1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/ProfDataUtils.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 extern cl::opt<bool> UseNewDbgInfoFormat; 92 93 #define DEBUG_TYPE "local" 94 95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 97 98 static cl::opt<bool> PHICSEDebugHash( 99 "phicse-debug-hash", 100 #ifdef EXPENSIVE_CHECKS 101 cl::init(true), 102 #else 103 cl::init(false), 104 #endif 105 cl::Hidden, 106 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 107 "function is well-behaved w.r.t. its isEqual predicate")); 108 109 static cl::opt<unsigned> PHICSENumPHISmallSize( 110 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 111 cl::desc( 112 "When the basic block contains not more than this number of PHI nodes, " 113 "perform a (faster!) exhaustive search instead of set-driven one.")); 114 115 // Max recursion depth for collectBitParts used when detecting bswap and 116 // bitreverse idioms. 117 static const unsigned BitPartRecursionMaxDepth = 48; 118 119 //===----------------------------------------------------------------------===// 120 // Local constant propagation. 121 // 122 123 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 124 /// constant value, convert it into an unconditional branch to the constant 125 /// destination. This is a nontrivial operation because the successors of this 126 /// basic block must have their PHI nodes updated. 127 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 128 /// conditions and indirectbr addresses this might make dead if 129 /// DeleteDeadConditions is true. 130 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 131 const TargetLibraryInfo *TLI, 132 DomTreeUpdater *DTU) { 133 Instruction *T = BB->getTerminator(); 134 IRBuilder<> Builder(T); 135 136 // Branch - See if we are conditional jumping on constant 137 if (auto *BI = dyn_cast<BranchInst>(T)) { 138 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 139 140 BasicBlock *Dest1 = BI->getSuccessor(0); 141 BasicBlock *Dest2 = BI->getSuccessor(1); 142 143 if (Dest2 == Dest1) { // Conditional branch to same location? 144 // This branch matches something like this: 145 // br bool %cond, label %Dest, label %Dest 146 // and changes it into: br label %Dest 147 148 // Let the basic block know that we are letting go of one copy of it. 149 assert(BI->getParent() && "Terminator not inserted in block!"); 150 Dest1->removePredecessor(BI->getParent()); 151 152 // Replace the conditional branch with an unconditional one. 153 BranchInst *NewBI = Builder.CreateBr(Dest1); 154 155 // Transfer the metadata to the new branch instruction. 156 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 157 LLVMContext::MD_annotation}); 158 159 Value *Cond = BI->getCondition(); 160 BI->eraseFromParent(); 161 if (DeleteDeadConditions) 162 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 163 return true; 164 } 165 166 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 167 // Are we branching on constant? 168 // YES. Change to unconditional branch... 169 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 170 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 171 172 // Let the basic block know that we are letting go of it. Based on this, 173 // it will adjust it's PHI nodes. 174 OldDest->removePredecessor(BB); 175 176 // Replace the conditional branch with an unconditional one. 177 BranchInst *NewBI = Builder.CreateBr(Destination); 178 179 // Transfer the metadata to the new branch instruction. 180 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 181 LLVMContext::MD_annotation}); 182 183 BI->eraseFromParent(); 184 if (DTU) 185 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 186 return true; 187 } 188 189 return false; 190 } 191 192 if (auto *SI = dyn_cast<SwitchInst>(T)) { 193 // If we are switching on a constant, we can convert the switch to an 194 // unconditional branch. 195 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 196 BasicBlock *DefaultDest = SI->getDefaultDest(); 197 BasicBlock *TheOnlyDest = DefaultDest; 198 199 // If the default is unreachable, ignore it when searching for TheOnlyDest. 200 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 201 SI->getNumCases() > 0) { 202 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 203 } 204 205 bool Changed = false; 206 207 // Figure out which case it goes to. 208 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 209 // Found case matching a constant operand? 210 if (It->getCaseValue() == CI) { 211 TheOnlyDest = It->getCaseSuccessor(); 212 break; 213 } 214 215 // Check to see if this branch is going to the same place as the default 216 // dest. If so, eliminate it as an explicit compare. 217 if (It->getCaseSuccessor() == DefaultDest) { 218 MDNode *MD = getValidBranchWeightMDNode(*SI); 219 unsigned NCases = SI->getNumCases(); 220 // Fold the case metadata into the default if there will be any branches 221 // left, unless the metadata doesn't match the switch. 222 if (NCases > 1 && MD) { 223 // Collect branch weights into a vector. 224 SmallVector<uint32_t, 8> Weights; 225 extractBranchWeights(MD, Weights); 226 227 // Merge weight of this case to the default weight. 228 unsigned Idx = It->getCaseIndex(); 229 // TODO: Add overflow check. 230 Weights[0] += Weights[Idx + 1]; 231 // Remove weight for this case. 232 std::swap(Weights[Idx + 1], Weights.back()); 233 Weights.pop_back(); 234 setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD)); 235 } 236 // Remove this entry. 237 BasicBlock *ParentBB = SI->getParent(); 238 DefaultDest->removePredecessor(ParentBB); 239 It = SI->removeCase(It); 240 End = SI->case_end(); 241 242 // Removing this case may have made the condition constant. In that 243 // case, update CI and restart iteration through the cases. 244 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 245 CI = NewCI; 246 It = SI->case_begin(); 247 } 248 249 Changed = true; 250 continue; 251 } 252 253 // Otherwise, check to see if the switch only branches to one destination. 254 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 255 // destinations. 256 if (It->getCaseSuccessor() != TheOnlyDest) 257 TheOnlyDest = nullptr; 258 259 // Increment this iterator as we haven't removed the case. 260 ++It; 261 } 262 263 if (CI && !TheOnlyDest) { 264 // Branching on a constant, but not any of the cases, go to the default 265 // successor. 266 TheOnlyDest = SI->getDefaultDest(); 267 } 268 269 // If we found a single destination that we can fold the switch into, do so 270 // now. 271 if (TheOnlyDest) { 272 // Insert the new branch. 273 Builder.CreateBr(TheOnlyDest); 274 BasicBlock *BB = SI->getParent(); 275 276 SmallSet<BasicBlock *, 8> RemovedSuccessors; 277 278 // Remove entries from PHI nodes which we no longer branch to... 279 BasicBlock *SuccToKeep = TheOnlyDest; 280 for (BasicBlock *Succ : successors(SI)) { 281 if (DTU && Succ != TheOnlyDest) 282 RemovedSuccessors.insert(Succ); 283 // Found case matching a constant operand? 284 if (Succ == SuccToKeep) { 285 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 286 } else { 287 Succ->removePredecessor(BB); 288 } 289 } 290 291 // Delete the old switch. 292 Value *Cond = SI->getCondition(); 293 SI->eraseFromParent(); 294 if (DeleteDeadConditions) 295 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 296 if (DTU) { 297 std::vector<DominatorTree::UpdateType> Updates; 298 Updates.reserve(RemovedSuccessors.size()); 299 for (auto *RemovedSuccessor : RemovedSuccessors) 300 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 301 DTU->applyUpdates(Updates); 302 } 303 return true; 304 } 305 306 if (SI->getNumCases() == 1) { 307 // Otherwise, we can fold this switch into a conditional branch 308 // instruction if it has only one non-default destination. 309 auto FirstCase = *SI->case_begin(); 310 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 311 FirstCase.getCaseValue(), "cond"); 312 313 // Insert the new branch. 314 BranchInst *NewBr = Builder.CreateCondBr(Cond, 315 FirstCase.getCaseSuccessor(), 316 SI->getDefaultDest()); 317 SmallVector<uint32_t> Weights; 318 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 319 uint32_t DefWeight = Weights[0]; 320 uint32_t CaseWeight = Weights[1]; 321 // The TrueWeight should be the weight for the single case of SI. 322 NewBr->setMetadata(LLVMContext::MD_prof, 323 MDBuilder(BB->getContext()) 324 .createBranchWeights(CaseWeight, DefWeight)); 325 } 326 327 // Update make.implicit metadata to the newly-created conditional branch. 328 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 329 if (MakeImplicitMD) 330 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 331 332 // Delete the old switch. 333 SI->eraseFromParent(); 334 return true; 335 } 336 return Changed; 337 } 338 339 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 340 // indirectbr blockaddress(@F, @BB) -> br label @BB 341 if (auto *BA = 342 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 343 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 344 SmallSet<BasicBlock *, 8> RemovedSuccessors; 345 346 // Insert the new branch. 347 Builder.CreateBr(TheOnlyDest); 348 349 BasicBlock *SuccToKeep = TheOnlyDest; 350 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 351 BasicBlock *DestBB = IBI->getDestination(i); 352 if (DTU && DestBB != TheOnlyDest) 353 RemovedSuccessors.insert(DestBB); 354 if (IBI->getDestination(i) == SuccToKeep) { 355 SuccToKeep = nullptr; 356 } else { 357 DestBB->removePredecessor(BB); 358 } 359 } 360 Value *Address = IBI->getAddress(); 361 IBI->eraseFromParent(); 362 if (DeleteDeadConditions) 363 // Delete pointer cast instructions. 364 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 365 366 // Also zap the blockaddress constant if there are no users remaining, 367 // otherwise the destination is still marked as having its address taken. 368 if (BA->use_empty()) 369 BA->destroyConstant(); 370 371 // If we didn't find our destination in the IBI successor list, then we 372 // have undefined behavior. Replace the unconditional branch with an 373 // 'unreachable' instruction. 374 if (SuccToKeep) { 375 BB->getTerminator()->eraseFromParent(); 376 new UnreachableInst(BB->getContext(), BB); 377 } 378 379 if (DTU) { 380 std::vector<DominatorTree::UpdateType> Updates; 381 Updates.reserve(RemovedSuccessors.size()); 382 for (auto *RemovedSuccessor : RemovedSuccessors) 383 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 384 DTU->applyUpdates(Updates); 385 } 386 return true; 387 } 388 } 389 390 return false; 391 } 392 393 //===----------------------------------------------------------------------===// 394 // Local dead code elimination. 395 // 396 397 /// isInstructionTriviallyDead - Return true if the result produced by the 398 /// instruction is not used, and the instruction has no side effects. 399 /// 400 bool llvm::isInstructionTriviallyDead(Instruction *I, 401 const TargetLibraryInfo *TLI) { 402 if (!I->use_empty()) 403 return false; 404 return wouldInstructionBeTriviallyDead(I, TLI); 405 } 406 407 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 408 Instruction *I, const TargetLibraryInfo *TLI) { 409 // Instructions that are "markers" and have implied meaning on code around 410 // them (without explicit uses), are not dead on unused paths. 411 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 412 if (II->getIntrinsicID() == Intrinsic::stacksave || 413 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 414 II->isLifetimeStartOrEnd()) 415 return false; 416 return wouldInstructionBeTriviallyDead(I, TLI); 417 } 418 419 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, 420 const TargetLibraryInfo *TLI) { 421 if (I->isTerminator()) 422 return false; 423 424 // We don't want the landingpad-like instructions removed by anything this 425 // general. 426 if (I->isEHPad()) 427 return false; 428 429 // We don't want debug info removed by anything this general. 430 if (isa<DbgVariableIntrinsic>(I)) 431 return false; 432 433 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 434 if (DLI->getLabel()) 435 return false; 436 return true; 437 } 438 439 if (auto *CB = dyn_cast<CallBase>(I)) 440 if (isRemovableAlloc(CB, TLI)) 441 return true; 442 443 if (!I->willReturn()) { 444 auto *II = dyn_cast<IntrinsicInst>(I); 445 if (!II) 446 return false; 447 448 switch (II->getIntrinsicID()) { 449 case Intrinsic::experimental_guard: { 450 // Guards on true are operationally no-ops. In the future we can 451 // consider more sophisticated tradeoffs for guards considering potential 452 // for check widening, but for now we keep things simple. 453 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); 454 return Cond && Cond->isOne(); 455 } 456 // TODO: These intrinsics are not safe to remove, because this may remove 457 // a well-defined trap. 458 case Intrinsic::wasm_trunc_signed: 459 case Intrinsic::wasm_trunc_unsigned: 460 case Intrinsic::ptrauth_auth: 461 case Intrinsic::ptrauth_resign: 462 return true; 463 default: 464 return false; 465 } 466 } 467 468 if (!I->mayHaveSideEffects()) 469 return true; 470 471 // Special case intrinsics that "may have side effects" but can be deleted 472 // when dead. 473 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 474 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 475 if (II->getIntrinsicID() == Intrinsic::stacksave || 476 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 477 return true; 478 479 // Intrinsics declare sideeffects to prevent them from moving, but they are 480 // nops without users. 481 if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || 482 II->getIntrinsicID() == Intrinsic::allow_ubsan_check) 483 return true; 484 485 if (II->isLifetimeStartOrEnd()) { 486 auto *Arg = II->getArgOperand(1); 487 // Lifetime intrinsics are dead when their right-hand is undef. 488 if (isa<UndefValue>(Arg)) 489 return true; 490 // If the right-hand is an alloc, global, or argument and the only uses 491 // are lifetime intrinsics then the intrinsics are dead. 492 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 493 return llvm::all_of(Arg->uses(), [](Use &Use) { 494 if (IntrinsicInst *IntrinsicUse = 495 dyn_cast<IntrinsicInst>(Use.getUser())) 496 return IntrinsicUse->isLifetimeStartOrEnd(); 497 return false; 498 }); 499 return false; 500 } 501 502 // Assumptions are dead if their condition is trivially true. 503 if (II->getIntrinsicID() == Intrinsic::assume && 504 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { 505 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 506 return !Cond->isZero(); 507 508 return false; 509 } 510 511 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 512 std::optional<fp::ExceptionBehavior> ExBehavior = 513 FPI->getExceptionBehavior(); 514 return *ExBehavior != fp::ebStrict; 515 } 516 } 517 518 if (auto *Call = dyn_cast<CallBase>(I)) { 519 if (Value *FreedOp = getFreedOperand(Call, TLI)) 520 if (Constant *C = dyn_cast<Constant>(FreedOp)) 521 return C->isNullValue() || isa<UndefValue>(C); 522 if (isMathLibCallNoop(Call, TLI)) 523 return true; 524 } 525 526 // Non-volatile atomic loads from constants can be removed. 527 if (auto *LI = dyn_cast<LoadInst>(I)) 528 if (auto *GV = dyn_cast<GlobalVariable>( 529 LI->getPointerOperand()->stripPointerCasts())) 530 if (!LI->isVolatile() && GV->isConstant()) 531 return true; 532 533 return false; 534 } 535 536 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 537 /// trivially dead instruction, delete it. If that makes any of its operands 538 /// trivially dead, delete them too, recursively. Return true if any 539 /// instructions were deleted. 540 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 541 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 542 std::function<void(Value *)> AboutToDeleteCallback) { 543 Instruction *I = dyn_cast<Instruction>(V); 544 if (!I || !isInstructionTriviallyDead(I, TLI)) 545 return false; 546 547 SmallVector<WeakTrackingVH, 16> DeadInsts; 548 DeadInsts.push_back(I); 549 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 550 AboutToDeleteCallback); 551 552 return true; 553 } 554 555 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 556 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 557 MemorySSAUpdater *MSSAU, 558 std::function<void(Value *)> AboutToDeleteCallback) { 559 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 560 for (; S != E; ++S) { 561 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 562 if (!I || !isInstructionTriviallyDead(I)) { 563 DeadInsts[S] = nullptr; 564 ++Alive; 565 } 566 } 567 if (Alive == E) 568 return false; 569 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 570 AboutToDeleteCallback); 571 return true; 572 } 573 574 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 575 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 576 MemorySSAUpdater *MSSAU, 577 std::function<void(Value *)> AboutToDeleteCallback) { 578 // Process the dead instruction list until empty. 579 while (!DeadInsts.empty()) { 580 Value *V = DeadInsts.pop_back_val(); 581 Instruction *I = cast_or_null<Instruction>(V); 582 if (!I) 583 continue; 584 assert(isInstructionTriviallyDead(I, TLI) && 585 "Live instruction found in dead worklist!"); 586 assert(I->use_empty() && "Instructions with uses are not dead."); 587 588 // Don't lose the debug info while deleting the instructions. 589 salvageDebugInfo(*I); 590 591 if (AboutToDeleteCallback) 592 AboutToDeleteCallback(I); 593 594 // Null out all of the instruction's operands to see if any operand becomes 595 // dead as we go. 596 for (Use &OpU : I->operands()) { 597 Value *OpV = OpU.get(); 598 OpU.set(nullptr); 599 600 if (!OpV->use_empty()) 601 continue; 602 603 // If the operand is an instruction that became dead as we nulled out the 604 // operand, and if it is 'trivially' dead, delete it in a future loop 605 // iteration. 606 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 607 if (isInstructionTriviallyDead(OpI, TLI)) 608 DeadInsts.push_back(OpI); 609 } 610 if (MSSAU) 611 MSSAU->removeMemoryAccess(I); 612 613 I->eraseFromParent(); 614 } 615 } 616 617 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 618 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 619 SmallVector<DbgVariableRecord *, 1> DPUsers; 620 findDbgUsers(DbgUsers, I, &DPUsers); 621 for (auto *DII : DbgUsers) 622 DII->setKillLocation(); 623 for (auto *DVR : DPUsers) 624 DVR->setKillLocation(); 625 return !DbgUsers.empty() || !DPUsers.empty(); 626 } 627 628 /// areAllUsesEqual - Check whether the uses of a value are all the same. 629 /// This is similar to Instruction::hasOneUse() except this will also return 630 /// true when there are no uses or multiple uses that all refer to the same 631 /// value. 632 static bool areAllUsesEqual(Instruction *I) { 633 Value::user_iterator UI = I->user_begin(); 634 Value::user_iterator UE = I->user_end(); 635 if (UI == UE) 636 return true; 637 638 User *TheUse = *UI; 639 for (++UI; UI != UE; ++UI) { 640 if (*UI != TheUse) 641 return false; 642 } 643 return true; 644 } 645 646 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 647 /// dead PHI node, due to being a def-use chain of single-use nodes that 648 /// either forms a cycle or is terminated by a trivially dead instruction, 649 /// delete it. If that makes any of its operands trivially dead, delete them 650 /// too, recursively. Return true if a change was made. 651 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 652 const TargetLibraryInfo *TLI, 653 llvm::MemorySSAUpdater *MSSAU) { 654 SmallPtrSet<Instruction*, 4> Visited; 655 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 656 I = cast<Instruction>(*I->user_begin())) { 657 if (I->use_empty()) 658 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 659 660 // If we find an instruction more than once, we're on a cycle that 661 // won't prove fruitful. 662 if (!Visited.insert(I).second) { 663 // Break the cycle and delete the instruction and its operands. 664 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 665 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 666 return true; 667 } 668 } 669 return false; 670 } 671 672 static bool 673 simplifyAndDCEInstruction(Instruction *I, 674 SmallSetVector<Instruction *, 16> &WorkList, 675 const DataLayout &DL, 676 const TargetLibraryInfo *TLI) { 677 if (isInstructionTriviallyDead(I, TLI)) { 678 salvageDebugInfo(*I); 679 680 // Null out all of the instruction's operands to see if any operand becomes 681 // dead as we go. 682 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 683 Value *OpV = I->getOperand(i); 684 I->setOperand(i, nullptr); 685 686 if (!OpV->use_empty() || I == OpV) 687 continue; 688 689 // If the operand is an instruction that became dead as we nulled out the 690 // operand, and if it is 'trivially' dead, delete it in a future loop 691 // iteration. 692 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 693 if (isInstructionTriviallyDead(OpI, TLI)) 694 WorkList.insert(OpI); 695 } 696 697 I->eraseFromParent(); 698 699 return true; 700 } 701 702 if (Value *SimpleV = simplifyInstruction(I, DL)) { 703 // Add the users to the worklist. CAREFUL: an instruction can use itself, 704 // in the case of a phi node. 705 for (User *U : I->users()) { 706 if (U != I) { 707 WorkList.insert(cast<Instruction>(U)); 708 } 709 } 710 711 // Replace the instruction with its simplified value. 712 bool Changed = false; 713 if (!I->use_empty()) { 714 I->replaceAllUsesWith(SimpleV); 715 Changed = true; 716 } 717 if (isInstructionTriviallyDead(I, TLI)) { 718 I->eraseFromParent(); 719 Changed = true; 720 } 721 return Changed; 722 } 723 return false; 724 } 725 726 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 727 /// simplify any instructions in it and recursively delete dead instructions. 728 /// 729 /// This returns true if it changed the code, note that it can delete 730 /// instructions in other blocks as well in this block. 731 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 732 const TargetLibraryInfo *TLI) { 733 bool MadeChange = false; 734 const DataLayout &DL = BB->getDataLayout(); 735 736 #ifndef NDEBUG 737 // In debug builds, ensure that the terminator of the block is never replaced 738 // or deleted by these simplifications. The idea of simplification is that it 739 // cannot introduce new instructions, and there is no way to replace the 740 // terminator of a block without introducing a new instruction. 741 AssertingVH<Instruction> TerminatorVH(&BB->back()); 742 #endif 743 744 SmallSetVector<Instruction *, 16> WorkList; 745 // Iterate over the original function, only adding insts to the worklist 746 // if they actually need to be revisited. This avoids having to pre-init 747 // the worklist with the entire function's worth of instructions. 748 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 749 BI != E;) { 750 assert(!BI->isTerminator()); 751 Instruction *I = &*BI; 752 ++BI; 753 754 // We're visiting this instruction now, so make sure it's not in the 755 // worklist from an earlier visit. 756 if (!WorkList.count(I)) 757 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 758 } 759 760 while (!WorkList.empty()) { 761 Instruction *I = WorkList.pop_back_val(); 762 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 763 } 764 return MadeChange; 765 } 766 767 //===----------------------------------------------------------------------===// 768 // Control Flow Graph Restructuring. 769 // 770 771 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 772 DomTreeUpdater *DTU) { 773 774 // If BB has single-entry PHI nodes, fold them. 775 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 776 Value *NewVal = PN->getIncomingValue(0); 777 // Replace self referencing PHI with poison, it must be dead. 778 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 779 PN->replaceAllUsesWith(NewVal); 780 PN->eraseFromParent(); 781 } 782 783 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 784 assert(PredBB && "Block doesn't have a single predecessor!"); 785 786 bool ReplaceEntryBB = PredBB->isEntryBlock(); 787 788 // DTU updates: Collect all the edges that enter 789 // PredBB. These dominator edges will be redirected to DestBB. 790 SmallVector<DominatorTree::UpdateType, 32> Updates; 791 792 if (DTU) { 793 // To avoid processing the same predecessor more than once. 794 SmallPtrSet<BasicBlock *, 2> SeenPreds; 795 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 796 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 797 // This predecessor of PredBB may already have DestBB as a successor. 798 if (PredOfPredBB != PredBB) 799 if (SeenPreds.insert(PredOfPredBB).second) 800 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 801 SeenPreds.clear(); 802 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 803 if (SeenPreds.insert(PredOfPredBB).second) 804 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 805 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 806 } 807 808 // Zap anything that took the address of DestBB. Not doing this will give the 809 // address an invalid value. 810 if (DestBB->hasAddressTaken()) { 811 BlockAddress *BA = BlockAddress::get(DestBB); 812 Constant *Replacement = 813 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 814 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 815 BA->getType())); 816 BA->destroyConstant(); 817 } 818 819 // Anything that branched to PredBB now branches to DestBB. 820 PredBB->replaceAllUsesWith(DestBB); 821 822 // Splice all the instructions from PredBB to DestBB. 823 PredBB->getTerminator()->eraseFromParent(); 824 DestBB->splice(DestBB->begin(), PredBB); 825 new UnreachableInst(PredBB->getContext(), PredBB); 826 827 // If the PredBB is the entry block of the function, move DestBB up to 828 // become the entry block after we erase PredBB. 829 if (ReplaceEntryBB) 830 DestBB->moveAfter(PredBB); 831 832 if (DTU) { 833 assert(PredBB->size() == 1 && 834 isa<UnreachableInst>(PredBB->getTerminator()) && 835 "The successor list of PredBB isn't empty before " 836 "applying corresponding DTU updates."); 837 DTU->applyUpdatesPermissive(Updates); 838 DTU->deleteBB(PredBB); 839 // Recalculation of DomTree is needed when updating a forward DomTree and 840 // the Entry BB is replaced. 841 if (ReplaceEntryBB && DTU->hasDomTree()) { 842 // The entry block was removed and there is no external interface for 843 // the dominator tree to be notified of this change. In this corner-case 844 // we recalculate the entire tree. 845 DTU->recalculate(*(DestBB->getParent())); 846 } 847 } 848 849 else { 850 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 851 } 852 } 853 854 /// Return true if we can choose one of these values to use in place of the 855 /// other. Note that we will always choose the non-undef value to keep. 856 static bool CanMergeValues(Value *First, Value *Second) { 857 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 858 } 859 860 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 861 /// branch to Succ, into Succ. 862 /// 863 /// Assumption: Succ is the single successor for BB. 864 static bool 865 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, 866 const SmallPtrSetImpl<BasicBlock *> &BBPreds) { 867 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 868 869 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 870 << Succ->getName() << "\n"); 871 // Shortcut, if there is only a single predecessor it must be BB and merging 872 // is always safe 873 if (Succ->getSinglePredecessor()) 874 return true; 875 876 // Look at all the phi nodes in Succ, to see if they present a conflict when 877 // merging these blocks 878 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 879 PHINode *PN = cast<PHINode>(I); 880 881 // If the incoming value from BB is again a PHINode in 882 // BB which has the same incoming value for *PI as PN does, we can 883 // merge the phi nodes and then the blocks can still be merged 884 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 885 if (BBPN && BBPN->getParent() == BB) { 886 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 887 BasicBlock *IBB = PN->getIncomingBlock(PI); 888 if (BBPreds.count(IBB) && 889 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 890 PN->getIncomingValue(PI))) { 891 LLVM_DEBUG(dbgs() 892 << "Can't fold, phi node " << PN->getName() << " in " 893 << Succ->getName() << " is conflicting with " 894 << BBPN->getName() << " with regard to common predecessor " 895 << IBB->getName() << "\n"); 896 return false; 897 } 898 } 899 } else { 900 Value* Val = PN->getIncomingValueForBlock(BB); 901 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 902 // See if the incoming value for the common predecessor is equal to the 903 // one for BB, in which case this phi node will not prevent the merging 904 // of the block. 905 BasicBlock *IBB = PN->getIncomingBlock(PI); 906 if (BBPreds.count(IBB) && 907 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 908 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 909 << " in " << Succ->getName() 910 << " is conflicting with regard to common " 911 << "predecessor " << IBB->getName() << "\n"); 912 return false; 913 } 914 } 915 } 916 } 917 918 return true; 919 } 920 921 using PredBlockVector = SmallVector<BasicBlock *, 16>; 922 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 923 924 /// Determines the value to use as the phi node input for a block. 925 /// 926 /// Select between \p OldVal any value that we know flows from \p BB 927 /// to a particular phi on the basis of which one (if either) is not 928 /// undef. Update IncomingValues based on the selected value. 929 /// 930 /// \param OldVal The value we are considering selecting. 931 /// \param BB The block that the value flows in from. 932 /// \param IncomingValues A map from block-to-value for other phi inputs 933 /// that we have examined. 934 /// 935 /// \returns the selected value. 936 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 937 IncomingValueMap &IncomingValues) { 938 if (!isa<UndefValue>(OldVal)) { 939 assert((!IncomingValues.count(BB) || 940 IncomingValues.find(BB)->second == OldVal) && 941 "Expected OldVal to match incoming value from BB!"); 942 943 IncomingValues.insert(std::make_pair(BB, OldVal)); 944 return OldVal; 945 } 946 947 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 948 if (It != IncomingValues.end()) return It->second; 949 950 return OldVal; 951 } 952 953 /// Create a map from block to value for the operands of a 954 /// given phi. 955 /// 956 /// Create a map from block to value for each non-undef value flowing 957 /// into \p PN. 958 /// 959 /// \param PN The phi we are collecting the map for. 960 /// \param IncomingValues [out] The map from block to value for this phi. 961 static void gatherIncomingValuesToPhi(PHINode *PN, 962 IncomingValueMap &IncomingValues) { 963 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 964 BasicBlock *BB = PN->getIncomingBlock(i); 965 Value *V = PN->getIncomingValue(i); 966 967 if (!isa<UndefValue>(V)) 968 IncomingValues.insert(std::make_pair(BB, V)); 969 } 970 } 971 972 /// Replace the incoming undef values to a phi with the values 973 /// from a block-to-value map. 974 /// 975 /// \param PN The phi we are replacing the undefs in. 976 /// \param IncomingValues A map from block to value. 977 static void replaceUndefValuesInPhi(PHINode *PN, 978 const IncomingValueMap &IncomingValues) { 979 SmallVector<unsigned> TrueUndefOps; 980 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 981 Value *V = PN->getIncomingValue(i); 982 983 if (!isa<UndefValue>(V)) continue; 984 985 BasicBlock *BB = PN->getIncomingBlock(i); 986 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 987 988 // Keep track of undef/poison incoming values. Those must match, so we fix 989 // them up below if needed. 990 // Note: this is conservatively correct, but we could try harder and group 991 // the undef values per incoming basic block. 992 if (It == IncomingValues.end()) { 993 TrueUndefOps.push_back(i); 994 continue; 995 } 996 997 // There is a defined value for this incoming block, so map this undef 998 // incoming value to the defined value. 999 PN->setIncomingValue(i, It->second); 1000 } 1001 1002 // If there are both undef and poison values incoming, then convert those 1003 // values to undef. It is invalid to have different values for the same 1004 // incoming block. 1005 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 1006 return isa<PoisonValue>(PN->getIncomingValue(i)); 1007 }); 1008 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1009 for (unsigned i : TrueUndefOps) 1010 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1011 } 1012 } 1013 1014 // Only when they shares a single common predecessor, return true. 1015 // Only handles cases when BB can't be merged while its predecessors can be 1016 // redirected. 1017 static bool 1018 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, 1019 const SmallPtrSetImpl<BasicBlock *> &BBPreds, 1020 const SmallPtrSetImpl<BasicBlock *> &SuccPreds, 1021 BasicBlock *&CommonPred) { 1022 1023 // There must be phis in BB, otherwise BB will be merged into Succ directly 1024 if (BB->phis().empty() || Succ->phis().empty()) 1025 return false; 1026 1027 // BB must have predecessors not shared that can be redirected to Succ 1028 if (!BB->hasNPredecessorsOrMore(2)) 1029 return false; 1030 1031 if (any_of(BBPreds, [](const BasicBlock *Pred) { 1032 return isa<IndirectBrInst>(Pred->getTerminator()); 1033 })) 1034 return false; 1035 1036 // Get the single common predecessor of both BB and Succ. Return false 1037 // when there are more than one common predecessors. 1038 for (BasicBlock *SuccPred : SuccPreds) { 1039 if (BBPreds.count(SuccPred)) { 1040 if (CommonPred) 1041 return false; 1042 CommonPred = SuccPred; 1043 } 1044 } 1045 1046 return true; 1047 } 1048 1049 /// Replace a value flowing from a block to a phi with 1050 /// potentially multiple instances of that value flowing from the 1051 /// block's predecessors to the phi. 1052 /// 1053 /// \param BB The block with the value flowing into the phi. 1054 /// \param BBPreds The predecessors of BB. 1055 /// \param PN The phi that we are updating. 1056 /// \param CommonPred The common predecessor of BB and PN's BasicBlock 1057 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1058 const PredBlockVector &BBPreds, 1059 PHINode *PN, 1060 BasicBlock *CommonPred) { 1061 Value *OldVal = PN->removeIncomingValue(BB, false); 1062 assert(OldVal && "No entry in PHI for Pred BB!"); 1063 1064 IncomingValueMap IncomingValues; 1065 1066 // We are merging two blocks - BB, and the block containing PN - and 1067 // as a result we need to redirect edges from the predecessors of BB 1068 // to go to the block containing PN, and update PN 1069 // accordingly. Since we allow merging blocks in the case where the 1070 // predecessor and successor blocks both share some predecessors, 1071 // and where some of those common predecessors might have undef 1072 // values flowing into PN, we want to rewrite those values to be 1073 // consistent with the non-undef values. 1074 1075 gatherIncomingValuesToPhi(PN, IncomingValues); 1076 1077 // If this incoming value is one of the PHI nodes in BB, the new entries 1078 // in the PHI node are the entries from the old PHI. 1079 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1080 PHINode *OldValPN = cast<PHINode>(OldVal); 1081 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1082 // Note that, since we are merging phi nodes and BB and Succ might 1083 // have common predecessors, we could end up with a phi node with 1084 // identical incoming branches. This will be cleaned up later (and 1085 // will trigger asserts if we try to clean it up now, without also 1086 // simplifying the corresponding conditional branch). 1087 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1088 1089 if (PredBB == CommonPred) 1090 continue; 1091 1092 Value *PredVal = OldValPN->getIncomingValue(i); 1093 Value *Selected = 1094 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); 1095 1096 // And add a new incoming value for this predecessor for the 1097 // newly retargeted branch. 1098 PN->addIncoming(Selected, PredBB); 1099 } 1100 if (CommonPred) 1101 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); 1102 1103 } else { 1104 for (BasicBlock *PredBB : BBPreds) { 1105 // Update existing incoming values in PN for this 1106 // predecessor of BB. 1107 if (PredBB == CommonPred) 1108 continue; 1109 1110 Value *Selected = 1111 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); 1112 1113 // And add a new incoming value for this predecessor for the 1114 // newly retargeted branch. 1115 PN->addIncoming(Selected, PredBB); 1116 } 1117 if (CommonPred) 1118 PN->addIncoming(OldVal, BB); 1119 } 1120 1121 replaceUndefValuesInPhi(PN, IncomingValues); 1122 } 1123 1124 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1125 DomTreeUpdater *DTU) { 1126 assert(BB != &BB->getParent()->getEntryBlock() && 1127 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1128 1129 // We can't simplify infinite loops. 1130 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1131 if (BB == Succ) 1132 return false; 1133 1134 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); 1135 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); 1136 1137 // The single common predecessor of BB and Succ when BB cannot be killed 1138 BasicBlock *CommonPred = nullptr; 1139 1140 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); 1141 1142 // Even if we can not fold BB into Succ, we may be able to redirect the 1143 // predecessors of BB to Succ. 1144 bool BBPhisMergeable = 1145 BBKillable || 1146 CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred); 1147 1148 if (!BBKillable && !BBPhisMergeable) 1149 return false; 1150 1151 // Check to see if merging these blocks/phis would cause conflicts for any of 1152 // the phi nodes in BB or Succ. If not, we can safely merge. 1153 1154 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1155 // has uses which will not disappear when the PHI nodes are merged. It is 1156 // possible to handle such cases, but difficult: it requires checking whether 1157 // BB dominates Succ, which is non-trivial to calculate in the case where 1158 // Succ has multiple predecessors. Also, it requires checking whether 1159 // constructing the necessary self-referential PHI node doesn't introduce any 1160 // conflicts; this isn't too difficult, but the previous code for doing this 1161 // was incorrect. 1162 // 1163 // Note that if this check finds a live use, BB dominates Succ, so BB is 1164 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1165 // folding the branch isn't profitable in that case anyway. 1166 if (!Succ->getSinglePredecessor()) { 1167 BasicBlock::iterator BBI = BB->begin(); 1168 while (isa<PHINode>(*BBI)) { 1169 for (Use &U : BBI->uses()) { 1170 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1171 if (PN->getIncomingBlock(U) != BB) 1172 return false; 1173 } else { 1174 return false; 1175 } 1176 } 1177 ++BBI; 1178 } 1179 } 1180 1181 if (BBPhisMergeable && CommonPred) 1182 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() 1183 << " and " << Succ->getName() << " : " 1184 << CommonPred->getName() << "\n"); 1185 1186 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1187 // metadata. 1188 // 1189 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1190 // current status (that loop metadata is implemented as metadata attached to 1191 // the branch instruction in the loop latch block). To quote from review 1192 // comments, "the current representation of loop metadata (using a loop latch 1193 // terminator attachment) is known to be fundamentally broken. Loop latches 1194 // are not uniquely associated with loops (both in that a latch can be part of 1195 // multiple loops and a loop may have multiple latches). Loop headers are. The 1196 // solution to this problem is also known: Add support for basic block 1197 // metadata, and attach loop metadata to the loop header." 1198 // 1199 // Why bail out: 1200 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1201 // the latch for inner-loop (see reason below), so bail out to prerserve 1202 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1203 // to this inner-loop. 1204 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1205 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1206 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1207 // one self-looping basic block, which is contradictory with the assumption. 1208 // 1209 // To illustrate how inner-loop metadata is dropped: 1210 // 1211 // CFG Before 1212 // 1213 // BB is while.cond.exit, attached with loop metdata md2. 1214 // BB->Pred is for.body, attached with loop metadata md1. 1215 // 1216 // entry 1217 // | 1218 // v 1219 // ---> while.cond -------------> while.end 1220 // | | 1221 // | v 1222 // | while.body 1223 // | | 1224 // | v 1225 // | for.body <---- (md1) 1226 // | | |______| 1227 // | v 1228 // | while.cond.exit (md2) 1229 // | | 1230 // |_______| 1231 // 1232 // CFG After 1233 // 1234 // while.cond1 is the merge of while.cond.exit and while.cond above. 1235 // for.body is attached with md2, and md1 is dropped. 1236 // If LoopSimplify runs later (as a part of loop pass), it could create 1237 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1238 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1239 // 1240 // entry 1241 // | 1242 // v 1243 // ---> while.cond1 -------------> while.end 1244 // | | 1245 // | v 1246 // | while.body 1247 // | | 1248 // | v 1249 // | for.body <---- (md2) 1250 // |_______| |______| 1251 if (Instruction *TI = BB->getTerminator()) 1252 if (TI->hasMetadata(LLVMContext::MD_loop)) 1253 for (BasicBlock *Pred : predecessors(BB)) 1254 if (Instruction *PredTI = Pred->getTerminator()) 1255 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1256 return false; 1257 1258 if (BBKillable) 1259 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1260 else if (BBPhisMergeable) 1261 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); 1262 1263 SmallVector<DominatorTree::UpdateType, 32> Updates; 1264 1265 if (DTU) { 1266 // To avoid processing the same predecessor more than once. 1267 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1268 // All predecessors of BB (except the common predecessor) will be moved to 1269 // Succ. 1270 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1271 1272 for (auto *PredOfBB : predecessors(BB)) { 1273 // Do not modify those common predecessors of BB and Succ 1274 if (!SuccPreds.contains(PredOfBB)) 1275 if (SeenPreds.insert(PredOfBB).second) 1276 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1277 } 1278 1279 SeenPreds.clear(); 1280 1281 for (auto *PredOfBB : predecessors(BB)) 1282 // When BB cannot be killed, do not remove the edge between BB and 1283 // CommonPred. 1284 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) 1285 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1286 1287 if (BBKillable) 1288 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1289 } 1290 1291 if (isa<PHINode>(Succ->begin())) { 1292 // If there is more than one pred of succ, and there are PHI nodes in 1293 // the successor, then we need to add incoming edges for the PHI nodes 1294 // 1295 const PredBlockVector BBPreds(predecessors(BB)); 1296 1297 // Loop over all of the PHI nodes in the successor of BB. 1298 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1299 PHINode *PN = cast<PHINode>(I); 1300 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); 1301 } 1302 } 1303 1304 if (Succ->getSinglePredecessor()) { 1305 // BB is the only predecessor of Succ, so Succ will end up with exactly 1306 // the same predecessors BB had. 1307 // Copy over any phi, debug or lifetime instruction. 1308 BB->getTerminator()->eraseFromParent(); 1309 Succ->splice(Succ->getFirstNonPHIIt(), BB); 1310 } else { 1311 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1312 // We explicitly check for such uses for merging phis. 1313 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1314 PN->eraseFromParent(); 1315 } 1316 } 1317 1318 // If the unconditional branch we replaced contains llvm.loop metadata, we 1319 // add the metadata to the branch instructions in the predecessors. 1320 if (Instruction *TI = BB->getTerminator()) 1321 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) 1322 for (BasicBlock *Pred : predecessors(BB)) 1323 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1324 1325 if (BBKillable) { 1326 // Everything that jumped to BB now goes to Succ. 1327 BB->replaceAllUsesWith(Succ); 1328 1329 if (!Succ->hasName()) 1330 Succ->takeName(BB); 1331 1332 // Clear the successor list of BB to match updates applying to DTU later. 1333 if (BB->getTerminator()) 1334 BB->back().eraseFromParent(); 1335 1336 new UnreachableInst(BB->getContext(), BB); 1337 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1338 "applying corresponding DTU updates."); 1339 } else if (BBPhisMergeable) { 1340 // Everything except CommonPred that jumped to BB now goes to Succ. 1341 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { 1342 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) 1343 return UseInst->getParent() != CommonPred && 1344 BBPreds.contains(UseInst->getParent()); 1345 return false; 1346 }); 1347 } 1348 1349 if (DTU) 1350 DTU->applyUpdates(Updates); 1351 1352 if (BBKillable) 1353 DeleteDeadBlock(BB, DTU); 1354 1355 return true; 1356 } 1357 1358 static bool 1359 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, 1360 SmallPtrSetImpl<PHINode *> &ToRemove) { 1361 // This implementation doesn't currently consider undef operands 1362 // specially. Theoretically, two phis which are identical except for 1363 // one having an undef where the other doesn't could be collapsed. 1364 1365 bool Changed = false; 1366 1367 // Examine each PHI. 1368 // Note that increment of I must *NOT* be in the iteration_expression, since 1369 // we don't want to immediately advance when we restart from the beginning. 1370 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1371 ++I; 1372 // Is there an identical PHI node in this basic block? 1373 // Note that we only look in the upper square's triangle, 1374 // we already checked that the lower triangle PHI's aren't identical. 1375 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1376 if (ToRemove.contains(DuplicatePN)) 1377 continue; 1378 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1379 continue; 1380 // A duplicate. Replace this PHI with the base PHI. 1381 ++NumPHICSEs; 1382 DuplicatePN->replaceAllUsesWith(PN); 1383 ToRemove.insert(DuplicatePN); 1384 Changed = true; 1385 1386 // The RAUW can change PHIs that we already visited. 1387 I = BB->begin(); 1388 break; // Start over from the beginning. 1389 } 1390 } 1391 return Changed; 1392 } 1393 1394 static bool 1395 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, 1396 SmallPtrSetImpl<PHINode *> &ToRemove) { 1397 // This implementation doesn't currently consider undef operands 1398 // specially. Theoretically, two phis which are identical except for 1399 // one having an undef where the other doesn't could be collapsed. 1400 1401 struct PHIDenseMapInfo { 1402 static PHINode *getEmptyKey() { 1403 return DenseMapInfo<PHINode *>::getEmptyKey(); 1404 } 1405 1406 static PHINode *getTombstoneKey() { 1407 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1408 } 1409 1410 static bool isSentinel(PHINode *PN) { 1411 return PN == getEmptyKey() || PN == getTombstoneKey(); 1412 } 1413 1414 // WARNING: this logic must be kept in sync with 1415 // Instruction::isIdenticalToWhenDefined()! 1416 static unsigned getHashValueImpl(PHINode *PN) { 1417 // Compute a hash value on the operands. Instcombine will likely have 1418 // sorted them, which helps expose duplicates, but we have to check all 1419 // the operands to be safe in case instcombine hasn't run. 1420 return static_cast<unsigned>(hash_combine( 1421 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1422 hash_combine_range(PN->block_begin(), PN->block_end()))); 1423 } 1424 1425 static unsigned getHashValue(PHINode *PN) { 1426 #ifndef NDEBUG 1427 // If -phicse-debug-hash was specified, return a constant -- this 1428 // will force all hashing to collide, so we'll exhaustively search 1429 // the table for a match, and the assertion in isEqual will fire if 1430 // there's a bug causing equal keys to hash differently. 1431 if (PHICSEDebugHash) 1432 return 0; 1433 #endif 1434 return getHashValueImpl(PN); 1435 } 1436 1437 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1438 if (isSentinel(LHS) || isSentinel(RHS)) 1439 return LHS == RHS; 1440 return LHS->isIdenticalTo(RHS); 1441 } 1442 1443 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1444 // These comparisons are nontrivial, so assert that equality implies 1445 // hash equality (DenseMap demands this as an invariant). 1446 bool Result = isEqualImpl(LHS, RHS); 1447 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1448 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1449 return Result; 1450 } 1451 }; 1452 1453 // Set of unique PHINodes. 1454 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1455 PHISet.reserve(4 * PHICSENumPHISmallSize); 1456 1457 // Examine each PHI. 1458 bool Changed = false; 1459 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1460 if (ToRemove.contains(PN)) 1461 continue; 1462 auto Inserted = PHISet.insert(PN); 1463 if (!Inserted.second) { 1464 // A duplicate. Replace this PHI with its duplicate. 1465 ++NumPHICSEs; 1466 PN->replaceAllUsesWith(*Inserted.first); 1467 ToRemove.insert(PN); 1468 Changed = true; 1469 1470 // The RAUW can change PHIs that we already visited. Start over from the 1471 // beginning. 1472 PHISet.clear(); 1473 I = BB->begin(); 1474 } 1475 } 1476 1477 return Changed; 1478 } 1479 1480 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, 1481 SmallPtrSetImpl<PHINode *> &ToRemove) { 1482 if ( 1483 #ifndef NDEBUG 1484 !PHICSEDebugHash && 1485 #endif 1486 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1487 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); 1488 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); 1489 } 1490 1491 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1492 SmallPtrSet<PHINode *, 8> ToRemove; 1493 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); 1494 for (PHINode *PN : ToRemove) 1495 PN->eraseFromParent(); 1496 return Changed; 1497 } 1498 1499 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, 1500 const DataLayout &DL) { 1501 V = V->stripPointerCasts(); 1502 1503 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1504 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1505 // than the current alignment, as the known bits calculation should have 1506 // already taken it into account. However, this is not always the case, 1507 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1508 // doesn't. 1509 Align CurrentAlign = AI->getAlign(); 1510 if (PrefAlign <= CurrentAlign) 1511 return CurrentAlign; 1512 1513 // If the preferred alignment is greater than the natural stack alignment 1514 // then don't round up. This avoids dynamic stack realignment. 1515 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1516 return CurrentAlign; 1517 AI->setAlignment(PrefAlign); 1518 return PrefAlign; 1519 } 1520 1521 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1522 // TODO: as above, this shouldn't be necessary. 1523 Align CurrentAlign = GO->getPointerAlignment(DL); 1524 if (PrefAlign <= CurrentAlign) 1525 return CurrentAlign; 1526 1527 // If there is a large requested alignment and we can, bump up the alignment 1528 // of the global. If the memory we set aside for the global may not be the 1529 // memory used by the final program then it is impossible for us to reliably 1530 // enforce the preferred alignment. 1531 if (!GO->canIncreaseAlignment()) 1532 return CurrentAlign; 1533 1534 if (GO->isThreadLocal()) { 1535 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1536 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1537 PrefAlign = Align(MaxTLSAlign); 1538 } 1539 1540 GO->setAlignment(PrefAlign); 1541 return PrefAlign; 1542 } 1543 1544 return Align(1); 1545 } 1546 1547 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1548 const DataLayout &DL, 1549 const Instruction *CxtI, 1550 AssumptionCache *AC, 1551 const DominatorTree *DT) { 1552 assert(V->getType()->isPointerTy() && 1553 "getOrEnforceKnownAlignment expects a pointer!"); 1554 1555 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1556 unsigned TrailZ = Known.countMinTrailingZeros(); 1557 1558 // Avoid trouble with ridiculously large TrailZ values, such as 1559 // those computed from a null pointer. 1560 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1561 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1562 1563 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1564 1565 if (PrefAlign && *PrefAlign > Alignment) 1566 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1567 1568 // We don't need to make any adjustment. 1569 return Alignment; 1570 } 1571 1572 ///===---------------------------------------------------------------------===// 1573 /// Dbg Intrinsic utilities 1574 /// 1575 1576 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1577 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1578 DIExpression *DIExpr, 1579 PHINode *APN) { 1580 // Since we can't guarantee that the original dbg.declare intrinsic 1581 // is removed by LowerDbgDeclare(), we need to make sure that we are 1582 // not inserting the same dbg.value intrinsic over and over. 1583 SmallVector<DbgValueInst *, 1> DbgValues; 1584 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 1585 findDbgValues(DbgValues, APN, &DbgVariableRecords); 1586 for (auto *DVI : DbgValues) { 1587 assert(is_contained(DVI->getValues(), APN)); 1588 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1589 return true; 1590 } 1591 for (auto *DVR : DbgVariableRecords) { 1592 assert(is_contained(DVR->location_ops(), APN)); 1593 if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) 1594 return true; 1595 } 1596 return false; 1597 } 1598 1599 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1600 /// (or fragment of the variable) described by \p DII. 1601 /// 1602 /// This is primarily intended as a helper for the different 1603 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1604 /// describes an alloca'd variable, so we need to use the alloc size of the 1605 /// value when doing the comparison. E.g. an i1 value will be identified as 1606 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1607 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1608 const DataLayout &DL = DII->getDataLayout(); 1609 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1610 if (std::optional<uint64_t> FragmentSize = 1611 DII->getExpression()->getActiveBits(DII->getVariable())) 1612 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1613 1614 // We can't always calculate the size of the DI variable (e.g. if it is a 1615 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1616 // intead. 1617 if (DII->isAddressOfVariable()) { 1618 // DII should have exactly 1 location when it is an address. 1619 assert(DII->getNumVariableLocationOps() == 1 && 1620 "address of variable must have exactly 1 location operand."); 1621 if (auto *AI = 1622 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1623 if (std::optional<TypeSize> FragmentSize = 1624 AI->getAllocationSizeInBits(DL)) { 1625 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1626 } 1627 } 1628 } 1629 // Could not determine size of variable. Conservatively return false. 1630 return false; 1631 } 1632 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, 1633 // the replacement for dbg.values. 1634 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { 1635 const DataLayout &DL = DVR->getModule()->getDataLayout(); 1636 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1637 if (std::optional<uint64_t> FragmentSize = 1638 DVR->getExpression()->getActiveBits(DVR->getVariable())) 1639 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1640 1641 // We can't always calculate the size of the DI variable (e.g. if it is a 1642 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1643 // intead. 1644 if (DVR->isAddressOfVariable()) { 1645 // DVR should have exactly 1 location when it is an address. 1646 assert(DVR->getNumVariableLocationOps() == 1 && 1647 "address of variable must have exactly 1 location operand."); 1648 if (auto *AI = 1649 dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) { 1650 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1651 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1652 } 1653 } 1654 } 1655 // Could not determine size of variable. Conservatively return false. 1656 return false; 1657 } 1658 1659 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, 1660 DILocalVariable *DIVar, 1661 DIExpression *DIExpr, 1662 const DebugLoc &NewLoc, 1663 BasicBlock::iterator Instr) { 1664 if (!UseNewDbgInfoFormat) { 1665 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1666 (Instruction *)nullptr); 1667 DbgVal.get<Instruction *>()->insertBefore(Instr); 1668 } else { 1669 // RemoveDIs: if we're using the new debug-info format, allocate a 1670 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1671 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1672 DbgVariableRecord *DV = 1673 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1674 Instr->getParent()->insertDbgRecordBefore(DV, Instr); 1675 } 1676 } 1677 1678 static void insertDbgValueOrDbgVariableRecordAfter( 1679 DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, 1680 const DebugLoc &NewLoc, BasicBlock::iterator Instr) { 1681 if (!UseNewDbgInfoFormat) { 1682 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1683 (Instruction *)nullptr); 1684 DbgVal.get<Instruction *>()->insertAfter(&*Instr); 1685 } else { 1686 // RemoveDIs: if we're using the new debug-info format, allocate a 1687 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1688 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1689 DbgVariableRecord *DV = 1690 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1691 Instr->getParent()->insertDbgRecordAfter(DV, &*Instr); 1692 } 1693 } 1694 1695 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1696 /// that has an associated llvm.dbg.declare intrinsic. 1697 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1698 StoreInst *SI, DIBuilder &Builder) { 1699 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1700 auto *DIVar = DII->getVariable(); 1701 assert(DIVar && "Missing variable"); 1702 auto *DIExpr = DII->getExpression(); 1703 Value *DV = SI->getValueOperand(); 1704 1705 DebugLoc NewLoc = getDebugValueLoc(DII); 1706 1707 // If the alloca describes the variable itself, i.e. the expression in the 1708 // dbg.declare doesn't start with a dereference, we can perform the 1709 // conversion if the value covers the entire fragment of DII. 1710 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1711 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1712 // We conservatively ignore other dereferences, because the following two are 1713 // not equivalent: 1714 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1715 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1716 // The former is adding 2 to the address of the variable, whereas the latter 1717 // is adding 2 to the value of the variable. As such, we insist on just a 1718 // deref expression. 1719 bool CanConvert = 1720 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1721 valueCoversEntireFragment(DV->getType(), DII)); 1722 if (CanConvert) { 1723 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1724 SI->getIterator()); 1725 return; 1726 } 1727 1728 // FIXME: If storing to a part of the variable described by the dbg.declare, 1729 // then we want to insert a dbg.value for the corresponding fragment. 1730 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1731 << '\n'); 1732 // For now, when there is a store to parts of the variable (but we do not 1733 // know which part) we insert an dbg.value intrinsic to indicate that we 1734 // know nothing about the variable's content. 1735 DV = UndefValue::get(DV->getType()); 1736 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1737 SI->getIterator()); 1738 } 1739 1740 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1741 /// that has an associated llvm.dbg.declare intrinsic. 1742 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1743 LoadInst *LI, DIBuilder &Builder) { 1744 auto *DIVar = DII->getVariable(); 1745 auto *DIExpr = DII->getExpression(); 1746 assert(DIVar && "Missing variable"); 1747 1748 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1749 // FIXME: If only referring to a part of the variable described by the 1750 // dbg.declare, then we want to insert a dbg.value for the corresponding 1751 // fragment. 1752 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1753 << *DII << '\n'); 1754 return; 1755 } 1756 1757 DebugLoc NewLoc = getDebugValueLoc(DII); 1758 1759 // We are now tracking the loaded value instead of the address. In the 1760 // future if multi-location support is added to the IR, it might be 1761 // preferable to keep tracking both the loaded value and the original 1762 // address in case the alloca can not be elided. 1763 insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc, 1764 LI->getIterator()); 1765 } 1766 1767 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, 1768 StoreInst *SI, DIBuilder &Builder) { 1769 assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); 1770 auto *DIVar = DVR->getVariable(); 1771 assert(DIVar && "Missing variable"); 1772 auto *DIExpr = DVR->getExpression(); 1773 Value *DV = SI->getValueOperand(); 1774 1775 DebugLoc NewLoc = getDebugValueLoc(DVR); 1776 1777 // If the alloca describes the variable itself, i.e. the expression in the 1778 // dbg.declare doesn't start with a dereference, we can perform the 1779 // conversion if the value covers the entire fragment of DII. 1780 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1781 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1782 // We conservatively ignore other dereferences, because the following two are 1783 // not equivalent: 1784 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1785 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1786 // The former is adding 2 to the address of the variable, whereas the latter 1787 // is adding 2 to the value of the variable. As such, we insist on just a 1788 // deref expression. 1789 bool CanConvert = 1790 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1791 valueCoversEntireFragment(DV->getType(), DVR)); 1792 if (CanConvert) { 1793 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1794 SI->getIterator()); 1795 return; 1796 } 1797 1798 // FIXME: If storing to a part of the variable described by the dbg.declare, 1799 // then we want to insert a dbg.value for the corresponding fragment. 1800 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR 1801 << '\n'); 1802 assert(UseNewDbgInfoFormat); 1803 1804 // For now, when there is a store to parts of the variable (but we do not 1805 // know which part) we insert an dbg.value intrinsic to indicate that we 1806 // know nothing about the variable's content. 1807 DV = UndefValue::get(DV->getType()); 1808 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1809 DbgVariableRecord *NewDVR = 1810 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1811 SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator()); 1812 } 1813 1814 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1815 /// llvm.dbg.declare intrinsic. 1816 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1817 PHINode *APN, DIBuilder &Builder) { 1818 auto *DIVar = DII->getVariable(); 1819 auto *DIExpr = DII->getExpression(); 1820 assert(DIVar && "Missing variable"); 1821 1822 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1823 return; 1824 1825 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1826 // FIXME: If only referring to a part of the variable described by the 1827 // dbg.declare, then we want to insert a dbg.value for the corresponding 1828 // fragment. 1829 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1830 << *DII << '\n'); 1831 return; 1832 } 1833 1834 BasicBlock *BB = APN->getParent(); 1835 auto InsertionPt = BB->getFirstInsertionPt(); 1836 1837 DebugLoc NewLoc = getDebugValueLoc(DII); 1838 1839 // The block may be a catchswitch block, which does not have a valid 1840 // insertion point. 1841 // FIXME: Insert dbg.value markers in the successors when appropriate. 1842 if (InsertionPt != BB->end()) { 1843 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1844 InsertionPt); 1845 } 1846 } 1847 1848 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, 1849 DIBuilder &Builder) { 1850 auto *DIVar = DVR->getVariable(); 1851 auto *DIExpr = DVR->getExpression(); 1852 assert(DIVar && "Missing variable"); 1853 1854 if (!valueCoversEntireFragment(LI->getType(), DVR)) { 1855 // FIXME: If only referring to a part of the variable described by the 1856 // dbg.declare, then we want to insert a DbgVariableRecord for the 1857 // corresponding fragment. 1858 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1859 << *DVR << '\n'); 1860 return; 1861 } 1862 1863 DebugLoc NewLoc = getDebugValueLoc(DVR); 1864 1865 // We are now tracking the loaded value instead of the address. In the 1866 // future if multi-location support is added to the IR, it might be 1867 // preferable to keep tracking both the loaded value and the original 1868 // address in case the alloca can not be elided. 1869 assert(UseNewDbgInfoFormat); 1870 1871 // Create a DbgVariableRecord directly and insert. 1872 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); 1873 DbgVariableRecord *DV = 1874 new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); 1875 LI->getParent()->insertDbgRecordAfter(DV, LI); 1876 } 1877 1878 /// Determine whether this alloca is either a VLA or an array. 1879 static bool isArray(AllocaInst *AI) { 1880 return AI->isArrayAllocation() || 1881 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1882 } 1883 1884 /// Determine whether this alloca is a structure. 1885 static bool isStructure(AllocaInst *AI) { 1886 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1887 } 1888 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, 1889 DIBuilder &Builder) { 1890 auto *DIVar = DVR->getVariable(); 1891 auto *DIExpr = DVR->getExpression(); 1892 assert(DIVar && "Missing variable"); 1893 1894 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1895 return; 1896 1897 if (!valueCoversEntireFragment(APN->getType(), DVR)) { 1898 // FIXME: If only referring to a part of the variable described by the 1899 // dbg.declare, then we want to insert a DbgVariableRecord for the 1900 // corresponding fragment. 1901 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1902 << *DVR << '\n'); 1903 return; 1904 } 1905 1906 BasicBlock *BB = APN->getParent(); 1907 auto InsertionPt = BB->getFirstInsertionPt(); 1908 1909 DebugLoc NewLoc = getDebugValueLoc(DVR); 1910 1911 // The block may be a catchswitch block, which does not have a valid 1912 // insertion point. 1913 // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. 1914 if (InsertionPt != BB->end()) { 1915 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1916 InsertionPt); 1917 } 1918 } 1919 1920 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1921 /// of llvm.dbg.value intrinsics. 1922 bool llvm::LowerDbgDeclare(Function &F) { 1923 bool Changed = false; 1924 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1925 SmallVector<DbgDeclareInst *, 4> Dbgs; 1926 SmallVector<DbgVariableRecord *> DVRs; 1927 for (auto &FI : F) { 1928 for (Instruction &BI : FI) { 1929 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) 1930 Dbgs.push_back(DDI); 1931 for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) { 1932 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 1933 DVRs.push_back(&DVR); 1934 } 1935 } 1936 } 1937 1938 if (Dbgs.empty() && DVRs.empty()) 1939 return Changed; 1940 1941 auto LowerOne = [&](auto *DDI) { 1942 AllocaInst *AI = 1943 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); 1944 // If this is an alloca for a scalar variable, insert a dbg.value 1945 // at each load and store to the alloca and erase the dbg.declare. 1946 // The dbg.values allow tracking a variable even if it is not 1947 // stored on the stack, while the dbg.declare can only describe 1948 // the stack slot (and at a lexical-scope granularity). Later 1949 // passes will attempt to elide the stack slot. 1950 if (!AI || isArray(AI) || isStructure(AI)) 1951 return; 1952 1953 // A volatile load/store means that the alloca can't be elided anyway. 1954 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1955 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1956 return LI->isVolatile(); 1957 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1958 return SI->isVolatile(); 1959 return false; 1960 })) 1961 return; 1962 1963 SmallVector<const Value *, 8> WorkList; 1964 WorkList.push_back(AI); 1965 while (!WorkList.empty()) { 1966 const Value *V = WorkList.pop_back_val(); 1967 for (const auto &AIUse : V->uses()) { 1968 User *U = AIUse.getUser(); 1969 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1970 if (AIUse.getOperandNo() == 1) 1971 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1972 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1973 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1974 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1975 // This is a call by-value or some other instruction that takes a 1976 // pointer to the variable. Insert a *value* intrinsic that describes 1977 // the variable by dereferencing the alloca. 1978 if (!CI->isLifetimeStartOrEnd()) { 1979 DebugLoc NewLoc = getDebugValueLoc(DDI); 1980 auto *DerefExpr = 1981 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1982 insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), 1983 DerefExpr, NewLoc, 1984 CI->getIterator()); 1985 } 1986 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1987 if (BI->getType()->isPointerTy()) 1988 WorkList.push_back(BI); 1989 } 1990 } 1991 } 1992 DDI->eraseFromParent(); 1993 Changed = true; 1994 }; 1995 1996 for_each(Dbgs, LowerOne); 1997 for_each(DVRs, LowerOne); 1998 1999 if (Changed) 2000 for (BasicBlock &BB : F) 2001 RemoveRedundantDbgInstrs(&BB); 2002 2003 return Changed; 2004 } 2005 2006 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the 2007 // debug-info out of the block's DbgVariableRecords rather than dbg.value 2008 // intrinsics. 2009 static void 2010 insertDbgVariableRecordsForPHIs(BasicBlock *BB, 2011 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2012 assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from."); 2013 if (InsertedPHIs.size() == 0) 2014 return; 2015 2016 // Map existing PHI nodes to their DbgVariableRecords. 2017 DenseMap<Value *, DbgVariableRecord *> DbgValueMap; 2018 for (auto &I : *BB) { 2019 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 2020 for (Value *V : DVR.location_ops()) 2021 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2022 DbgValueMap.insert({Loc, &DVR}); 2023 } 2024 } 2025 if (DbgValueMap.size() == 0) 2026 return; 2027 2028 // Map a pair of the destination BB and old DbgVariableRecord to the new 2029 // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use 2030 // more than one of the inserted PHIs in the same destination BB, we can 2031 // update the same DbgVariableRecord with all the new PHIs instead of creating 2032 // one copy for each. 2033 MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> 2034 NewDbgValueMap; 2035 // Then iterate through the new PHIs and look to see if they use one of the 2036 // previously mapped PHIs. If so, create a new DbgVariableRecord that will 2037 // propagate the info through the new PHI. If we use more than one new PHI in 2038 // a single destination BB with the same old dbg.value, merge the updates so 2039 // that we get a single new DbgVariableRecord with all the new PHIs. 2040 for (auto PHI : InsertedPHIs) { 2041 BasicBlock *Parent = PHI->getParent(); 2042 // Avoid inserting a debug-info record into an EH block. 2043 if (Parent->getFirstNonPHI()->isEHPad()) 2044 continue; 2045 for (auto VI : PHI->operand_values()) { 2046 auto V = DbgValueMap.find(VI); 2047 if (V != DbgValueMap.end()) { 2048 DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second); 2049 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2050 if (NewDI == NewDbgValueMap.end()) { 2051 DbgVariableRecord *NewDbgII = DbgII->clone(); 2052 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2053 } 2054 DbgVariableRecord *NewDbgII = NewDI->second; 2055 // If PHI contains VI as an operand more than once, we may 2056 // replaced it in NewDbgII; confirm that it is present. 2057 if (is_contained(NewDbgII->location_ops(), VI)) 2058 NewDbgII->replaceVariableLocationOp(VI, PHI); 2059 } 2060 } 2061 } 2062 // Insert the new DbgVariableRecords into their destination blocks. 2063 for (auto DI : NewDbgValueMap) { 2064 BasicBlock *Parent = DI.first.first; 2065 DbgVariableRecord *NewDbgII = DI.second; 2066 auto InsertionPt = Parent->getFirstInsertionPt(); 2067 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2068 2069 Parent->insertDbgRecordBefore(NewDbgII, InsertionPt); 2070 } 2071 } 2072 2073 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 2074 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 2075 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2076 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 2077 if (InsertedPHIs.size() == 0) 2078 return; 2079 2080 insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); 2081 2082 // Map existing PHI nodes to their dbg.values. 2083 ValueToValueMapTy DbgValueMap; 2084 for (auto &I : *BB) { 2085 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2086 for (Value *V : DbgII->location_ops()) 2087 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2088 DbgValueMap.insert({Loc, DbgII}); 2089 } 2090 } 2091 if (DbgValueMap.size() == 0) 2092 return; 2093 2094 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 2095 // so that if a dbg.value is being rewritten to use more than one of the 2096 // inserted PHIs in the same destination BB, we can update the same dbg.value 2097 // with all the new PHIs instead of creating one copy for each. 2098 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 2099 DbgVariableIntrinsic *> 2100 NewDbgValueMap; 2101 // Then iterate through the new PHIs and look to see if they use one of the 2102 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 2103 // propagate the info through the new PHI. If we use more than one new PHI in 2104 // a single destination BB with the same old dbg.value, merge the updates so 2105 // that we get a single new dbg.value with all the new PHIs. 2106 for (auto *PHI : InsertedPHIs) { 2107 BasicBlock *Parent = PHI->getParent(); 2108 // Avoid inserting an intrinsic into an EH block. 2109 if (Parent->getFirstNonPHI()->isEHPad()) 2110 continue; 2111 for (auto *VI : PHI->operand_values()) { 2112 auto V = DbgValueMap.find(VI); 2113 if (V != DbgValueMap.end()) { 2114 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 2115 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2116 if (NewDI == NewDbgValueMap.end()) { 2117 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 2118 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2119 } 2120 DbgVariableIntrinsic *NewDbgII = NewDI->second; 2121 // If PHI contains VI as an operand more than once, we may 2122 // replaced it in NewDbgII; confirm that it is present. 2123 if (is_contained(NewDbgII->location_ops(), VI)) 2124 NewDbgII->replaceVariableLocationOp(VI, PHI); 2125 } 2126 } 2127 } 2128 // Insert thew new dbg.values into their destination blocks. 2129 for (auto DI : NewDbgValueMap) { 2130 BasicBlock *Parent = DI.first.first; 2131 auto *NewDbgII = DI.second; 2132 auto InsertionPt = Parent->getFirstInsertionPt(); 2133 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2134 NewDbgII->insertBefore(&*InsertionPt); 2135 } 2136 } 2137 2138 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 2139 DIBuilder &Builder, uint8_t DIExprFlags, 2140 int Offset) { 2141 TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address); 2142 TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address); 2143 2144 auto ReplaceOne = [&](auto *DII) { 2145 assert(DII->getVariable() && "Missing variable"); 2146 auto *DIExpr = DII->getExpression(); 2147 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 2148 DII->setExpression(DIExpr); 2149 DII->replaceVariableLocationOp(Address, NewAddress); 2150 }; 2151 2152 for_each(DbgDeclares, ReplaceOne); 2153 for_each(DVRDeclares, ReplaceOne); 2154 2155 return !DbgDeclares.empty() || !DVRDeclares.empty(); 2156 } 2157 2158 static void updateOneDbgValueForAlloca(const DebugLoc &Loc, 2159 DILocalVariable *DIVar, 2160 DIExpression *DIExpr, Value *NewAddress, 2161 DbgValueInst *DVI, 2162 DbgVariableRecord *DVR, 2163 DIBuilder &Builder, int Offset) { 2164 assert(DIVar && "Missing variable"); 2165 2166 // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it 2167 // should do with the alloca pointer is dereference it. Otherwise we don't 2168 // know how to handle it and give up. 2169 if (!DIExpr || DIExpr->getNumElements() < 1 || 2170 DIExpr->getElement(0) != dwarf::DW_OP_deref) 2171 return; 2172 2173 // Insert the offset before the first deref. 2174 if (Offset) 2175 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 2176 2177 if (DVI) { 2178 DVI->setExpression(DIExpr); 2179 DVI->replaceVariableLocationOp(0u, NewAddress); 2180 } else { 2181 assert(DVR); 2182 DVR->setExpression(DIExpr); 2183 DVR->replaceVariableLocationOp(0u, NewAddress); 2184 } 2185 } 2186 2187 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 2188 DIBuilder &Builder, int Offset) { 2189 SmallVector<DbgValueInst *, 1> DbgUsers; 2190 SmallVector<DbgVariableRecord *, 1> DPUsers; 2191 findDbgValues(DbgUsers, AI, &DPUsers); 2192 2193 // Attempt to replace dbg.values that use this alloca. 2194 for (auto *DVI : DbgUsers) 2195 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), 2196 DVI->getExpression(), NewAllocaAddress, DVI, 2197 nullptr, Builder, Offset); 2198 2199 // Replace any DbgVariableRecords that use this alloca. 2200 for (DbgVariableRecord *DVR : DPUsers) 2201 updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(), 2202 DVR->getExpression(), NewAllocaAddress, nullptr, 2203 DVR, Builder, Offset); 2204 } 2205 2206 /// Where possible to salvage debug information for \p I do so. 2207 /// If not possible mark undef. 2208 void llvm::salvageDebugInfo(Instruction &I) { 2209 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2210 SmallVector<DbgVariableRecord *, 1> DPUsers; 2211 findDbgUsers(DbgUsers, &I, &DPUsers); 2212 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); 2213 } 2214 2215 template <typename T> static void salvageDbgAssignAddress(T *Assign) { 2216 Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); 2217 // Only instructions can be salvaged at the moment. 2218 if (!I) 2219 return; 2220 2221 assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && 2222 "address-expression shouldn't have fragment info"); 2223 2224 // The address component of a dbg.assign cannot be variadic. 2225 uint64_t CurrentLocOps = 0; 2226 SmallVector<Value *, 4> AdditionalValues; 2227 SmallVector<uint64_t, 16> Ops; 2228 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 2229 2230 // Check if the salvage failed. 2231 if (!NewV) 2232 return; 2233 2234 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 2235 Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false); 2236 assert(!SalvagedExpr->getFragmentInfo().has_value() && 2237 "address-expression shouldn't have fragment info"); 2238 2239 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2240 2241 // Salvage succeeds if no additional values are required. 2242 if (AdditionalValues.empty()) { 2243 Assign->setAddress(NewV); 2244 Assign->setAddressExpression(SalvagedExpr); 2245 } else { 2246 Assign->setKillAddress(); 2247 } 2248 } 2249 2250 void llvm::salvageDebugInfoForDbgValues( 2251 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, 2252 ArrayRef<DbgVariableRecord *> DPUsers) { 2253 // These are arbitrary chosen limits on the maximum number of values and the 2254 // maximum size of a debug expression we can salvage up to, used for 2255 // performance reasons. 2256 const unsigned MaxDebugArgs = 16; 2257 const unsigned MaxExpressionSize = 128; 2258 bool Salvaged = false; 2259 2260 for (auto *DII : DbgUsers) { 2261 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 2262 if (DAI->getAddress() == &I) { 2263 salvageDbgAssignAddress(DAI); 2264 Salvaged = true; 2265 } 2266 if (DAI->getValue() != &I) 2267 continue; 2268 } 2269 2270 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 2271 // pointing out the value as a DWARF memory location description. 2272 bool StackValue = isa<DbgValueInst>(DII); 2273 auto DIILocation = DII->location_ops(); 2274 assert( 2275 is_contained(DIILocation, &I) && 2276 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2277 SmallVector<Value *, 4> AdditionalValues; 2278 // `I` may appear more than once in DII's location ops, and each use of `I` 2279 // must be updated in the DIExpression and potentially have additional 2280 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 2281 // DIILocation. 2282 Value *Op0 = nullptr; 2283 DIExpression *SalvagedExpr = DII->getExpression(); 2284 auto LocItr = find(DIILocation, &I); 2285 while (SalvagedExpr && LocItr != DIILocation.end()) { 2286 SmallVector<uint64_t, 16> Ops; 2287 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 2288 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2289 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2290 if (!Op0) 2291 break; 2292 SalvagedExpr = 2293 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2294 LocItr = std::find(++LocItr, DIILocation.end(), &I); 2295 } 2296 // salvageDebugInfoImpl should fail on examining the first element of 2297 // DbgUsers, or none of them. 2298 if (!Op0) 2299 break; 2300 2301 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2302 DII->replaceVariableLocationOp(&I, Op0); 2303 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 2304 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2305 DII->setExpression(SalvagedExpr); 2306 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 2307 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 2308 MaxDebugArgs) { 2309 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2310 } else { 2311 // Do not salvage using DIArgList for dbg.declare, as it is not currently 2312 // supported in those instructions. Also do not salvage if the resulting 2313 // DIArgList would contain an unreasonably large number of values. 2314 DII->setKillLocation(); 2315 } 2316 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 2317 Salvaged = true; 2318 } 2319 // Duplicate of above block for DbgVariableRecords. 2320 for (auto *DVR : DPUsers) { 2321 if (DVR->isDbgAssign()) { 2322 if (DVR->getAddress() == &I) { 2323 salvageDbgAssignAddress(DVR); 2324 Salvaged = true; 2325 } 2326 if (DVR->getValue() != &I) 2327 continue; 2328 } 2329 2330 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 2331 // are implicitly pointing out the value as a DWARF memory location 2332 // description. 2333 bool StackValue = 2334 DVR->getType() != DbgVariableRecord::LocationType::Declare; 2335 auto DVRLocation = DVR->location_ops(); 2336 assert( 2337 is_contained(DVRLocation, &I) && 2338 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2339 SmallVector<Value *, 4> AdditionalValues; 2340 // 'I' may appear more than once in DVR's location ops, and each use of 'I' 2341 // must be updated in the DIExpression and potentially have additional 2342 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in 2343 // DVRLocation. 2344 Value *Op0 = nullptr; 2345 DIExpression *SalvagedExpr = DVR->getExpression(); 2346 auto LocItr = find(DVRLocation, &I); 2347 while (SalvagedExpr && LocItr != DVRLocation.end()) { 2348 SmallVector<uint64_t, 16> Ops; 2349 unsigned LocNo = std::distance(DVRLocation.begin(), LocItr); 2350 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2351 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2352 if (!Op0) 2353 break; 2354 SalvagedExpr = 2355 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2356 LocItr = std::find(++LocItr, DVRLocation.end(), &I); 2357 } 2358 // salvageDebugInfoImpl should fail on examining the first element of 2359 // DbgUsers, or none of them. 2360 if (!Op0) 2361 break; 2362 2363 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2364 DVR->replaceVariableLocationOp(&I, Op0); 2365 bool IsValidSalvageExpr = 2366 SalvagedExpr->getNumElements() <= MaxExpressionSize; 2367 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2368 DVR->setExpression(SalvagedExpr); 2369 } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && 2370 IsValidSalvageExpr && 2371 DVR->getNumVariableLocationOps() + AdditionalValues.size() <= 2372 MaxDebugArgs) { 2373 DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2374 } else { 2375 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 2376 // currently only valid for stack value expressions. 2377 // Also do not salvage if the resulting DIArgList would contain an 2378 // unreasonably large number of values. 2379 DVR->setKillLocation(); 2380 } 2381 LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); 2382 Salvaged = true; 2383 } 2384 2385 if (Salvaged) 2386 return; 2387 2388 for (auto *DII : DbgUsers) 2389 DII->setKillLocation(); 2390 2391 for (auto *DVR : DPUsers) 2392 DVR->setKillLocation(); 2393 } 2394 2395 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 2396 uint64_t CurrentLocOps, 2397 SmallVectorImpl<uint64_t> &Opcodes, 2398 SmallVectorImpl<Value *> &AdditionalValues) { 2399 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 2400 // Rewrite a GEP into a DIExpression. 2401 MapVector<Value *, APInt> VariableOffsets; 2402 APInt ConstantOffset(BitWidth, 0); 2403 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 2404 return nullptr; 2405 if (!VariableOffsets.empty() && !CurrentLocOps) { 2406 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 2407 CurrentLocOps = 1; 2408 } 2409 for (const auto &Offset : VariableOffsets) { 2410 AdditionalValues.push_back(Offset.first); 2411 assert(Offset.second.isStrictlyPositive() && 2412 "Expected strictly positive multiplier for offset."); 2413 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 2414 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 2415 dwarf::DW_OP_plus}); 2416 } 2417 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 2418 return GEP->getOperand(0); 2419 } 2420 2421 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 2422 switch (Opcode) { 2423 case Instruction::Add: 2424 return dwarf::DW_OP_plus; 2425 case Instruction::Sub: 2426 return dwarf::DW_OP_minus; 2427 case Instruction::Mul: 2428 return dwarf::DW_OP_mul; 2429 case Instruction::SDiv: 2430 return dwarf::DW_OP_div; 2431 case Instruction::SRem: 2432 return dwarf::DW_OP_mod; 2433 case Instruction::Or: 2434 return dwarf::DW_OP_or; 2435 case Instruction::And: 2436 return dwarf::DW_OP_and; 2437 case Instruction::Xor: 2438 return dwarf::DW_OP_xor; 2439 case Instruction::Shl: 2440 return dwarf::DW_OP_shl; 2441 case Instruction::LShr: 2442 return dwarf::DW_OP_shr; 2443 case Instruction::AShr: 2444 return dwarf::DW_OP_shra; 2445 default: 2446 // TODO: Salvage from each kind of binop we know about. 2447 return 0; 2448 } 2449 } 2450 2451 static void handleSSAValueOperands(uint64_t CurrentLocOps, 2452 SmallVectorImpl<uint64_t> &Opcodes, 2453 SmallVectorImpl<Value *> &AdditionalValues, 2454 Instruction *I) { 2455 if (!CurrentLocOps) { 2456 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2457 CurrentLocOps = 1; 2458 } 2459 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2460 AdditionalValues.push_back(I->getOperand(1)); 2461 } 2462 2463 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 2464 SmallVectorImpl<uint64_t> &Opcodes, 2465 SmallVectorImpl<Value *> &AdditionalValues) { 2466 // Handle binary operations with constant integer operands as a special case. 2467 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2468 // Values wider than 64 bits cannot be represented within a DIExpression. 2469 if (ConstInt && ConstInt->getBitWidth() > 64) 2470 return nullptr; 2471 2472 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2473 // Push any Constant Int operand onto the expression stack. 2474 if (ConstInt) { 2475 uint64_t Val = ConstInt->getSExtValue(); 2476 // Add or Sub Instructions with a constant operand can potentially be 2477 // simplified. 2478 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2479 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2480 DIExpression::appendOffset(Opcodes, Offset); 2481 return BI->getOperand(0); 2482 } 2483 Opcodes.append({dwarf::DW_OP_constu, Val}); 2484 } else { 2485 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2486 } 2487 2488 // Add salvaged binary operator to expression stack, if it has a valid 2489 // representation in a DIExpression. 2490 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2491 if (!DwarfBinOp) 2492 return nullptr; 2493 Opcodes.push_back(DwarfBinOp); 2494 return BI->getOperand(0); 2495 } 2496 2497 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2498 // The signedness of the operation is implicit in the typed stack, signed and 2499 // unsigned instructions map to the same DWARF opcode. 2500 switch (Pred) { 2501 case CmpInst::ICMP_EQ: 2502 return dwarf::DW_OP_eq; 2503 case CmpInst::ICMP_NE: 2504 return dwarf::DW_OP_ne; 2505 case CmpInst::ICMP_UGT: 2506 case CmpInst::ICMP_SGT: 2507 return dwarf::DW_OP_gt; 2508 case CmpInst::ICMP_UGE: 2509 case CmpInst::ICMP_SGE: 2510 return dwarf::DW_OP_ge; 2511 case CmpInst::ICMP_ULT: 2512 case CmpInst::ICMP_SLT: 2513 return dwarf::DW_OP_lt; 2514 case CmpInst::ICMP_ULE: 2515 case CmpInst::ICMP_SLE: 2516 return dwarf::DW_OP_le; 2517 default: 2518 return 0; 2519 } 2520 } 2521 2522 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2523 SmallVectorImpl<uint64_t> &Opcodes, 2524 SmallVectorImpl<Value *> &AdditionalValues) { 2525 // Handle icmp operations with constant integer operands as a special case. 2526 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2527 // Values wider than 64 bits cannot be represented within a DIExpression. 2528 if (ConstInt && ConstInt->getBitWidth() > 64) 2529 return nullptr; 2530 // Push any Constant Int operand onto the expression stack. 2531 if (ConstInt) { 2532 if (Icmp->isSigned()) 2533 Opcodes.push_back(dwarf::DW_OP_consts); 2534 else 2535 Opcodes.push_back(dwarf::DW_OP_constu); 2536 uint64_t Val = ConstInt->getSExtValue(); 2537 Opcodes.push_back(Val); 2538 } else { 2539 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2540 } 2541 2542 // Add salvaged binary operator to expression stack, if it has a valid 2543 // representation in a DIExpression. 2544 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2545 if (!DwarfIcmpOp) 2546 return nullptr; 2547 Opcodes.push_back(DwarfIcmpOp); 2548 return Icmp->getOperand(0); 2549 } 2550 2551 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2552 SmallVectorImpl<uint64_t> &Ops, 2553 SmallVectorImpl<Value *> &AdditionalValues) { 2554 auto &M = *I.getModule(); 2555 auto &DL = M.getDataLayout(); 2556 2557 if (auto *CI = dyn_cast<CastInst>(&I)) { 2558 Value *FromValue = CI->getOperand(0); 2559 // No-op casts are irrelevant for debug info. 2560 if (CI->isNoopCast(DL)) { 2561 return FromValue; 2562 } 2563 2564 Type *Type = CI->getType(); 2565 if (Type->isPointerTy()) 2566 Type = DL.getIntPtrType(Type); 2567 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2568 if (Type->isVectorTy() || 2569 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2570 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2571 return nullptr; 2572 2573 llvm::Type *FromType = FromValue->getType(); 2574 if (FromType->isPointerTy()) 2575 FromType = DL.getIntPtrType(FromType); 2576 2577 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2578 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2579 2580 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2581 isa<SExtInst>(&I)); 2582 Ops.append(ExtOps.begin(), ExtOps.end()); 2583 return FromValue; 2584 } 2585 2586 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2587 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2588 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2589 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2590 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2591 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2592 2593 // *Not* to do: we should not attempt to salvage load instructions, 2594 // because the validity and lifetime of a dbg.value containing 2595 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2596 return nullptr; 2597 } 2598 2599 /// A replacement for a dbg.value expression. 2600 using DbgValReplacement = std::optional<DIExpression *>; 2601 2602 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2603 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2604 /// changes are made. 2605 static bool rewriteDebugUsers( 2606 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2607 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, 2608 function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { 2609 // Find debug users of From. 2610 SmallVector<DbgVariableIntrinsic *, 1> Users; 2611 SmallVector<DbgVariableRecord *, 1> DPUsers; 2612 findDbgUsers(Users, &From, &DPUsers); 2613 if (Users.empty() && DPUsers.empty()) 2614 return false; 2615 2616 // Prevent use-before-def of To. 2617 bool Changed = false; 2618 2619 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2620 SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; 2621 if (isa<Instruction>(&To)) { 2622 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2623 2624 for (auto *DII : Users) { 2625 // It's common to see a debug user between From and DomPoint. Move it 2626 // after DomPoint to preserve the variable update without any reordering. 2627 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2628 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2629 DII->moveAfter(&DomPoint); 2630 Changed = true; 2631 2632 // Users which otherwise aren't dominated by the replacement value must 2633 // be salvaged or deleted. 2634 } else if (!DT.dominates(&DomPoint, DII)) { 2635 UndefOrSalvage.insert(DII); 2636 } 2637 } 2638 2639 // DbgVariableRecord implementation of the above. 2640 for (auto *DVR : DPUsers) { 2641 Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; 2642 Instruction *NextNonDebug = MarkedInstr; 2643 // The next instruction might still be a dbg.declare, skip over it. 2644 if (isa<DbgVariableIntrinsic>(NextNonDebug)) 2645 NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); 2646 2647 if (DomPointAfterFrom && NextNonDebug == &DomPoint) { 2648 LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); 2649 DVR->removeFromParent(); 2650 // Ensure there's a marker. 2651 DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint); 2652 Changed = true; 2653 } else if (!DT.dominates(&DomPoint, MarkedInstr)) { 2654 UndefOrSalvageDVR.insert(DVR); 2655 } 2656 } 2657 } 2658 2659 // Update debug users without use-before-def risk. 2660 for (auto *DII : Users) { 2661 if (UndefOrSalvage.count(DII)) 2662 continue; 2663 2664 DbgValReplacement DVRepl = RewriteExpr(*DII); 2665 if (!DVRepl) 2666 continue; 2667 2668 DII->replaceVariableLocationOp(&From, &To); 2669 DII->setExpression(*DVRepl); 2670 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2671 Changed = true; 2672 } 2673 for (auto *DVR : DPUsers) { 2674 if (UndefOrSalvageDVR.count(DVR)) 2675 continue; 2676 2677 DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); 2678 if (!DVRepl) 2679 continue; 2680 2681 DVR->replaceVariableLocationOp(&From, &To); 2682 DVR->setExpression(*DVRepl); 2683 LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); 2684 Changed = true; 2685 } 2686 2687 if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { 2688 // Try to salvage the remaining debug users. 2689 salvageDebugInfo(From); 2690 Changed = true; 2691 } 2692 2693 return Changed; 2694 } 2695 2696 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2697 /// losslessly preserve the bits and semantics of the value. This predicate is 2698 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2699 /// 2700 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2701 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2702 /// and also does not allow lossless pointer <-> integer conversions. 2703 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2704 Type *ToTy) { 2705 // Trivially compatible types. 2706 if (FromTy == ToTy) 2707 return true; 2708 2709 // Handle compatible pointer <-> integer conversions. 2710 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2711 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2712 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2713 !DL.isNonIntegralPointerType(ToTy); 2714 return SameSize && LosslessConversion; 2715 } 2716 2717 // TODO: This is not exhaustive. 2718 return false; 2719 } 2720 2721 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2722 Instruction &DomPoint, DominatorTree &DT) { 2723 // Exit early if From has no debug users. 2724 if (!From.isUsedByMetadata()) 2725 return false; 2726 2727 assert(&From != &To && "Can't replace something with itself"); 2728 2729 Type *FromTy = From.getType(); 2730 Type *ToTy = To.getType(); 2731 2732 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2733 return DII.getExpression(); 2734 }; 2735 auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2736 return DVR.getExpression(); 2737 }; 2738 2739 // Handle no-op conversions. 2740 Module &M = *From.getModule(); 2741 const DataLayout &DL = M.getDataLayout(); 2742 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2743 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2744 2745 // Handle integer-to-integer widening and narrowing. 2746 // FIXME: Use DW_OP_convert when it's available everywhere. 2747 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2748 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2749 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2750 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2751 2752 // When the width of the result grows, assume that a debugger will only 2753 // access the low `FromBits` bits when inspecting the source variable. 2754 if (FromBits < ToBits) 2755 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2756 2757 // The width of the result has shrunk. Use sign/zero extension to describe 2758 // the source variable's high bits. 2759 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2760 DILocalVariable *Var = DII.getVariable(); 2761 2762 // Without knowing signedness, sign/zero extension isn't possible. 2763 auto Signedness = Var->getSignedness(); 2764 if (!Signedness) 2765 return std::nullopt; 2766 2767 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2768 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2769 Signed); 2770 }; 2771 // RemoveDIs: duplicate implementation working on DbgVariableRecords rather 2772 // than on dbg.value intrinsics. 2773 auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2774 DILocalVariable *Var = DVR.getVariable(); 2775 2776 // Without knowing signedness, sign/zero extension isn't possible. 2777 auto Signedness = Var->getSignedness(); 2778 if (!Signedness) 2779 return std::nullopt; 2780 2781 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2782 return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits, 2783 Signed); 2784 }; 2785 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, 2786 SignOrZeroExtDVR); 2787 } 2788 2789 // TODO: Floating-point conversions, vectors. 2790 return false; 2791 } 2792 2793 bool llvm::handleUnreachableTerminator( 2794 Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { 2795 bool Changed = false; 2796 // RemoveDIs: erase debug-info on this instruction manually. 2797 I->dropDbgRecords(); 2798 for (Use &U : I->operands()) { 2799 Value *Op = U.get(); 2800 if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) { 2801 U.set(PoisonValue::get(Op->getType())); 2802 PoisonedValues.push_back(Op); 2803 Changed = true; 2804 } 2805 } 2806 2807 return Changed; 2808 } 2809 2810 std::pair<unsigned, unsigned> 2811 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2812 unsigned NumDeadInst = 0; 2813 unsigned NumDeadDbgInst = 0; 2814 // Delete the instructions backwards, as it has a reduced likelihood of 2815 // having to update as many def-use and use-def chains. 2816 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2817 SmallVector<Value *> Uses; 2818 handleUnreachableTerminator(EndInst, Uses); 2819 2820 while (EndInst != &BB->front()) { 2821 // Delete the next to last instruction. 2822 Instruction *Inst = &*--EndInst->getIterator(); 2823 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2824 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2825 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2826 // EHPads can't have DbgVariableRecords attached to them, but it might be 2827 // possible for things with token type. 2828 Inst->dropDbgRecords(); 2829 EndInst = Inst; 2830 continue; 2831 } 2832 if (isa<DbgInfoIntrinsic>(Inst)) 2833 ++NumDeadDbgInst; 2834 else 2835 ++NumDeadInst; 2836 // RemoveDIs: erasing debug-info must be done manually. 2837 Inst->dropDbgRecords(); 2838 Inst->eraseFromParent(); 2839 } 2840 return {NumDeadInst, NumDeadDbgInst}; 2841 } 2842 2843 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2844 DomTreeUpdater *DTU, 2845 MemorySSAUpdater *MSSAU) { 2846 BasicBlock *BB = I->getParent(); 2847 2848 if (MSSAU) 2849 MSSAU->changeToUnreachable(I); 2850 2851 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2852 2853 // Loop over all of the successors, removing BB's entry from any PHI 2854 // nodes. 2855 for (BasicBlock *Successor : successors(BB)) { 2856 Successor->removePredecessor(BB, PreserveLCSSA); 2857 if (DTU) 2858 UniqueSuccessors.insert(Successor); 2859 } 2860 auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); 2861 UI->setDebugLoc(I->getDebugLoc()); 2862 2863 // All instructions after this are dead. 2864 unsigned NumInstrsRemoved = 0; 2865 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2866 while (BBI != BBE) { 2867 if (!BBI->use_empty()) 2868 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2869 BBI++->eraseFromParent(); 2870 ++NumInstrsRemoved; 2871 } 2872 if (DTU) { 2873 SmallVector<DominatorTree::UpdateType, 8> Updates; 2874 Updates.reserve(UniqueSuccessors.size()); 2875 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2876 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2877 DTU->applyUpdates(Updates); 2878 } 2879 BB->flushTerminatorDbgRecords(); 2880 return NumInstrsRemoved; 2881 } 2882 2883 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2884 SmallVector<Value *, 8> Args(II->args()); 2885 SmallVector<OperandBundleDef, 1> OpBundles; 2886 II->getOperandBundlesAsDefs(OpBundles); 2887 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2888 II->getCalledOperand(), Args, OpBundles); 2889 NewCall->setCallingConv(II->getCallingConv()); 2890 NewCall->setAttributes(II->getAttributes()); 2891 NewCall->setDebugLoc(II->getDebugLoc()); 2892 NewCall->copyMetadata(*II); 2893 2894 // If the invoke had profile metadata, try converting them for CallInst. 2895 uint64_t TotalWeight; 2896 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2897 // Set the total weight if it fits into i32, otherwise reset. 2898 MDBuilder MDB(NewCall->getContext()); 2899 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2900 ? nullptr 2901 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2902 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2903 } 2904 2905 return NewCall; 2906 } 2907 2908 // changeToCall - Convert the specified invoke into a normal call. 2909 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2910 CallInst *NewCall = createCallMatchingInvoke(II); 2911 NewCall->takeName(II); 2912 NewCall->insertBefore(II); 2913 II->replaceAllUsesWith(NewCall); 2914 2915 // Follow the call by a branch to the normal destination. 2916 BasicBlock *NormalDestBB = II->getNormalDest(); 2917 BranchInst::Create(NormalDestBB, II->getIterator()); 2918 2919 // Update PHI nodes in the unwind destination 2920 BasicBlock *BB = II->getParent(); 2921 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2922 UnwindDestBB->removePredecessor(BB); 2923 II->eraseFromParent(); 2924 if (DTU) 2925 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2926 return NewCall; 2927 } 2928 2929 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2930 BasicBlock *UnwindEdge, 2931 DomTreeUpdater *DTU) { 2932 BasicBlock *BB = CI->getParent(); 2933 2934 // Convert this function call into an invoke instruction. First, split the 2935 // basic block. 2936 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2937 CI->getName() + ".noexc"); 2938 2939 // Delete the unconditional branch inserted by SplitBlock 2940 BB->back().eraseFromParent(); 2941 2942 // Create the new invoke instruction. 2943 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2944 SmallVector<OperandBundleDef, 1> OpBundles; 2945 2946 CI->getOperandBundlesAsDefs(OpBundles); 2947 2948 // Note: we're round tripping operand bundles through memory here, and that 2949 // can potentially be avoided with a cleverer API design that we do not have 2950 // as of this time. 2951 2952 InvokeInst *II = 2953 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2954 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2955 II->setDebugLoc(CI->getDebugLoc()); 2956 II->setCallingConv(CI->getCallingConv()); 2957 II->setAttributes(CI->getAttributes()); 2958 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 2959 2960 if (DTU) 2961 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2962 2963 // Make sure that anything using the call now uses the invoke! This also 2964 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2965 CI->replaceAllUsesWith(II); 2966 2967 // Delete the original call 2968 Split->front().eraseFromParent(); 2969 return Split; 2970 } 2971 2972 static bool markAliveBlocks(Function &F, 2973 SmallPtrSetImpl<BasicBlock *> &Reachable, 2974 DomTreeUpdater *DTU = nullptr) { 2975 SmallVector<BasicBlock*, 128> Worklist; 2976 BasicBlock *BB = &F.front(); 2977 Worklist.push_back(BB); 2978 Reachable.insert(BB); 2979 bool Changed = false; 2980 do { 2981 BB = Worklist.pop_back_val(); 2982 2983 // Do a quick scan of the basic block, turning any obviously unreachable 2984 // instructions into LLVM unreachable insts. The instruction combining pass 2985 // canonicalizes unreachable insts into stores to null or undef. 2986 for (Instruction &I : *BB) { 2987 if (auto *CI = dyn_cast<CallInst>(&I)) { 2988 Value *Callee = CI->getCalledOperand(); 2989 // Handle intrinsic calls. 2990 if (Function *F = dyn_cast<Function>(Callee)) { 2991 auto IntrinsicID = F->getIntrinsicID(); 2992 // Assumptions that are known to be false are equivalent to 2993 // unreachable. Also, if the condition is undefined, then we make the 2994 // choice most beneficial to the optimizer, and choose that to also be 2995 // unreachable. 2996 if (IntrinsicID == Intrinsic::assume) { 2997 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2998 // Don't insert a call to llvm.trap right before the unreachable. 2999 changeToUnreachable(CI, false, DTU); 3000 Changed = true; 3001 break; 3002 } 3003 } else if (IntrinsicID == Intrinsic::experimental_guard) { 3004 // A call to the guard intrinsic bails out of the current 3005 // compilation unit if the predicate passed to it is false. If the 3006 // predicate is a constant false, then we know the guard will bail 3007 // out of the current compile unconditionally, so all code following 3008 // it is dead. 3009 // 3010 // Note: unlike in llvm.assume, it is not "obviously profitable" for 3011 // guards to treat `undef` as `false` since a guard on `undef` can 3012 // still be useful for widening. 3013 if (match(CI->getArgOperand(0), m_Zero())) 3014 if (!isa<UnreachableInst>(CI->getNextNode())) { 3015 changeToUnreachable(CI->getNextNode(), false, DTU); 3016 Changed = true; 3017 break; 3018 } 3019 } 3020 } else if ((isa<ConstantPointerNull>(Callee) && 3021 !NullPointerIsDefined(CI->getFunction(), 3022 cast<PointerType>(Callee->getType()) 3023 ->getAddressSpace())) || 3024 isa<UndefValue>(Callee)) { 3025 changeToUnreachable(CI, false, DTU); 3026 Changed = true; 3027 break; 3028 } 3029 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 3030 // If we found a call to a no-return function, insert an unreachable 3031 // instruction after it. Make sure there isn't *already* one there 3032 // though. 3033 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { 3034 // Don't insert a call to llvm.trap right before the unreachable. 3035 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); 3036 Changed = true; 3037 } 3038 break; 3039 } 3040 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 3041 // Store to undef and store to null are undefined and used to signal 3042 // that they should be changed to unreachable by passes that can't 3043 // modify the CFG. 3044 3045 // Don't touch volatile stores. 3046 if (SI->isVolatile()) continue; 3047 3048 Value *Ptr = SI->getOperand(1); 3049 3050 if (isa<UndefValue>(Ptr) || 3051 (isa<ConstantPointerNull>(Ptr) && 3052 !NullPointerIsDefined(SI->getFunction(), 3053 SI->getPointerAddressSpace()))) { 3054 changeToUnreachable(SI, false, DTU); 3055 Changed = true; 3056 break; 3057 } 3058 } 3059 } 3060 3061 Instruction *Terminator = BB->getTerminator(); 3062 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 3063 // Turn invokes that call 'nounwind' functions into ordinary calls. 3064 Value *Callee = II->getCalledOperand(); 3065 if ((isa<ConstantPointerNull>(Callee) && 3066 !NullPointerIsDefined(BB->getParent())) || 3067 isa<UndefValue>(Callee)) { 3068 changeToUnreachable(II, false, DTU); 3069 Changed = true; 3070 } else { 3071 if (II->doesNotReturn() && 3072 !isa<UnreachableInst>(II->getNormalDest()->front())) { 3073 // If we found an invoke of a no-return function, 3074 // create a new empty basic block with an `unreachable` terminator, 3075 // and set it as the normal destination for the invoke, 3076 // unless that is already the case. 3077 // Note that the original normal destination could have other uses. 3078 BasicBlock *OrigNormalDest = II->getNormalDest(); 3079 OrigNormalDest->removePredecessor(II->getParent()); 3080 LLVMContext &Ctx = II->getContext(); 3081 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 3082 Ctx, OrigNormalDest->getName() + ".unreachable", 3083 II->getFunction(), OrigNormalDest); 3084 new UnreachableInst(Ctx, UnreachableNormalDest); 3085 II->setNormalDest(UnreachableNormalDest); 3086 if (DTU) 3087 DTU->applyUpdates( 3088 {{DominatorTree::Delete, BB, OrigNormalDest}, 3089 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 3090 Changed = true; 3091 } 3092 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 3093 if (II->use_empty() && !II->mayHaveSideEffects()) { 3094 // jump to the normal destination branch. 3095 BasicBlock *NormalDestBB = II->getNormalDest(); 3096 BasicBlock *UnwindDestBB = II->getUnwindDest(); 3097 BranchInst::Create(NormalDestBB, II->getIterator()); 3098 UnwindDestBB->removePredecessor(II->getParent()); 3099 II->eraseFromParent(); 3100 if (DTU) 3101 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 3102 } else 3103 changeToCall(II, DTU); 3104 Changed = true; 3105 } 3106 } 3107 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 3108 // Remove catchpads which cannot be reached. 3109 struct CatchPadDenseMapInfo { 3110 static CatchPadInst *getEmptyKey() { 3111 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 3112 } 3113 3114 static CatchPadInst *getTombstoneKey() { 3115 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 3116 } 3117 3118 static unsigned getHashValue(CatchPadInst *CatchPad) { 3119 return static_cast<unsigned>(hash_combine_range( 3120 CatchPad->value_op_begin(), CatchPad->value_op_end())); 3121 } 3122 3123 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 3124 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 3125 RHS == getEmptyKey() || RHS == getTombstoneKey()) 3126 return LHS == RHS; 3127 return LHS->isIdenticalTo(RHS); 3128 } 3129 }; 3130 3131 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 3132 // Set of unique CatchPads. 3133 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 3134 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 3135 HandlerSet; 3136 detail::DenseSetEmpty Empty; 3137 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 3138 E = CatchSwitch->handler_end(); 3139 I != E; ++I) { 3140 BasicBlock *HandlerBB = *I; 3141 if (DTU) 3142 ++NumPerSuccessorCases[HandlerBB]; 3143 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 3144 if (!HandlerSet.insert({CatchPad, Empty}).second) { 3145 if (DTU) 3146 --NumPerSuccessorCases[HandlerBB]; 3147 CatchSwitch->removeHandler(I); 3148 --I; 3149 --E; 3150 Changed = true; 3151 } 3152 } 3153 if (DTU) { 3154 std::vector<DominatorTree::UpdateType> Updates; 3155 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 3156 if (I.second == 0) 3157 Updates.push_back({DominatorTree::Delete, BB, I.first}); 3158 DTU->applyUpdates(Updates); 3159 } 3160 } 3161 3162 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 3163 for (BasicBlock *Successor : successors(BB)) 3164 if (Reachable.insert(Successor).second) 3165 Worklist.push_back(Successor); 3166 } while (!Worklist.empty()); 3167 return Changed; 3168 } 3169 3170 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 3171 Instruction *TI = BB->getTerminator(); 3172 3173 if (auto *II = dyn_cast<InvokeInst>(TI)) 3174 return changeToCall(II, DTU); 3175 3176 Instruction *NewTI; 3177 BasicBlock *UnwindDest; 3178 3179 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3180 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator()); 3181 UnwindDest = CRI->getUnwindDest(); 3182 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 3183 auto *NewCatchSwitch = CatchSwitchInst::Create( 3184 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 3185 CatchSwitch->getName(), CatchSwitch->getIterator()); 3186 for (BasicBlock *PadBB : CatchSwitch->handlers()) 3187 NewCatchSwitch->addHandler(PadBB); 3188 3189 NewTI = NewCatchSwitch; 3190 UnwindDest = CatchSwitch->getUnwindDest(); 3191 } else { 3192 llvm_unreachable("Could not find unwind successor"); 3193 } 3194 3195 NewTI->takeName(TI); 3196 NewTI->setDebugLoc(TI->getDebugLoc()); 3197 UnwindDest->removePredecessor(BB); 3198 TI->replaceAllUsesWith(NewTI); 3199 TI->eraseFromParent(); 3200 if (DTU) 3201 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 3202 return NewTI; 3203 } 3204 3205 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 3206 /// if they are in a dead cycle. Return true if a change was made, false 3207 /// otherwise. 3208 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 3209 MemorySSAUpdater *MSSAU) { 3210 SmallPtrSet<BasicBlock *, 16> Reachable; 3211 bool Changed = markAliveBlocks(F, Reachable, DTU); 3212 3213 // If there are unreachable blocks in the CFG... 3214 if (Reachable.size() == F.size()) 3215 return Changed; 3216 3217 assert(Reachable.size() < F.size()); 3218 3219 // Are there any blocks left to actually delete? 3220 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 3221 for (BasicBlock &BB : F) { 3222 // Skip reachable basic blocks 3223 if (Reachable.count(&BB)) 3224 continue; 3225 // Skip already-deleted blocks 3226 if (DTU && DTU->isBBPendingDeletion(&BB)) 3227 continue; 3228 BlocksToRemove.insert(&BB); 3229 } 3230 3231 if (BlocksToRemove.empty()) 3232 return Changed; 3233 3234 Changed = true; 3235 NumRemoved += BlocksToRemove.size(); 3236 3237 if (MSSAU) 3238 MSSAU->removeBlocks(BlocksToRemove); 3239 3240 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 3241 3242 return Changed; 3243 } 3244 3245 void llvm::combineMetadata(Instruction *K, const Instruction *J, 3246 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 3247 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 3248 K->dropUnknownNonDebugMetadata(KnownIDs); 3249 K->getAllMetadataOtherThanDebugLoc(Metadata); 3250 for (const auto &MD : Metadata) { 3251 unsigned Kind = MD.first; 3252 MDNode *JMD = J->getMetadata(Kind); 3253 MDNode *KMD = MD.second; 3254 3255 switch (Kind) { 3256 default: 3257 K->setMetadata(Kind, nullptr); // Remove unknown metadata 3258 break; 3259 case LLVMContext::MD_dbg: 3260 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 3261 case LLVMContext::MD_DIAssignID: 3262 K->mergeDIAssignID(J); 3263 break; 3264 case LLVMContext::MD_tbaa: 3265 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 3266 break; 3267 case LLVMContext::MD_alias_scope: 3268 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 3269 break; 3270 case LLVMContext::MD_noalias: 3271 case LLVMContext::MD_mem_parallel_loop_access: 3272 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 3273 break; 3274 case LLVMContext::MD_access_group: 3275 K->setMetadata(LLVMContext::MD_access_group, 3276 intersectAccessGroups(K, J)); 3277 break; 3278 case LLVMContext::MD_range: 3279 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3280 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 3281 break; 3282 case LLVMContext::MD_fpmath: 3283 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 3284 break; 3285 case LLVMContext::MD_invariant_load: 3286 // If K moves, only set the !invariant.load if it is present in both 3287 // instructions. 3288 if (DoesKMove) 3289 K->setMetadata(Kind, JMD); 3290 break; 3291 case LLVMContext::MD_nonnull: 3292 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3293 K->setMetadata(Kind, JMD); 3294 break; 3295 case LLVMContext::MD_invariant_group: 3296 // Preserve !invariant.group in K. 3297 break; 3298 case LLVMContext::MD_mmra: 3299 // Combine MMRAs 3300 break; 3301 case LLVMContext::MD_align: 3302 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3303 K->setMetadata( 3304 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3305 break; 3306 case LLVMContext::MD_dereferenceable: 3307 case LLVMContext::MD_dereferenceable_or_null: 3308 if (DoesKMove) 3309 K->setMetadata(Kind, 3310 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3311 break; 3312 case LLVMContext::MD_preserve_access_index: 3313 // Preserve !preserve.access.index in K. 3314 break; 3315 case LLVMContext::MD_noundef: 3316 // If K does move, keep noundef if it is present in both instructions. 3317 if (DoesKMove) 3318 K->setMetadata(Kind, JMD); 3319 break; 3320 case LLVMContext::MD_nontemporal: 3321 // Preserve !nontemporal if it is present on both instructions. 3322 K->setMetadata(Kind, JMD); 3323 break; 3324 case LLVMContext::MD_prof: 3325 if (DoesKMove) 3326 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 3327 break; 3328 } 3329 } 3330 // Set !invariant.group from J if J has it. If both instructions have it 3331 // then we will just pick it from J - even when they are different. 3332 // Also make sure that K is load or store - f.e. combining bitcast with load 3333 // could produce bitcast with invariant.group metadata, which is invalid. 3334 // FIXME: we should try to preserve both invariant.group md if they are 3335 // different, but right now instruction can only have one invariant.group. 3336 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 3337 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 3338 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 3339 3340 // Merge MMRAs. 3341 // This is handled separately because we also want to handle cases where K 3342 // doesn't have tags but J does. 3343 auto JMMRA = J->getMetadata(LLVMContext::MD_mmra); 3344 auto KMMRA = K->getMetadata(LLVMContext::MD_mmra); 3345 if (JMMRA || KMMRA) { 3346 K->setMetadata(LLVMContext::MD_mmra, 3347 MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA)); 3348 } 3349 } 3350 3351 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 3352 bool KDominatesJ) { 3353 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 3354 LLVMContext::MD_alias_scope, 3355 LLVMContext::MD_noalias, 3356 LLVMContext::MD_range, 3357 LLVMContext::MD_fpmath, 3358 LLVMContext::MD_invariant_load, 3359 LLVMContext::MD_nonnull, 3360 LLVMContext::MD_invariant_group, 3361 LLVMContext::MD_align, 3362 LLVMContext::MD_dereferenceable, 3363 LLVMContext::MD_dereferenceable_or_null, 3364 LLVMContext::MD_access_group, 3365 LLVMContext::MD_preserve_access_index, 3366 LLVMContext::MD_prof, 3367 LLVMContext::MD_nontemporal, 3368 LLVMContext::MD_noundef, 3369 LLVMContext::MD_mmra}; 3370 combineMetadata(K, J, KnownIDs, KDominatesJ); 3371 } 3372 3373 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 3374 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 3375 Source.getAllMetadata(MD); 3376 MDBuilder MDB(Dest.getContext()); 3377 Type *NewType = Dest.getType(); 3378 const DataLayout &DL = Source.getDataLayout(); 3379 for (const auto &MDPair : MD) { 3380 unsigned ID = MDPair.first; 3381 MDNode *N = MDPair.second; 3382 // Note, essentially every kind of metadata should be preserved here! This 3383 // routine is supposed to clone a load instruction changing *only its type*. 3384 // The only metadata it makes sense to drop is metadata which is invalidated 3385 // when the pointer type changes. This should essentially never be the case 3386 // in LLVM, but we explicitly switch over only known metadata to be 3387 // conservatively correct. If you are adding metadata to LLVM which pertains 3388 // to loads, you almost certainly want to add it here. 3389 switch (ID) { 3390 case LLVMContext::MD_dbg: 3391 case LLVMContext::MD_tbaa: 3392 case LLVMContext::MD_prof: 3393 case LLVMContext::MD_fpmath: 3394 case LLVMContext::MD_tbaa_struct: 3395 case LLVMContext::MD_invariant_load: 3396 case LLVMContext::MD_alias_scope: 3397 case LLVMContext::MD_noalias: 3398 case LLVMContext::MD_nontemporal: 3399 case LLVMContext::MD_mem_parallel_loop_access: 3400 case LLVMContext::MD_access_group: 3401 case LLVMContext::MD_noundef: 3402 // All of these directly apply. 3403 Dest.setMetadata(ID, N); 3404 break; 3405 3406 case LLVMContext::MD_nonnull: 3407 copyNonnullMetadata(Source, N, Dest); 3408 break; 3409 3410 case LLVMContext::MD_align: 3411 case LLVMContext::MD_dereferenceable: 3412 case LLVMContext::MD_dereferenceable_or_null: 3413 // These only directly apply if the new type is also a pointer. 3414 if (NewType->isPointerTy()) 3415 Dest.setMetadata(ID, N); 3416 break; 3417 3418 case LLVMContext::MD_range: 3419 copyRangeMetadata(DL, Source, N, Dest); 3420 break; 3421 } 3422 } 3423 } 3424 3425 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 3426 auto *ReplInst = dyn_cast<Instruction>(Repl); 3427 if (!ReplInst) 3428 return; 3429 3430 // Patch the replacement so that it is not more restrictive than the value 3431 // being replaced. 3432 WithOverflowInst *UnusedWO; 3433 // When replacing the result of a llvm.*.with.overflow intrinsic with a 3434 // overflowing binary operator, nuw/nsw flags may no longer hold. 3435 if (isa<OverflowingBinaryOperator>(ReplInst) && 3436 match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO)))) 3437 ReplInst->dropPoisonGeneratingFlags(); 3438 // Note that if 'I' is a load being replaced by some operation, 3439 // for example, by an arithmetic operation, then andIRFlags() 3440 // would just erase all math flags from the original arithmetic 3441 // operation, which is clearly not wanted and not needed. 3442 else if (!isa<LoadInst>(I)) 3443 ReplInst->andIRFlags(I); 3444 3445 // FIXME: If both the original and replacement value are part of the 3446 // same control-flow region (meaning that the execution of one 3447 // guarantees the execution of the other), then we can combine the 3448 // noalias scopes here and do better than the general conservative 3449 // answer used in combineMetadata(). 3450 3451 // In general, GVN unifies expressions over different control-flow 3452 // regions, and so we need a conservative combination of the noalias 3453 // scopes. 3454 combineMetadataForCSE(ReplInst, I, false); 3455 } 3456 3457 template <typename RootType, typename ShouldReplaceFn> 3458 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 3459 const RootType &Root, 3460 const ShouldReplaceFn &ShouldReplace) { 3461 assert(From->getType() == To->getType()); 3462 3463 unsigned Count = 0; 3464 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3465 if (!ShouldReplace(Root, U)) 3466 continue; 3467 LLVM_DEBUG(dbgs() << "Replace dominated use of '"; 3468 From->printAsOperand(dbgs()); 3469 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); 3470 U.set(To); 3471 ++Count; 3472 } 3473 return Count; 3474 } 3475 3476 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 3477 assert(From->getType() == To->getType()); 3478 auto *BB = From->getParent(); 3479 unsigned Count = 0; 3480 3481 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3482 auto *I = cast<Instruction>(U.getUser()); 3483 if (I->getParent() == BB) 3484 continue; 3485 U.set(To); 3486 ++Count; 3487 } 3488 return Count; 3489 } 3490 3491 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3492 DominatorTree &DT, 3493 const BasicBlockEdge &Root) { 3494 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 3495 return DT.dominates(Root, U); 3496 }; 3497 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 3498 } 3499 3500 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3501 DominatorTree &DT, 3502 const BasicBlock *BB) { 3503 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 3504 return DT.dominates(BB, U); 3505 }; 3506 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 3507 } 3508 3509 unsigned llvm::replaceDominatedUsesWithIf( 3510 Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, 3511 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3512 auto DominatesAndShouldReplace = 3513 [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { 3514 return DT.dominates(Root, U) && ShouldReplace(U, To); 3515 }; 3516 return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace); 3517 } 3518 3519 unsigned llvm::replaceDominatedUsesWithIf( 3520 Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, 3521 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3522 auto DominatesAndShouldReplace = [&DT, &ShouldReplace, 3523 To](const BasicBlock *BB, const Use &U) { 3524 return DT.dominates(BB, U) && ShouldReplace(U, To); 3525 }; 3526 return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace); 3527 } 3528 3529 bool llvm::callsGCLeafFunction(const CallBase *Call, 3530 const TargetLibraryInfo &TLI) { 3531 // Check if the function is specifically marked as a gc leaf function. 3532 if (Call->hasFnAttr("gc-leaf-function")) 3533 return true; 3534 if (const Function *F = Call->getCalledFunction()) { 3535 if (F->hasFnAttribute("gc-leaf-function")) 3536 return true; 3537 3538 if (auto IID = F->getIntrinsicID()) { 3539 // Most LLVM intrinsics do not take safepoints. 3540 return IID != Intrinsic::experimental_gc_statepoint && 3541 IID != Intrinsic::experimental_deoptimize && 3542 IID != Intrinsic::memcpy_element_unordered_atomic && 3543 IID != Intrinsic::memmove_element_unordered_atomic; 3544 } 3545 } 3546 3547 // Lib calls can be materialized by some passes, and won't be 3548 // marked as 'gc-leaf-function.' All available Libcalls are 3549 // GC-leaf. 3550 LibFunc LF; 3551 if (TLI.getLibFunc(*Call, LF)) { 3552 return TLI.has(LF); 3553 } 3554 3555 return false; 3556 } 3557 3558 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 3559 LoadInst &NewLI) { 3560 auto *NewTy = NewLI.getType(); 3561 3562 // This only directly applies if the new type is also a pointer. 3563 if (NewTy->isPointerTy()) { 3564 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 3565 return; 3566 } 3567 3568 // The only other translation we can do is to integral loads with !range 3569 // metadata. 3570 if (!NewTy->isIntegerTy()) 3571 return; 3572 3573 MDBuilder MDB(NewLI.getContext()); 3574 const Value *Ptr = OldLI.getPointerOperand(); 3575 auto *ITy = cast<IntegerType>(NewTy); 3576 auto *NullInt = ConstantExpr::getPtrToInt( 3577 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 3578 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 3579 NewLI.setMetadata(LLVMContext::MD_range, 3580 MDB.createRange(NonNullInt, NullInt)); 3581 } 3582 3583 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 3584 MDNode *N, LoadInst &NewLI) { 3585 auto *NewTy = NewLI.getType(); 3586 // Simply copy the metadata if the type did not change. 3587 if (NewTy == OldLI.getType()) { 3588 NewLI.setMetadata(LLVMContext::MD_range, N); 3589 return; 3590 } 3591 3592 // Give up unless it is converted to a pointer where there is a single very 3593 // valuable mapping we can do reliably. 3594 // FIXME: It would be nice to propagate this in more ways, but the type 3595 // conversions make it hard. 3596 if (!NewTy->isPointerTy()) 3597 return; 3598 3599 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3600 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3601 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3602 MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt); 3603 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3604 } 3605 } 3606 3607 void llvm::dropDebugUsers(Instruction &I) { 3608 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3609 SmallVector<DbgVariableRecord *, 1> DPUsers; 3610 findDbgUsers(DbgUsers, &I, &DPUsers); 3611 for (auto *DII : DbgUsers) 3612 DII->eraseFromParent(); 3613 for (auto *DVR : DPUsers) 3614 DVR->eraseFromParent(); 3615 } 3616 3617 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3618 BasicBlock *BB) { 3619 // Since we are moving the instructions out of its basic block, we do not 3620 // retain their original debug locations (DILocations) and debug intrinsic 3621 // instructions. 3622 // 3623 // Doing so would degrade the debugging experience and adversely affect the 3624 // accuracy of profiling information. 3625 // 3626 // Currently, when hoisting the instructions, we take the following actions: 3627 // - Remove their debug intrinsic instructions. 3628 // - Set their debug locations to the values from the insertion point. 3629 // 3630 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3631 // need to be deleted, is because there will not be any instructions with a 3632 // DILocation in either branch left after performing the transformation. We 3633 // can only insert a dbg.value after the two branches are joined again. 3634 // 3635 // See PR38762, PR39243 for more details. 3636 // 3637 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3638 // encode predicated DIExpressions that yield different results on different 3639 // code paths. 3640 3641 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3642 Instruction *I = &*II; 3643 I->dropUBImplyingAttrsAndMetadata(); 3644 if (I->isUsedByMetadata()) 3645 dropDebugUsers(*I); 3646 // RemoveDIs: drop debug-info too as the following code does. 3647 I->dropDbgRecords(); 3648 if (I->isDebugOrPseudoInst()) { 3649 // Remove DbgInfo and pseudo probe Intrinsics. 3650 II = I->eraseFromParent(); 3651 continue; 3652 } 3653 I->setDebugLoc(InsertPt->getDebugLoc()); 3654 ++II; 3655 } 3656 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3657 BB->getTerminator()->getIterator()); 3658 } 3659 3660 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, 3661 Type &Ty) { 3662 // Create integer constant expression. 3663 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { 3664 const APInt &API = cast<ConstantInt>(&CV)->getValue(); 3665 std::optional<int64_t> InitIntOpt = API.trySExtValue(); 3666 return InitIntOpt ? DIB.createConstantValueExpression( 3667 static_cast<uint64_t>(*InitIntOpt)) 3668 : nullptr; 3669 }; 3670 3671 if (isa<ConstantInt>(C)) 3672 return createIntegerExpression(C); 3673 3674 auto *FP = dyn_cast<ConstantFP>(&C); 3675 if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { 3676 const APFloat &APF = FP->getValueAPF(); 3677 APInt const &API = APF.bitcastToAPInt(); 3678 if (auto Temp = API.getZExtValue()) 3679 return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp)); 3680 return DIB.createConstantValueExpression(*API.getRawData()); 3681 } 3682 3683 if (!Ty.isPointerTy()) 3684 return nullptr; 3685 3686 if (isa<ConstantPointerNull>(C)) 3687 return DIB.createConstantValueExpression(0); 3688 3689 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) 3690 if (CE->getOpcode() == Instruction::IntToPtr) { 3691 const Value *V = CE->getOperand(0); 3692 if (auto CI = dyn_cast_or_null<ConstantInt>(V)) 3693 return createIntegerExpression(*CI); 3694 } 3695 return nullptr; 3696 } 3697 3698 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { 3699 auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { 3700 for (auto *Op : Set) { 3701 auto I = Mapping.find(Op); 3702 if (I != Mapping.end()) 3703 DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); 3704 } 3705 }; 3706 auto RemapAssignAddress = [&Mapping](auto *DA) { 3707 auto I = Mapping.find(DA->getAddress()); 3708 if (I != Mapping.end()) 3709 DA->setAddress(I->second); 3710 }; 3711 if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst)) 3712 RemapDebugOperands(DVI, DVI->location_ops()); 3713 if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst)) 3714 RemapAssignAddress(DAI); 3715 for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) { 3716 RemapDebugOperands(&DVR, DVR.location_ops()); 3717 if (DVR.isDbgAssign()) 3718 RemapAssignAddress(&DVR); 3719 } 3720 } 3721 3722 namespace { 3723 3724 /// A potential constituent of a bitreverse or bswap expression. See 3725 /// collectBitParts for a fuller explanation. 3726 struct BitPart { 3727 BitPart(Value *P, unsigned BW) : Provider(P) { 3728 Provenance.resize(BW); 3729 } 3730 3731 /// The Value that this is a bitreverse/bswap of. 3732 Value *Provider; 3733 3734 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3735 /// in Provider becomes bit B in the result of this expression. 3736 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3737 3738 enum { Unset = -1 }; 3739 }; 3740 3741 } // end anonymous namespace 3742 3743 /// Analyze the specified subexpression and see if it is capable of providing 3744 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3745 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3746 /// the output of the expression came from a corresponding bit in some other 3747 /// value. This function is recursive, and the end result is a mapping of 3748 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3749 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3750 /// 3751 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3752 /// that the expression deposits the low byte of %X into the high byte of the 3753 /// result and that all other bits are zero. This expression is accepted and a 3754 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3755 /// [0-7]. 3756 /// 3757 /// For vector types, all analysis is performed at the per-element level. No 3758 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3759 /// constant masks must be splatted across all elements. 3760 /// 3761 /// To avoid revisiting values, the BitPart results are memoized into the 3762 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3763 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3764 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3765 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3766 /// type instead to provide the same functionality. 3767 /// 3768 /// Because we pass around references into \c BPS, we must use a container that 3769 /// does not invalidate internal references (std::map instead of DenseMap). 3770 static const std::optional<BitPart> & 3771 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3772 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3773 bool &FoundRoot) { 3774 auto I = BPS.find(V); 3775 if (I != BPS.end()) 3776 return I->second; 3777 3778 auto &Result = BPS[V] = std::nullopt; 3779 auto BitWidth = V->getType()->getScalarSizeInBits(); 3780 3781 // Can't do integer/elements > 128 bits. 3782 if (BitWidth > 128) 3783 return Result; 3784 3785 // Prevent stack overflow by limiting the recursion depth 3786 if (Depth == BitPartRecursionMaxDepth) { 3787 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3788 return Result; 3789 } 3790 3791 if (auto *I = dyn_cast<Instruction>(V)) { 3792 Value *X, *Y; 3793 const APInt *C; 3794 3795 // If this is an or instruction, it may be an inner node of the bswap. 3796 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3797 // Check we have both sources and they are from the same provider. 3798 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3799 Depth + 1, FoundRoot); 3800 if (!A || !A->Provider) 3801 return Result; 3802 3803 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3804 Depth + 1, FoundRoot); 3805 if (!B || A->Provider != B->Provider) 3806 return Result; 3807 3808 // Try and merge the two together. 3809 Result = BitPart(A->Provider, BitWidth); 3810 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3811 if (A->Provenance[BitIdx] != BitPart::Unset && 3812 B->Provenance[BitIdx] != BitPart::Unset && 3813 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3814 return Result = std::nullopt; 3815 3816 if (A->Provenance[BitIdx] == BitPart::Unset) 3817 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3818 else 3819 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3820 } 3821 3822 return Result; 3823 } 3824 3825 // If this is a logical shift by a constant, recurse then shift the result. 3826 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3827 const APInt &BitShift = *C; 3828 3829 // Ensure the shift amount is defined. 3830 if (BitShift.uge(BitWidth)) 3831 return Result; 3832 3833 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3834 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3835 return Result; 3836 3837 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3838 Depth + 1, FoundRoot); 3839 if (!Res) 3840 return Result; 3841 Result = Res; 3842 3843 // Perform the "shift" on BitProvenance. 3844 auto &P = Result->Provenance; 3845 if (I->getOpcode() == Instruction::Shl) { 3846 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3847 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3848 } else { 3849 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3850 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3851 } 3852 3853 return Result; 3854 } 3855 3856 // If this is a logical 'and' with a mask that clears bits, recurse then 3857 // unset the appropriate bits. 3858 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3859 const APInt &AndMask = *C; 3860 3861 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3862 // early exit. 3863 unsigned NumMaskedBits = AndMask.popcount(); 3864 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3865 return Result; 3866 3867 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3868 Depth + 1, FoundRoot); 3869 if (!Res) 3870 return Result; 3871 Result = Res; 3872 3873 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3874 // If the AndMask is zero for this bit, clear the bit. 3875 if (AndMask[BitIdx] == 0) 3876 Result->Provenance[BitIdx] = BitPart::Unset; 3877 return Result; 3878 } 3879 3880 // If this is a zext instruction zero extend the result. 3881 if (match(V, m_ZExt(m_Value(X)))) { 3882 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3883 Depth + 1, FoundRoot); 3884 if (!Res) 3885 return Result; 3886 3887 Result = BitPart(Res->Provider, BitWidth); 3888 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3889 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3890 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3891 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3892 Result->Provenance[BitIdx] = BitPart::Unset; 3893 return Result; 3894 } 3895 3896 // If this is a truncate instruction, extract the lower bits. 3897 if (match(V, m_Trunc(m_Value(X)))) { 3898 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3899 Depth + 1, FoundRoot); 3900 if (!Res) 3901 return Result; 3902 3903 Result = BitPart(Res->Provider, BitWidth); 3904 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3905 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3906 return Result; 3907 } 3908 3909 // BITREVERSE - most likely due to us previous matching a partial 3910 // bitreverse. 3911 if (match(V, m_BitReverse(m_Value(X)))) { 3912 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3913 Depth + 1, FoundRoot); 3914 if (!Res) 3915 return Result; 3916 3917 Result = BitPart(Res->Provider, BitWidth); 3918 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3919 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3920 return Result; 3921 } 3922 3923 // BSWAP - most likely due to us previous matching a partial bswap. 3924 if (match(V, m_BSwap(m_Value(X)))) { 3925 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3926 Depth + 1, FoundRoot); 3927 if (!Res) 3928 return Result; 3929 3930 unsigned ByteWidth = BitWidth / 8; 3931 Result = BitPart(Res->Provider, BitWidth); 3932 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3933 unsigned ByteBitOfs = ByteIdx * 8; 3934 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3935 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3936 Res->Provenance[ByteBitOfs + BitIdx]; 3937 } 3938 return Result; 3939 } 3940 3941 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3942 // amount (modulo). 3943 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3944 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3945 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3946 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3947 // We can treat fshr as a fshl by flipping the modulo amount. 3948 unsigned ModAmt = C->urem(BitWidth); 3949 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3950 ModAmt = BitWidth - ModAmt; 3951 3952 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3953 if (!MatchBitReversals && (ModAmt % 8) != 0) 3954 return Result; 3955 3956 // Check we have both sources and they are from the same provider. 3957 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3958 Depth + 1, FoundRoot); 3959 if (!LHS || !LHS->Provider) 3960 return Result; 3961 3962 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3963 Depth + 1, FoundRoot); 3964 if (!RHS || LHS->Provider != RHS->Provider) 3965 return Result; 3966 3967 unsigned StartBitRHS = BitWidth - ModAmt; 3968 Result = BitPart(LHS->Provider, BitWidth); 3969 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3970 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3971 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3972 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3973 return Result; 3974 } 3975 } 3976 3977 // If we've already found a root input value then we're never going to merge 3978 // these back together. 3979 if (FoundRoot) 3980 return Result; 3981 3982 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3983 // be the root input value to the bswap/bitreverse. 3984 FoundRoot = true; 3985 Result = BitPart(V, BitWidth); 3986 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3987 Result->Provenance[BitIdx] = BitIdx; 3988 return Result; 3989 } 3990 3991 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3992 unsigned BitWidth) { 3993 if (From % 8 != To % 8) 3994 return false; 3995 // Convert from bit indices to byte indices and check for a byte reversal. 3996 From >>= 3; 3997 To >>= 3; 3998 BitWidth >>= 3; 3999 return From == BitWidth - To - 1; 4000 } 4001 4002 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 4003 unsigned BitWidth) { 4004 return From == BitWidth - To - 1; 4005 } 4006 4007 bool llvm::recognizeBSwapOrBitReverseIdiom( 4008 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 4009 SmallVectorImpl<Instruction *> &InsertedInsts) { 4010 if (!match(I, m_Or(m_Value(), m_Value())) && 4011 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 4012 !match(I, m_FShr(m_Value(), m_Value(), m_Value())) && 4013 !match(I, m_BSwap(m_Value()))) 4014 return false; 4015 if (!MatchBSwaps && !MatchBitReversals) 4016 return false; 4017 Type *ITy = I->getType(); 4018 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 4019 return false; // Can't do integer/elements > 128 bits. 4020 4021 // Try to find all the pieces corresponding to the bswap. 4022 bool FoundRoot = false; 4023 std::map<Value *, std::optional<BitPart>> BPS; 4024 const auto &Res = 4025 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 4026 if (!Res) 4027 return false; 4028 ArrayRef<int8_t> BitProvenance = Res->Provenance; 4029 assert(all_of(BitProvenance, 4030 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 4031 "Illegal bit provenance index"); 4032 4033 // If the upper bits are zero, then attempt to perform as a truncated op. 4034 Type *DemandedTy = ITy; 4035 if (BitProvenance.back() == BitPart::Unset) { 4036 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 4037 BitProvenance = BitProvenance.drop_back(); 4038 if (BitProvenance.empty()) 4039 return false; // TODO - handle null value? 4040 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 4041 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 4042 DemandedTy = VectorType::get(DemandedTy, IVecTy); 4043 } 4044 4045 // Check BitProvenance hasn't found a source larger than the result type. 4046 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 4047 if (DemandedBW > ITy->getScalarSizeInBits()) 4048 return false; 4049 4050 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 4051 // only byteswap values with an even number of bytes. 4052 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 4053 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 4054 bool OKForBitReverse = MatchBitReversals; 4055 for (unsigned BitIdx = 0; 4056 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 4057 if (BitProvenance[BitIdx] == BitPart::Unset) { 4058 DemandedMask.clearBit(BitIdx); 4059 continue; 4060 } 4061 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 4062 DemandedBW); 4063 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 4064 BitIdx, DemandedBW); 4065 } 4066 4067 Intrinsic::ID Intrin; 4068 if (OKForBSwap) 4069 Intrin = Intrinsic::bswap; 4070 else if (OKForBitReverse) 4071 Intrin = Intrinsic::bitreverse; 4072 else 4073 return false; 4074 4075 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 4076 Value *Provider = Res->Provider; 4077 4078 // We may need to truncate the provider. 4079 if (DemandedTy != Provider->getType()) { 4080 auto *Trunc = 4081 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator()); 4082 InsertedInsts.push_back(Trunc); 4083 Provider = Trunc; 4084 } 4085 4086 Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator()); 4087 InsertedInsts.push_back(Result); 4088 4089 if (!DemandedMask.isAllOnes()) { 4090 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 4091 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator()); 4092 InsertedInsts.push_back(Result); 4093 } 4094 4095 // We may need to zeroextend back to the result type. 4096 if (ITy != Result->getType()) { 4097 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator()); 4098 InsertedInsts.push_back(ExtInst); 4099 } 4100 4101 return true; 4102 } 4103 4104 // CodeGen has special handling for some string functions that may replace 4105 // them with target-specific intrinsics. Since that'd skip our interceptors 4106 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 4107 // we mark affected calls as NoBuiltin, which will disable optimization 4108 // in CodeGen. 4109 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 4110 CallInst *CI, const TargetLibraryInfo *TLI) { 4111 Function *F = CI->getCalledFunction(); 4112 LibFunc Func; 4113 if (F && !F->hasLocalLinkage() && F->hasName() && 4114 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 4115 !F->doesNotAccessMemory()) 4116 CI->addFnAttr(Attribute::NoBuiltin); 4117 } 4118 4119 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 4120 // We can't have a PHI with a metadata type. 4121 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 4122 return false; 4123 4124 // Early exit. 4125 if (!isa<Constant>(I->getOperand(OpIdx))) 4126 return true; 4127 4128 switch (I->getOpcode()) { 4129 default: 4130 return true; 4131 case Instruction::Call: 4132 case Instruction::Invoke: { 4133 const auto &CB = cast<CallBase>(*I); 4134 4135 // Can't handle inline asm. Skip it. 4136 if (CB.isInlineAsm()) 4137 return false; 4138 4139 // Constant bundle operands may need to retain their constant-ness for 4140 // correctness. 4141 if (CB.isBundleOperand(OpIdx)) 4142 return false; 4143 4144 if (OpIdx < CB.arg_size()) { 4145 // Some variadic intrinsics require constants in the variadic arguments, 4146 // which currently aren't markable as immarg. 4147 if (isa<IntrinsicInst>(CB) && 4148 OpIdx >= CB.getFunctionType()->getNumParams()) { 4149 // This is known to be OK for stackmap. 4150 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 4151 } 4152 4153 // gcroot is a special case, since it requires a constant argument which 4154 // isn't also required to be a simple ConstantInt. 4155 if (CB.getIntrinsicID() == Intrinsic::gcroot) 4156 return false; 4157 4158 // Some intrinsic operands are required to be immediates. 4159 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 4160 } 4161 4162 // It is never allowed to replace the call argument to an intrinsic, but it 4163 // may be possible for a call. 4164 return !isa<IntrinsicInst>(CB); 4165 } 4166 case Instruction::ShuffleVector: 4167 // Shufflevector masks are constant. 4168 return OpIdx != 2; 4169 case Instruction::Switch: 4170 case Instruction::ExtractValue: 4171 // All operands apart from the first are constant. 4172 return OpIdx == 0; 4173 case Instruction::InsertValue: 4174 // All operands apart from the first and the second are constant. 4175 return OpIdx < 2; 4176 case Instruction::Alloca: 4177 // Static allocas (constant size in the entry block) are handled by 4178 // prologue/epilogue insertion so they're free anyway. We definitely don't 4179 // want to make them non-constant. 4180 return !cast<AllocaInst>(I)->isStaticAlloca(); 4181 case Instruction::GetElementPtr: 4182 if (OpIdx == 0) 4183 return true; 4184 gep_type_iterator It = gep_type_begin(I); 4185 for (auto E = std::next(It, OpIdx); It != E; ++It) 4186 if (It.isStruct()) 4187 return false; 4188 return true; 4189 } 4190 } 4191 4192 Value *llvm::invertCondition(Value *Condition) { 4193 // First: Check if it's a constant 4194 if (Constant *C = dyn_cast<Constant>(Condition)) 4195 return ConstantExpr::getNot(C); 4196 4197 // Second: If the condition is already inverted, return the original value 4198 Value *NotCondition; 4199 if (match(Condition, m_Not(m_Value(NotCondition)))) 4200 return NotCondition; 4201 4202 BasicBlock *Parent = nullptr; 4203 Instruction *Inst = dyn_cast<Instruction>(Condition); 4204 if (Inst) 4205 Parent = Inst->getParent(); 4206 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 4207 Parent = &Arg->getParent()->getEntryBlock(); 4208 assert(Parent && "Unsupported condition to invert"); 4209 4210 // Third: Check all the users for an invert 4211 for (User *U : Condition->users()) 4212 if (Instruction *I = dyn_cast<Instruction>(U)) 4213 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 4214 return I; 4215 4216 // Last option: Create a new instruction 4217 auto *Inverted = 4218 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 4219 if (Inst && !isa<PHINode>(Inst)) 4220 Inverted->insertAfter(Inst); 4221 else 4222 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 4223 return Inverted; 4224 } 4225 4226 bool llvm::inferAttributesFromOthers(Function &F) { 4227 // Note: We explicitly check for attributes rather than using cover functions 4228 // because some of the cover functions include the logic being implemented. 4229 4230 bool Changed = false; 4231 // readnone + not convergent implies nosync 4232 if (!F.hasFnAttribute(Attribute::NoSync) && 4233 F.doesNotAccessMemory() && !F.isConvergent()) { 4234 F.setNoSync(); 4235 Changed = true; 4236 } 4237 4238 // readonly implies nofree 4239 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 4240 F.setDoesNotFreeMemory(); 4241 Changed = true; 4242 } 4243 4244 // willreturn implies mustprogress 4245 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 4246 F.setMustProgress(); 4247 Changed = true; 4248 } 4249 4250 // TODO: There are a bunch of cases of restrictive memory effects we 4251 // can infer by inspecting arguments of argmemonly-ish functions. 4252 4253 return Changed; 4254 } 4255