LLVMContext::MD_nontemporal,
3368                          LLVMContext::MD_noundef,
3369                          LLVMContext::MD_mmra};
3370   combineMetadata(K, J, KnownIDs, KDominatesJ);
3371 }
3372 
3373 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
3374   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
3375   Source.getAllMetadata(MD);
3376   MDBuilder MDB(Dest.getContext());
3377   Type *NewType = Dest.getType();
3378   const DataLayout &DL = Source.getDataLayout();
3379   for (const auto &MDPair : MD) {
3380     unsigned ID = MDPair.first;
3381     MDNode *N = MDPair.second;
3382     // Note, essentially every kind of metadata should be preserved here! This
3383     // routine is supposed to clone a load instruction changing *only its type*.
3384     // The only metadata it makes sense to drop is metadata which is invalidated
3385     // when the pointer type changes. This should essentially never be the case
3386     // in LLVM, but we explicitly switch over only known metadata to be
3387     // conservatively correct. If you are adding metadata to LLVM which pertains
3388     // to loads, you almost certainly want to add it here.
3389     switch (ID) {
3390     case LLVMContext::MD_dbg:
3391     case LLVMContext::MD_tbaa:
3392     case LLVMContext::MD_prof:
3393     case LLVMContext::MD_fpmath:
3394     case LLVMContext::MD_tbaa_struct:
3395     case LLVMContext::MD_invariant_load:
3396     case LLVMContext::MD_alias_scope:
3397     case LLVMContext::MD_noalias:
3398     case LLVMContext::MD_nontemporal:
3399     case LLVMContext::MD_mem_parallel_loop_access:
3400     case LLVMContext::MD_access_group:
3401     case LLVMContext::MD_noundef:
3402       // All of these directly apply.
3403       Dest.setMetadata(ID, N);
3404       break;
3405 
3406     case LLVMContext::MD_nonnull:
3407       copyNonnullMetadata(Source, N, Dest);
3408       break;
3409 
3410     case LLVMContext::MD_align:
3411     case LLVMContext::MD_dereferenceable:
3412     case LLVMContext::MD_dereferenceable_or_null:
3413       // These only directly apply if the new type is also a pointer.
3414       if (NewType->isPointerTy())
3415         Dest.setMetadata(ID, N);
3416       break;
3417 
3418     case LLVMContext::MD_range:
3419       copyRangeMetadata(DL, Source, N, Dest);
3420       break;
3421     }
3422   }
3423 }
3424 
3425 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
3426   auto *ReplInst = dyn_cast<Instruction>(Repl);
3427   if (!ReplInst)
3428     return;
3429 
3430   // Patch the replacement so that it is not more restrictive than the value
3431   // being replaced.
3432   WithOverflowInst *UnusedWO;
3433   // When replacing the result of a llvm.*.with.overflow intrinsic with a
3434   // overflowing binary operator, nuw/nsw flags may no longer hold.
3435   if (isa<OverflowingBinaryOperator>(ReplInst) &&
3436       match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO))))
3437     ReplInst->dropPoisonGeneratingFlags();
3438   // Note that if 'I' is a load being replaced by some operation,
3439   // for example, by an arithmetic operation, then andIRFlags()
3440   // would just erase all math flags from the original arithmetic
3441   // operation, which is clearly not wanted and not needed.
3442   else if (!isa<LoadInst>(I))
3443     ReplInst->andIRFlags(I);
3444 
3445   // FIXME: If both the original and replacement value are part of the
3446   // same control-flow region (meaning that the execution of one
3447   // guarantees the execution of the other), then we can combine the
3448   // noalias scopes here and do better than the general conservative
3449   // answer used in combineMetadata().
3450 
3451   // In general, GVN unifies expressions over different control-flow
3452   // regions, and so we need a conservative combination of the noalias
3453   // scopes.
3454   combineMetadataForCSE(ReplInst, I, false);
3455 }
3456 
3457 template <typename RootType, typename ShouldReplaceFn>
3458 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
3459                                          const RootType &Root,
3460                                          const ShouldReplaceFn &ShouldReplace) {
3461   assert(From->getType() == To->getType());
3462 
3463   unsigned Count = 0;
3464   for (Use &U : llvm::make_early_inc_range(From->uses())) {
3465     if (!ShouldReplace(Root, U))
3466       continue;
3467     LLVM_DEBUG(dbgs() << "Replace dominated use of '";
3468                From->printAsOperand(dbgs());
3469                dbgs() << "' with " << *To << " in " << *U.getUser() << "\n");
3470     U.set(To);
3471     ++Count;
3472   }
3473   return Count;
3474 }
3475 
3476 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
3477    assert(From->getType() == To->getType());
3478    auto *BB = From->getParent();
3479    unsigned Count = 0;
3480 
3481    for (Use &U : llvm::make_early_inc_range(From->uses())) {
3482     auto *I = cast<Instruction>(U.getUser());
3483     if (I->getParent() == BB)
3484       continue;
3485     U.set(To);
3486     ++Count;
3487   }
3488   return Count;
3489 }
3490 
3491 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
3492                                         DominatorTree &DT,
3493                                         const BasicBlockEdge &Root) {
3494   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
3495     return DT.dominates(Root, U);
3496   };
3497   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
3498 }
3499 
3500 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
3501                                         DominatorTree &DT,
3502                                         const BasicBlock *BB) {
3503   auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
3504     return DT.dominates(BB, U);
3505   };
3506   return ::replaceDominatedUsesWith(From, To, BB, Dominates);
3507 }
3508 
3509 unsigned llvm::replaceDominatedUsesWithIf(
3510     Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root,
3511     function_ref<bool(const Use &U, const Value *To)> ShouldReplace) {
3512   auto DominatesAndShouldReplace =
3513       [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) {
3514         return DT.dominates(Root, U) && ShouldReplace(U, To);
3515       };
3516   return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace);
3517 }
3518 
3519 unsigned llvm::replaceDominatedUsesWithIf(
3520     Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB,
3521     function_ref<bool(const Use &U, const Value *To)> ShouldReplace) {
3522   auto DominatesAndShouldReplace = [&DT, &ShouldReplace,
3523                                     To](const BasicBlock *BB, const Use &U) {
3524     return DT.dominates(BB, U) && ShouldReplace(U, To);
3525   };
3526   return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace);
3527 }
3528 
3529 bool llvm::callsGCLeafFunction(const CallBase *Call,
3530                                const TargetLibraryInfo &TLI) {
3531   // Check if the function is specifically marked as a gc leaf function.
3532   if (Call->hasFnAttr("gc-leaf-function"))
3533     return true;
3534   if (const Function *F = Call->getCalledFunction()) {
3535     if (F->hasFnAttribute("gc-leaf-function"))
3536       return true;
3537 
3538     if (auto IID = F->getIntrinsicID()) {
3539       // Most LLVM intrinsics do not take safepoints.
3540       return IID != Intrinsic::experimental_gc_statepoint &&
3541              IID != Intrinsic::experimental_deoptimize &&
3542              IID != Intrinsic::memcpy_element_unordered_atomic &&
3543              IID != Intrinsic::memmove_element_unordered_atomic;
3544     }
3545   }
3546 
3547   // Lib calls can be materialized by some passes, and won't be
3548   // marked as 'gc-leaf-function.' All available Libcalls are
3549   // GC-leaf.
3550   LibFunc LF;
3551   if (TLI.getLibFunc(*Call, LF)) {
3552     return TLI.has(LF);
3553   }
3554 
3555   return false;
3556 }
3557 
3558 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
3559                                LoadInst &NewLI) {
3560   auto *NewTy = NewLI.getType();
3561 
3562   // This only directly applies if the new type is also a pointer.
3563   if (NewTy->isPointerTy()) {
3564     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
3565     return;
3566   }
3567 
3568   // The only other translation we can do is to integral loads with !range
3569   // metadata.
3570   if (!NewTy->isIntegerTy())
3571     return;
3572 
3573   MDBuilder MDB(NewLI.getContext());
3574   const Value *Ptr = OldLI.getPointerOperand();
3575   auto *ITy = cast<IntegerType>(NewTy);
3576   auto *NullInt = ConstantExpr::getPtrToInt(
3577       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
3578   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
3579   NewLI.setMetadata(LLVMContext::MD_range,
3580                     MDB.createRange(NonNullInt, NullInt));
3581 }
3582 
3583 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
3584                              MDNode *N, LoadInst &NewLI) {
3585   auto *NewTy = NewLI.getType();
3586   // Simply copy the metadata if the type did not change.
3587   if (NewTy == OldLI.getType()) {
3588     NewLI.setMetadata(LLVMContext::MD_range, N);
3589     return;
3590   }
3591 
3592   // Give up unless it is converted to a pointer where there is a single very
3593   // valuable mapping we can do reliably.
3594   // FIXME: It would be nice to propagate this in more ways, but the type
3595   // conversions make it hard.
3596   if (!NewTy->isPointerTy())
3597     return;
3598 
3599   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
3600   if (BitWidth == OldLI.getType()->getScalarSizeInBits() &&
3601       !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
3602     MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt);
3603     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
3604   }
3605 }
3606 
3607 void llvm::dropDebugUsers(Instruction &I) {
3608   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
3609   SmallVector<DbgVariableRecord *, 1> DPUsers;
3610   findDbgUsers(DbgUsers, &I, &DPUsers);
3611   for (auto *DII : DbgUsers)
3612     DII->eraseFromParent();
3613   for (auto *DVR : DPUsers)
3614     DVR->eraseFromParent();
3615 }
3616 
3617 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
3618                                     BasicBlock *BB) {
3619   // Since we are moving the instructions out of its basic block, we do not
3620   // retain their original debug locations (DILocations) and debug intrinsic
3621   // instructions.
3622   //
3623   // Doing so would degrade the debugging experience and adversely affect the
3624   // accuracy of profiling information.
3625   //
3626   // Currently, when hoisting the instructions, we take the following actions:
3627   // - Remove their debug intrinsic instructions.
3628   // - Set their debug locations to the values from the insertion point.
3629   //
3630   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
3631   // need to be deleted, is because there will not be any instructions with a
3632   // DILocation in either branch left after performing the transformation. We
3633   // can only insert a dbg.value after the two branches are joined again.
3634   //
3635   // See PR38762, PR39243 for more details.
3636   //
3637   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
3638   // encode predicated DIExpressions that yield different results on different
3639   // code paths.
3640 
3641   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
3642     Instruction *I = &*II;
3643     I->dropUBImplyingAttrsAndMetadata();
3644     if (I->isUsedByMetadata())
3645       dropDebugUsers(*I);
3646     // RemoveDIs: drop debug-info too as the following code does.
3647     I->dropDbgRecords();
3648     if (I->isDebugOrPseudoInst()) {
3649       // Remove DbgInfo and pseudo probe Intrinsics.
3650       II = I->eraseFromParent();
3651       continue;
3652     }
3653     I->setDebugLoc(InsertPt->getDebugLoc());
3654     ++II;
3655   }
3656   DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(),
3657                    BB->getTerminator()->getIterator());
3658 }
3659 
3660 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C,
3661                                              Type &Ty) {
3662   // Create integer constant expression.
3663   auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * {
3664     const APInt &API = cast<ConstantInt>(&CV)->getValue();
3665     std::optional<int64_t> InitIntOpt = API.trySExtValue();
3666     return InitIntOpt ? DIB.createConstantValueExpression(
3667                             static_cast<uint64_t>(*InitIntOpt))
3668                       : nullptr;
3669   };
3670 
3671   if (isa<ConstantInt>(C))
3672     return createIntegerExpression(C);
3673 
3674   auto *FP = dyn_cast<ConstantFP>(&C);
3675   if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) {
3676     const APFloat &APF = FP->getValueAPF();
3677     APInt const &API = APF.bitcastToAPInt();
3678     if (auto Temp = API.getZExtValue())
3679       return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp));
3680     return DIB.createConstantValueExpression(*API.getRawData());
3681   }
3682 
3683   if (!Ty.isPointerTy())
3684     return nullptr;
3685 
3686   if (isa<ConstantPointerNull>(C))
3687     return DIB.createConstantValueExpression(0);
3688 
3689   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C))
3690     if (CE->getOpcode() == Instruction::IntToPtr) {
3691       const Value *V = CE->getOperand(0);
3692       if (auto CI = dyn_cast_or_null<ConstantInt>(V))
3693         return createIntegerExpression(*CI);
3694     }
3695   return nullptr;
3696 }
3697 
3698 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) {
3699   auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) {
3700     for (auto *Op : Set) {
3701       auto I = Mapping.find(Op);
3702       if (I != Mapping.end())
3703         DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true);
3704     }
3705   };
3706   auto RemapAssignAddress = [&Mapping](auto *DA) {
3707     auto I = Mapping.find(DA->getAddress());
3708     if (I != Mapping.end())
3709       DA->setAddress(I->second);
3710   };
3711   if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst))
3712     RemapDebugOperands(DVI, DVI->location_ops());
3713   if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst))
3714     RemapAssignAddress(DAI);
3715   for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) {
3716     RemapDebugOperands(&DVR, DVR.location_ops());
3717     if (DVR.isDbgAssign())
3718       RemapAssignAddress(&DVR);
3719   }
3720 }
3721 
3722 namespace {
3723 
3724 /// A potential constituent of a bitreverse or bswap expression. See
3725 /// collectBitParts for a fuller explanation.
3726 struct BitPart {
3727   BitPart(Value *P, unsigned BW) : Provider(P) {
3728     Provenance.resize(BW);
3729   }
3730 
3731   /// The Value that this is a bitreverse/bswap of.
3732   Value *Provider;
3733 
3734   /// The "provenance" of each bit. Provenance[A] = B means that bit A
3735   /// in Provider becomes bit B in the result of this expression.
3736   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
3737 
3738   enum { Unset = -1 };
3739 };
3740 
3741 } // end anonymous namespace
3742 
3743 /// Analyze the specified subexpression and see if it is capable of providing
3744 /// pieces of a bswap or bitreverse. The subexpression provides a potential
3745 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
3746 /// the output of the expression came from a corresponding bit in some other
3747 /// value. This function is recursive, and the end result is a mapping of
3748 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
3749 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
3750 ///
3751 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
3752 /// that the expression deposits the low byte of %X into the high byte of the
3753 /// result and that all other bits are zero. This expression is accepted and a
3754 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
3755 /// [0-7].
3756 ///
3757 /// For vector types, all analysis is performed at the per-element level. No
3758 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
3759 /// constant masks must be splatted across all elements.
3760 ///
3761 /// To avoid revisiting values, the BitPart results are memoized into the
3762 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
3763 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
3764 /// store BitParts objects, not pointers. As we need the concept of a nullptr
3765 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
3766 /// type instead to provide the same functionality.
3767 ///
3768 /// Because we pass around references into \c BPS, we must use a container that
3769 /// does not invalidate internal references (std::map instead of DenseMap).
3770 static const std::optional<BitPart> &
3771 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
3772                 std::map<Value *, std::optional<BitPart>> &BPS, int Depth,
3773                 bool &FoundRoot) {
3774   auto I = BPS.find(V);
3775   if (I != BPS.end())
3776     return I->second;
3777 
3778   auto &Result = BPS[V] = std::nullopt;
3779   auto BitWidth = V->getType()->getScalarSizeInBits();
3780 
3781   // Can't do integer/elements > 128 bits.
3782   if (BitWidth > 128)
3783     return Result;
3784 
3785   // Prevent stack overflow by limiting the recursion depth
3786   if (Depth == BitPartRecursionMaxDepth) {
3787     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
3788     return Result;
3789   }
3790 
3791   if (auto *I = dyn_cast<Instruction>(V)) {
3792     Value *X, *Y;
3793     const APInt *C;
3794 
3795     // If this is an or instruction, it may be an inner node of the bswap.
3796     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
3797       // Check we have both sources and they are from the same provider.
3798       const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3799                                       Depth + 1, FoundRoot);
3800       if (!A || !A->Provider)
3801         return Result;
3802 
3803       const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3804                                       Depth + 1, FoundRoot);
3805       if (!B || A->Provider != B->Provider)
3806         return Result;
3807 
3808       // Try and merge the two together.
3809       Result = BitPart(A->Provider, BitWidth);
3810       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
3811         if (A->Provenance[BitIdx] != BitPart::Unset &&
3812             B->Provenance[BitIdx] != BitPart::Unset &&
3813             A->Provenance[BitIdx] != B->Provenance[BitIdx])
3814           return Result = std::nullopt;
3815 
3816         if (A->Provenance[BitIdx] == BitPart::Unset)
3817           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
3818         else
3819           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
3820       }
3821 
3822       return Result;
3823     }
3824 
3825     // If this is a logical shift by a constant, recurse then shift the result.
3826     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
3827       const APInt &BitShift = *C;
3828 
3829       // Ensure the shift amount is defined.
3830       if (BitShift.uge(BitWidth))
3831         return Result;
3832 
3833       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3834       if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
3835         return Result;
3836 
3837       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3838                                         Depth + 1, FoundRoot);
3839       if (!Res)
3840         return Result;
3841       Result = Res;
3842 
3843       // Perform the "shift" on BitProvenance.
3844       auto &P = Result->Provenance;
3845       if (I->getOpcode() == Instruction::Shl) {
3846         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
3847         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
3848       } else {
3849         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
3850         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
3851       }
3852 
3853       return Result;
3854     }
3855 
3856     // If this is a logical 'and' with a mask that clears bits, recurse then
3857     // unset the appropriate bits.
3858     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
3859       const APInt &AndMask = *C;
3860 
3861       // Check that the mask allows a multiple of 8 bits for a bswap, for an
3862       // early exit.
3863       unsigned NumMaskedBits = AndMask.popcount();
3864       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
3865         return Result;
3866 
3867       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3868                                         Depth + 1, FoundRoot);
3869       if (!Res)
3870         return Result;
3871       Result = Res;
3872 
3873       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3874         // If the AndMask is zero for this bit, clear the bit.
3875         if (AndMask[BitIdx] == 0)
3876           Result->Provenance[BitIdx] = BitPart::Unset;
3877       return Result;
3878     }
3879 
3880     // If this is a zext instruction zero extend the result.
3881     if (match(V, m_ZExt(m_Value(X)))) {
3882       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3883                                         Depth + 1, FoundRoot);
3884       if (!Res)
3885         return Result;
3886 
3887       Result = BitPart(Res->Provider, BitWidth);
3888       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3889       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3890         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3891       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3892         Result->Provenance[BitIdx] = BitPart::Unset;
3893       return Result;
3894     }
3895 
3896     // If this is a truncate instruction, extract the lower bits.
3897     if (match(V, m_Trunc(m_Value(X)))) {
3898       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3899                                         Depth + 1, FoundRoot);
3900       if (!Res)
3901         return Result;
3902 
3903       Result = BitPart(Res->Provider, BitWidth);
3904       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3905         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3906       return Result;
3907     }
3908 
3909     // BITREVERSE - most likely due to us previous matching a partial
3910     // bitreverse.
3911     if (match(V, m_BitReverse(m_Value(X)))) {
3912       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3913                                         Depth + 1, FoundRoot);
3914       if (!Res)
3915         return Result;
3916 
3917       Result = BitPart(Res->Provider, BitWidth);
3918       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3919         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3920       return Result;
3921     }
3922 
3923     // BSWAP - most likely due to us previous matching a partial bswap.
3924     if (match(V, m_BSwap(m_Value(X)))) {
3925       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3926                                         Depth + 1, FoundRoot);
3927       if (!Res)
3928         return Result;
3929 
3930       unsigned ByteWidth = BitWidth / 8;
3931       Result = BitPart(Res->Provider, BitWidth);
3932       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3933         unsigned ByteBitOfs = ByteIdx * 8;
3934         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3935           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3936               Res->Provenance[ByteBitOfs + BitIdx];
3937       }
3938       return Result;
3939     }
3940 
3941     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3942     // amount (modulo).
3943     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3944     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3945     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3946         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3947       // We can treat fshr as a fshl by flipping the modulo amount.
3948       unsigned ModAmt = C->urem(BitWidth);
3949       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3950         ModAmt = BitWidth - ModAmt;
3951 
3952       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3953       if (!MatchBitReversals && (ModAmt % 8) != 0)
3954         return Result;
3955 
3956       // Check we have both sources and they are from the same provider.
3957       const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3958                                         Depth + 1, FoundRoot);
3959       if (!LHS || !LHS->Provider)
3960         return Result;
3961 
3962       const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3963                                         Depth + 1, FoundRoot);
3964       if (!RHS || LHS->Provider != RHS->Provider)
3965         return Result;
3966 
3967       unsigned StartBitRHS = BitWidth - ModAmt;
3968       Result = BitPart(LHS->Provider, BitWidth);
3969       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3970         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3971       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3972         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3973       return Result;
3974     }
3975   }
3976 
3977   // If we've already found a root input value then we're never going to merge
3978   // these back together.
3979   if (FoundRoot)
3980     return Result;
3981 
3982   // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3983   // be the root input value to the bswap/bitreverse.
3984   FoundRoot = true;
3985   Result = BitPart(V, BitWidth);
3986   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3987     Result->Provenance[BitIdx] = BitIdx;
3988   return Result;
3989 }
3990 
3991 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3992                                           unsigned BitWidth) {
3993   if (From % 8 != To % 8)
3994     return false;
3995   // Convert from bit indices to byte indices and check for a byte reversal.
3996   From >>= 3;
3997   To >>= 3;
3998   BitWidth >>= 3;
3999   return From == BitWidth - To - 1;
4000 }
4001 
4002 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
4003                                                unsigned BitWidth) {
4004   return From == BitWidth - To - 1;
4005 }
4006 
4007 bool llvm::recognizeBSwapOrBitReverseIdiom(
4008     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
4009     SmallVectorImpl<Instruction *> &InsertedInsts) {
4010   if (!match(I, m_Or(m_Value(), m_Value())) &&
4011       !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
4012       !match(I, m_FShr(m_Value(), m_Value(), m_Value())) &&
4013       !match(I, m_BSwap(m_Value())))
4014     return false;
4015   if (!MatchBSwaps && !MatchBitReversals)
4016     return false;
4017   Type *ITy = I->getType();
4018   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
4019     return false;  // Can't do integer/elements > 128 bits.
4020 
4021   // Try to find all the pieces corresponding to the bswap.
4022   bool FoundRoot = false;
4023   std::map<Value *, std::optional<BitPart>> BPS;
4024   const auto &Res =
4025       collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
4026   if (!Res)
4027     return false;
4028   ArrayRef<int8_t> BitProvenance = Res->Provenance;
4029   assert(all_of(BitProvenance,
4030                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
4031          "Illegal bit provenance index");
4032 
4033   // If the upper bits are zero, then attempt to perform as a truncated op.
4034   Type *DemandedTy = ITy;
4035   if (BitProvenance.back() == BitPart::Unset) {
4036     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
4037       BitProvenance = BitProvenance.drop_back();
4038     if (BitProvenance.empty())
4039       return false; // TODO - handle null value?
4040     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
4041     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
4042       DemandedTy = VectorType::get(DemandedTy, IVecTy);
4043   }
4044 
4045   // Check BitProvenance hasn't found a source larger than the result type.
4046   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
4047   if (DemandedBW > ITy->getScalarSizeInBits())
4048     return false;
4049 
4050   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
4051   // only byteswap values with an even number of bytes.
4052   APInt DemandedMask = APInt::getAllOnes(DemandedBW);
4053   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
4054   bool OKForBitReverse = MatchBitReversals;
4055   for (unsigned BitIdx = 0;
4056        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
4057     if (BitProvenance[BitIdx] == BitPart::Unset) {
4058       DemandedMask.clearBit(BitIdx);
4059       continue;
4060     }
4061     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
4062                                                 DemandedBW);
4063     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
4064                                                           BitIdx, DemandedBW);
4065   }
4066 
4067   Intrinsic::ID Intrin;
4068   if (OKForBSwap)
4069     Intrin = Intrinsic::bswap;
4070   else if (OKForBitReverse)
4071     Intrin = Intrinsic::bitreverse;
4072   else
4073     return false;
4074 
4075   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
4076   Value *Provider = Res->Provider;
4077 
4078   // We may need to truncate the provider.
4079   if (DemandedTy != Provider->getType()) {
4080     auto *Trunc =
4081         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator());
4082     InsertedInsts.push_back(Trunc);
4083     Provider = Trunc;
4084   }
4085 
4086   Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator());
4087   InsertedInsts.push_back(Result);
4088 
4089   if (!DemandedMask.isAllOnes()) {
4090     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
4091     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator());
4092     InsertedInsts.push_back(Result);
4093   }
4094 
4095   // We may need to zeroextend back to the result type.
4096   if (ITy != Result->getType()) {
4097     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator());
4098     InsertedInsts.push_back(ExtInst);
4099   }
4100 
4101   return true;
4102 }
4103 
4104 // CodeGen has special handling for some string functions that may replace
4105 // them with target-specific intrinsics.  Since that'd skip our interceptors
4106 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
4107 // we mark affected calls as NoBuiltin, which will disable optimization
4108 // in CodeGen.
4109 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
4110     CallInst *CI, const TargetLibraryInfo *TLI) {
4111   Function *F = CI->getCalledFunction();
4112   LibFunc Func;
4113   if (F && !F->hasLocalLinkage() && F->hasName() &&
4114       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
4115       !F->doesNotAccessMemory())
4116     CI->addFnAttr(Attribute::NoBuiltin);
4117 }
4118 
4119 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
4120   // We can't have a PHI with a metadata type.
4121   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
4122     return false;
4123 
4124   // Early exit.
4125   if (!isa<Constant>(I->getOperand(OpIdx)))
4126     return true;
4127 
4128   switch (I->getOpcode()) {
4129   default:
4130     return true;
4131   case Instruction::Call:
4132   case Instruction::Invoke: {
4133     const auto &CB = cast<CallBase>(*I);
4134 
4135     // Can't handle inline asm. Skip it.
4136     if (CB.isInlineAsm())
4137       return false;
4138 
4139     // Constant bundle operands may need to retain their constant-ness for
4140     // correctness.
4141     if (CB.isBundleOperand(OpIdx))
4142       return false;
4143 
4144     if (OpIdx < CB.arg_size()) {
4145       // Some variadic intrinsics require constants in the variadic arguments,
4146       // which currently aren't markable as immarg.
4147       if (isa<IntrinsicInst>(CB) &&
4148           OpIdx >= CB.getFunctionType()->getNumParams()) {
4149         // This is known to be OK for stackmap.
4150         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
4151       }
4152 
4153       // gcroot is a special case, since it requires a constant argument which
4154       // isn't also required to be a simple ConstantInt.
4155       if (CB.getIntrinsicID() == Intrinsic::gcroot)
4156         return false;
4157 
4158       // Some intrinsic operands are required to be immediates.
4159       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
4160     }
4161 
4162     // It is never allowed to replace the call argument to an intrinsic, but it
4163     // may be possible for a call.
4164     return !isa<IntrinsicInst>(CB);
4165   }
4166   case Instruction::ShuffleVector:
4167     // Shufflevector masks are constant.
4168     return OpIdx != 2;
4169   case Instruction::Switch:
4170   case Instruction::ExtractValue:
4171     // All operands apart from the first are constant.
4172     return OpIdx == 0;
4173   case Instruction::InsertValue:
4174     // All operands apart from the first and the second are constant.
4175     return OpIdx < 2;
4176   case Instruction::Alloca:
4177     // Static allocas (constant size in the entry block) are handled by
4178     // prologue/epilogue insertion so they're free anyway. We definitely don't
4179     // want to make them non-constant.
4180     return !cast<AllocaInst>(I)->isStaticAlloca();
4181   case Instruction::GetElementPtr:
4182     if (OpIdx == 0)
4183       return true;
4184     gep_type_iterator It = gep_type_begin(I);
4185     for (auto E = std::next(It, OpIdx); It != E; ++It)
4186       if (It.isStruct())
4187         return false;
4188     return true;
4189   }
4190 }
4191 
4192 Value *llvm::invertCondition(Value *Condition) {
4193   // First: Check if it's a constant
4194   if (Constant *C = dyn_cast<Constant>(Condition))
4195     return ConstantExpr::getNot(C);
4196 
4197   // Second: If the condition is already inverted, return the original value
4198   Value *NotCondition;
4199   if (match(Condition, m_Not(m_Value(NotCondition))))
4200     return NotCondition;
4201 
4202   BasicBlock *Parent = nullptr;
4203   Instruction *Inst = dyn_cast<Instruction>(Condition);
4204   if (Inst)
4205     Parent = Inst->getParent();
4206   else if (Argument *Arg = dyn_cast<Argument>(Condition))
4207     Parent = &Arg->getParent()->getEntryBlock();
4208   assert(Parent && "Unsupported condition to invert");
4209 
4210   // Third: Check all the users for an invert
4211   for (User *U : Condition->users())
4212     if (Instruction *I = dyn_cast<Instruction>(U))
4213       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
4214         return I;
4215 
4216   // Last option: Create a new instruction
4217   auto *Inverted =
4218       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
4219   if (Inst && !isa<PHINode>(Inst))
4220     Inverted->insertAfter(Inst);
4221   else
4222     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
4223   return Inverted;
4224 }
4225 
4226 bool llvm::inferAttributesFromOthers(Function &F) {
4227   // Note: We explicitly check for attributes rather than using cover functions
4228   // because some of the cover functions include the logic being implemented.
4229 
4230   bool Changed = false;
4231   // readnone + not convergent implies nosync
4232   if (!F.hasFnAttribute(Attribute::NoSync) &&
4233       F.doesNotAccessMemory() && !F.isConvergent()) {
4234     F.setNoSync();
4235     Changed = true;
4236   }
4237 
4238   // readonly implies nofree
4239   if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
4240     F.setDoesNotFreeMemory();
4241     Changed = true;
4242   }
4243 
4244   // willreturn implies mustprogress
4245   if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
4246     F.setMustProgress();
4247     Changed = true;
4248   }
4249 
4250   // TODO: There are a bunch of cases of restrictive memory effects we
4251   // can infer by inspecting arguments of argmemonly-ish functions.
4252 
4253   return Changed;
4254 }
4255