xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision 8c22b9f3ba586e008e8e55a6215a1d46eb6830b9)
1  //===- Local.cpp - Functions to perform local transformations -------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This family of functions perform various local transformations to the
10  // program.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/Transforms/Utils/Local.h"
15  #include "llvm/ADT/APInt.h"
16  #include "llvm/ADT/DenseMap.h"
17  #include "llvm/ADT/DenseMapInfo.h"
18  #include "llvm/ADT/DenseSet.h"
19  #include "llvm/ADT/Hashing.h"
20  #include "llvm/ADT/None.h"
21  #include "llvm/ADT/Optional.h"
22  #include "llvm/ADT/STLExtras.h"
23  #include "llvm/ADT/SetVector.h"
24  #include "llvm/ADT/SmallPtrSet.h"
25  #include "llvm/ADT/SmallVector.h"
26  #include "llvm/ADT/Statistic.h"
27  #include "llvm/ADT/TinyPtrVector.h"
28  #include "llvm/Analysis/AssumeBundleQueries.h"
29  #include "llvm/Analysis/ConstantFolding.h"
30  #include "llvm/Analysis/DomTreeUpdater.h"
31  #include "llvm/Analysis/EHPersonalities.h"
32  #include "llvm/Analysis/InstructionSimplify.h"
33  #include "llvm/Analysis/LazyValueInfo.h"
34  #include "llvm/Analysis/MemoryBuiltins.h"
35  #include "llvm/Analysis/MemorySSAUpdater.h"
36  #include "llvm/Analysis/TargetLibraryInfo.h"
37  #include "llvm/Analysis/ValueTracking.h"
38  #include "llvm/Analysis/VectorUtils.h"
39  #include "llvm/BinaryFormat/Dwarf.h"
40  #include "llvm/IR/Argument.h"
41  #include "llvm/IR/Attributes.h"
42  #include "llvm/IR/BasicBlock.h"
43  #include "llvm/IR/CFG.h"
44  #include "llvm/IR/Constant.h"
45  #include "llvm/IR/ConstantRange.h"
46  #include "llvm/IR/Constants.h"
47  #include "llvm/IR/DIBuilder.h"
48  #include "llvm/IR/DataLayout.h"
49  #include "llvm/IR/DebugInfoMetadata.h"
50  #include "llvm/IR/DebugLoc.h"
51  #include "llvm/IR/DerivedTypes.h"
52  #include "llvm/IR/Dominators.h"
53  #include "llvm/IR/Function.h"
54  #include "llvm/IR/GetElementPtrTypeIterator.h"
55  #include "llvm/IR/GlobalObject.h"
56  #include "llvm/IR/IRBuilder.h"
57  #include "llvm/IR/InstrTypes.h"
58  #include "llvm/IR/Instruction.h"
59  #include "llvm/IR/Instructions.h"
60  #include "llvm/IR/IntrinsicInst.h"
61  #include "llvm/IR/Intrinsics.h"
62  #include "llvm/IR/LLVMContext.h"
63  #include "llvm/IR/MDBuilder.h"
64  #include "llvm/IR/Metadata.h"
65  #include "llvm/IR/Module.h"
66  #include "llvm/IR/Operator.h"
67  #include "llvm/IR/PatternMatch.h"
68  #include "llvm/IR/Type.h"
69  #include "llvm/IR/Use.h"
70  #include "llvm/IR/User.h"
71  #include "llvm/IR/Value.h"
72  #include "llvm/IR/ValueHandle.h"
73  #include "llvm/Support/Casting.h"
74  #include "llvm/Support/Debug.h"
75  #include "llvm/Support/ErrorHandling.h"
76  #include "llvm/Support/KnownBits.h"
77  #include "llvm/Support/raw_ostream.h"
78  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79  #include "llvm/Transforms/Utils/ValueMapper.h"
80  #include <algorithm>
81  #include <cassert>
82  #include <climits>
83  #include <cstdint>
84  #include <iterator>
85  #include <map>
86  #include <utility>
87  
88  using namespace llvm;
89  using namespace llvm::PatternMatch;
90  
91  #define DEBUG_TYPE "local"
92  
93  STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94  STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
95  
96  static cl::opt<bool> PHICSEDebugHash(
97      "phicse-debug-hash",
98  #ifdef EXPENSIVE_CHECKS
99      cl::init(true),
100  #else
101      cl::init(false),
102  #endif
103      cl::Hidden,
104      cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
105               "function is well-behaved w.r.t. its isEqual predicate"));
106  
107  static cl::opt<unsigned> PHICSENumPHISmallSize(
108      "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
109      cl::desc(
110          "When the basic block contains not more than this number of PHI nodes, "
111          "perform a (faster!) exhaustive search instead of set-driven one."));
112  
113  // Max recursion depth for collectBitParts used when detecting bswap and
114  // bitreverse idioms
115  static const unsigned BitPartRecursionMaxDepth = 64;
116  
117  //===----------------------------------------------------------------------===//
118  //  Local constant propagation.
119  //
120  
121  /// ConstantFoldTerminator - If a terminator instruction is predicated on a
122  /// constant value, convert it into an unconditional branch to the constant
123  /// destination.  This is a nontrivial operation because the successors of this
124  /// basic block must have their PHI nodes updated.
125  /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
126  /// conditions and indirectbr addresses this might make dead if
127  /// DeleteDeadConditions is true.
128  bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
129                                    const TargetLibraryInfo *TLI,
130                                    DomTreeUpdater *DTU) {
131    Instruction *T = BB->getTerminator();
132    IRBuilder<> Builder(T);
133  
134    // Branch - See if we are conditional jumping on constant
135    if (auto *BI = dyn_cast<BranchInst>(T)) {
136      if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
137  
138      BasicBlock *Dest1 = BI->getSuccessor(0);
139      BasicBlock *Dest2 = BI->getSuccessor(1);
140  
141      if (Dest2 == Dest1) {       // Conditional branch to same location?
142        // This branch matches something like this:
143        //     br bool %cond, label %Dest, label %Dest
144        // and changes it into:  br label %Dest
145  
146        // Let the basic block know that we are letting go of one copy of it.
147        assert(BI->getParent() && "Terminator not inserted in block!");
148        Dest1->removePredecessor(BI->getParent());
149  
150        // Replace the conditional branch with an unconditional one.
151        Builder.CreateBr(Dest1);
152        Value *Cond = BI->getCondition();
153        BI->eraseFromParent();
154        if (DeleteDeadConditions)
155          RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
156        return true;
157      }
158  
159      if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
160        // Are we branching on constant?
161        // YES.  Change to unconditional branch...
162        BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
163        BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
164  
165        // Let the basic block know that we are letting go of it.  Based on this,
166        // it will adjust it's PHI nodes.
167        OldDest->removePredecessor(BB);
168  
169        // Replace the conditional branch with an unconditional one.
170        Builder.CreateBr(Destination);
171        BI->eraseFromParent();
172        if (DTU)
173          DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
174        return true;
175      }
176  
177      return false;
178    }
179  
180    if (auto *SI = dyn_cast<SwitchInst>(T)) {
181      // If we are switching on a constant, we can convert the switch to an
182      // unconditional branch.
183      auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
184      BasicBlock *DefaultDest = SI->getDefaultDest();
185      BasicBlock *TheOnlyDest = DefaultDest;
186  
187      // If the default is unreachable, ignore it when searching for TheOnlyDest.
188      if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
189          SI->getNumCases() > 0) {
190        TheOnlyDest = SI->case_begin()->getCaseSuccessor();
191      }
192  
193      bool Changed = false;
194  
195      // Figure out which case it goes to.
196      for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
197        // Found case matching a constant operand?
198        if (i->getCaseValue() == CI) {
199          TheOnlyDest = i->getCaseSuccessor();
200          break;
201        }
202  
203        // Check to see if this branch is going to the same place as the default
204        // dest.  If so, eliminate it as an explicit compare.
205        if (i->getCaseSuccessor() == DefaultDest) {
206          MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
207          unsigned NCases = SI->getNumCases();
208          // Fold the case metadata into the default if there will be any branches
209          // left, unless the metadata doesn't match the switch.
210          if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
211            // Collect branch weights into a vector.
212            SmallVector<uint32_t, 8> Weights;
213            for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
214                 ++MD_i) {
215              auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
216              Weights.push_back(CI->getValue().getZExtValue());
217            }
218            // Merge weight of this case to the default weight.
219            unsigned idx = i->getCaseIndex();
220            Weights[0] += Weights[idx+1];
221            // Remove weight for this case.
222            std::swap(Weights[idx+1], Weights.back());
223            Weights.pop_back();
224            SI->setMetadata(LLVMContext::MD_prof,
225                            MDBuilder(BB->getContext()).
226                            createBranchWeights(Weights));
227          }
228          // Remove this entry.
229          BasicBlock *ParentBB = SI->getParent();
230          DefaultDest->removePredecessor(ParentBB);
231          i = SI->removeCase(i);
232          e = SI->case_end();
233          Changed = true;
234          continue;
235        }
236  
237        // Otherwise, check to see if the switch only branches to one destination.
238        // We do this by reseting "TheOnlyDest" to null when we find two non-equal
239        // destinations.
240        if (i->getCaseSuccessor() != TheOnlyDest)
241          TheOnlyDest = nullptr;
242  
243        // Increment this iterator as we haven't removed the case.
244        ++i;
245      }
246  
247      if (CI && !TheOnlyDest) {
248        // Branching on a constant, but not any of the cases, go to the default
249        // successor.
250        TheOnlyDest = SI->getDefaultDest();
251      }
252  
253      // If we found a single destination that we can fold the switch into, do so
254      // now.
255      if (TheOnlyDest) {
256        // Insert the new branch.
257        Builder.CreateBr(TheOnlyDest);
258        BasicBlock *BB = SI->getParent();
259  
260        SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
261  
262        // Remove entries from PHI nodes which we no longer branch to...
263        BasicBlock *SuccToKeep = TheOnlyDest;
264        for (BasicBlock *Succ : successors(SI)) {
265          if (DTU && Succ != TheOnlyDest)
266            RemovedSuccessors.insert(Succ);
267          // Found case matching a constant operand?
268          if (Succ == SuccToKeep) {
269            SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
270          } else {
271            Succ->removePredecessor(BB);
272          }
273        }
274  
275        // Delete the old switch.
276        Value *Cond = SI->getCondition();
277        SI->eraseFromParent();
278        if (DeleteDeadConditions)
279          RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
280        if (DTU) {
281          std::vector<DominatorTree::UpdateType> Updates;
282          Updates.reserve(RemovedSuccessors.size());
283          for (auto *RemovedSuccessor : RemovedSuccessors)
284            Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
285          DTU->applyUpdates(Updates);
286        }
287        return true;
288      }
289  
290      if (SI->getNumCases() == 1) {
291        // Otherwise, we can fold this switch into a conditional branch
292        // instruction if it has only one non-default destination.
293        auto FirstCase = *SI->case_begin();
294        Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
295            FirstCase.getCaseValue(), "cond");
296  
297        // Insert the new branch.
298        BranchInst *NewBr = Builder.CreateCondBr(Cond,
299                                                 FirstCase.getCaseSuccessor(),
300                                                 SI->getDefaultDest());
301        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
302        if (MD && MD->getNumOperands() == 3) {
303          ConstantInt *SICase =
304              mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
305          ConstantInt *SIDef =
306              mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
307          assert(SICase && SIDef);
308          // The TrueWeight should be the weight for the single case of SI.
309          NewBr->setMetadata(LLVMContext::MD_prof,
310                          MDBuilder(BB->getContext()).
311                          createBranchWeights(SICase->getValue().getZExtValue(),
312                                              SIDef->getValue().getZExtValue()));
313        }
314  
315        // Update make.implicit metadata to the newly-created conditional branch.
316        MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
317        if (MakeImplicitMD)
318          NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
319  
320        // Delete the old switch.
321        SI->eraseFromParent();
322        return true;
323      }
324      return Changed;
325    }
326  
327    if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
328      // indirectbr blockaddress(@F, @BB) -> br label @BB
329      if (auto *BA =
330            dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
331        BasicBlock *TheOnlyDest = BA->getBasicBlock();
332        SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
333  
334        // Insert the new branch.
335        Builder.CreateBr(TheOnlyDest);
336  
337        BasicBlock *SuccToKeep = TheOnlyDest;
338        for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
339          BasicBlock *DestBB = IBI->getDestination(i);
340          if (DTU && DestBB != TheOnlyDest)
341            RemovedSuccessors.insert(DestBB);
342          if (IBI->getDestination(i) == SuccToKeep) {
343            SuccToKeep = nullptr;
344          } else {
345            DestBB->removePredecessor(BB);
346          }
347        }
348        Value *Address = IBI->getAddress();
349        IBI->eraseFromParent();
350        if (DeleteDeadConditions)
351          // Delete pointer cast instructions.
352          RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
353  
354        // Also zap the blockaddress constant if there are no users remaining,
355        // otherwise the destination is still marked as having its address taken.
356        if (BA->use_empty())
357          BA->destroyConstant();
358  
359        // If we didn't find our destination in the IBI successor list, then we
360        // have undefined behavior.  Replace the unconditional branch with an
361        // 'unreachable' instruction.
362        if (SuccToKeep) {
363          BB->getTerminator()->eraseFromParent();
364          new UnreachableInst(BB->getContext(), BB);
365        }
366  
367        if (DTU) {
368          std::vector<DominatorTree::UpdateType> Updates;
369          Updates.reserve(RemovedSuccessors.size());
370          for (auto *RemovedSuccessor : RemovedSuccessors)
371            Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
372          DTU->applyUpdates(Updates);
373        }
374        return true;
375      }
376    }
377  
378    return false;
379  }
380  
381  //===----------------------------------------------------------------------===//
382  //  Local dead code elimination.
383  //
384  
385  /// isInstructionTriviallyDead - Return true if the result produced by the
386  /// instruction is not used, and the instruction has no side effects.
387  ///
388  bool llvm::isInstructionTriviallyDead(Instruction *I,
389                                        const TargetLibraryInfo *TLI) {
390    if (!I->use_empty())
391      return false;
392    return wouldInstructionBeTriviallyDead(I, TLI);
393  }
394  
395  bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
396                                             const TargetLibraryInfo *TLI) {
397    if (I->isTerminator())
398      return false;
399  
400    // We don't want the landingpad-like instructions removed by anything this
401    // general.
402    if (I->isEHPad())
403      return false;
404  
405    // We don't want debug info removed by anything this general, unless
406    // debug info is empty.
407    if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
408      if (DDI->getAddress())
409        return false;
410      return true;
411    }
412    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
413      if (DVI->getValue())
414        return false;
415      return true;
416    }
417    if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
418      if (DLI->getLabel())
419        return false;
420      return true;
421    }
422  
423    if (!I->willReturn())
424      return false;
425  
426    if (!I->mayHaveSideEffects())
427      return true;
428  
429    // Special case intrinsics that "may have side effects" but can be deleted
430    // when dead.
431    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
432      // Safe to delete llvm.stacksave and launder.invariant.group if dead.
433      if (II->getIntrinsicID() == Intrinsic::stacksave ||
434          II->getIntrinsicID() == Intrinsic::launder_invariant_group)
435        return true;
436  
437      if (II->isLifetimeStartOrEnd()) {
438        auto *Arg = II->getArgOperand(1);
439        // Lifetime intrinsics are dead when their right-hand is undef.
440        if (isa<UndefValue>(Arg))
441          return true;
442        // If the right-hand is an alloc, global, or argument and the only uses
443        // are lifetime intrinsics then the intrinsics are dead.
444        if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
445          return llvm::all_of(Arg->uses(), [](Use &Use) {
446            if (IntrinsicInst *IntrinsicUse =
447                    dyn_cast<IntrinsicInst>(Use.getUser()))
448              return IntrinsicUse->isLifetimeStartOrEnd();
449            return false;
450          });
451        return false;
452      }
453  
454      // Assumptions are dead if their condition is trivially true.  Guards on
455      // true are operationally no-ops.  In the future we can consider more
456      // sophisticated tradeoffs for guards considering potential for check
457      // widening, but for now we keep things simple.
458      if ((II->getIntrinsicID() == Intrinsic::assume &&
459           isAssumeWithEmptyBundle(*II)) ||
460          II->getIntrinsicID() == Intrinsic::experimental_guard) {
461        if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
462          return !Cond->isZero();
463  
464        return false;
465      }
466    }
467  
468    if (isAllocLikeFn(I, TLI))
469      return true;
470  
471    if (CallInst *CI = isFreeCall(I, TLI))
472      if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
473        return C->isNullValue() || isa<UndefValue>(C);
474  
475    if (auto *Call = dyn_cast<CallBase>(I))
476      if (isMathLibCallNoop(Call, TLI))
477        return true;
478  
479    return false;
480  }
481  
482  /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
483  /// trivially dead instruction, delete it.  If that makes any of its operands
484  /// trivially dead, delete them too, recursively.  Return true if any
485  /// instructions were deleted.
486  bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
487      Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
488      std::function<void(Value *)> AboutToDeleteCallback) {
489    Instruction *I = dyn_cast<Instruction>(V);
490    if (!I || !isInstructionTriviallyDead(I, TLI))
491      return false;
492  
493    SmallVector<WeakTrackingVH, 16> DeadInsts;
494    DeadInsts.push_back(I);
495    RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
496                                               AboutToDeleteCallback);
497  
498    return true;
499  }
500  
501  bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
502      SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
503      MemorySSAUpdater *MSSAU,
504      std::function<void(Value *)> AboutToDeleteCallback) {
505    unsigned S = 0, E = DeadInsts.size(), Alive = 0;
506    for (; S != E; ++S) {
507      auto *I = cast<Instruction>(DeadInsts[S]);
508      if (!isInstructionTriviallyDead(I)) {
509        DeadInsts[S] = nullptr;
510        ++Alive;
511      }
512    }
513    if (Alive == E)
514      return false;
515    RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
516                                               AboutToDeleteCallback);
517    return true;
518  }
519  
520  void llvm::RecursivelyDeleteTriviallyDeadInstructions(
521      SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
522      MemorySSAUpdater *MSSAU,
523      std::function<void(Value *)> AboutToDeleteCallback) {
524    // Process the dead instruction list until empty.
525    while (!DeadInsts.empty()) {
526      Value *V = DeadInsts.pop_back_val();
527      Instruction *I = cast_or_null<Instruction>(V);
528      if (!I)
529        continue;
530      assert(isInstructionTriviallyDead(I, TLI) &&
531             "Live instruction found in dead worklist!");
532      assert(I->use_empty() && "Instructions with uses are not dead.");
533  
534      // Don't lose the debug info while deleting the instructions.
535      salvageDebugInfo(*I);
536  
537      if (AboutToDeleteCallback)
538        AboutToDeleteCallback(I);
539  
540      // Null out all of the instruction's operands to see if any operand becomes
541      // dead as we go.
542      for (Use &OpU : I->operands()) {
543        Value *OpV = OpU.get();
544        OpU.set(nullptr);
545  
546        if (!OpV->use_empty())
547          continue;
548  
549        // If the operand is an instruction that became dead as we nulled out the
550        // operand, and if it is 'trivially' dead, delete it in a future loop
551        // iteration.
552        if (Instruction *OpI = dyn_cast<Instruction>(OpV))
553          if (isInstructionTriviallyDead(OpI, TLI))
554            DeadInsts.push_back(OpI);
555      }
556      if (MSSAU)
557        MSSAU->removeMemoryAccess(I);
558  
559      I->eraseFromParent();
560    }
561  }
562  
563  bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
564    SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
565    findDbgUsers(DbgUsers, I);
566    for (auto *DII : DbgUsers) {
567      Value *Undef = UndefValue::get(I->getType());
568      DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
569                                              ValueAsMetadata::get(Undef)));
570    }
571    return !DbgUsers.empty();
572  }
573  
574  /// areAllUsesEqual - Check whether the uses of a value are all the same.
575  /// This is similar to Instruction::hasOneUse() except this will also return
576  /// true when there are no uses or multiple uses that all refer to the same
577  /// value.
578  static bool areAllUsesEqual(Instruction *I) {
579    Value::user_iterator UI = I->user_begin();
580    Value::user_iterator UE = I->user_end();
581    if (UI == UE)
582      return true;
583  
584    User *TheUse = *UI;
585    for (++UI; UI != UE; ++UI) {
586      if (*UI != TheUse)
587        return false;
588    }
589    return true;
590  }
591  
592  /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
593  /// dead PHI node, due to being a def-use chain of single-use nodes that
594  /// either forms a cycle or is terminated by a trivially dead instruction,
595  /// delete it.  If that makes any of its operands trivially dead, delete them
596  /// too, recursively.  Return true if a change was made.
597  bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
598                                          const TargetLibraryInfo *TLI,
599                                          llvm::MemorySSAUpdater *MSSAU) {
600    SmallPtrSet<Instruction*, 4> Visited;
601    for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
602         I = cast<Instruction>(*I->user_begin())) {
603      if (I->use_empty())
604        return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
605  
606      // If we find an instruction more than once, we're on a cycle that
607      // won't prove fruitful.
608      if (!Visited.insert(I).second) {
609        // Break the cycle and delete the instruction and its operands.
610        I->replaceAllUsesWith(UndefValue::get(I->getType()));
611        (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
612        return true;
613      }
614    }
615    return false;
616  }
617  
618  static bool
619  simplifyAndDCEInstruction(Instruction *I,
620                            SmallSetVector<Instruction *, 16> &WorkList,
621                            const DataLayout &DL,
622                            const TargetLibraryInfo *TLI) {
623    if (isInstructionTriviallyDead(I, TLI)) {
624      salvageDebugInfo(*I);
625  
626      // Null out all of the instruction's operands to see if any operand becomes
627      // dead as we go.
628      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
629        Value *OpV = I->getOperand(i);
630        I->setOperand(i, nullptr);
631  
632        if (!OpV->use_empty() || I == OpV)
633          continue;
634  
635        // If the operand is an instruction that became dead as we nulled out the
636        // operand, and if it is 'trivially' dead, delete it in a future loop
637        // iteration.
638        if (Instruction *OpI = dyn_cast<Instruction>(OpV))
639          if (isInstructionTriviallyDead(OpI, TLI))
640            WorkList.insert(OpI);
641      }
642  
643      I->eraseFromParent();
644  
645      return true;
646    }
647  
648    if (Value *SimpleV = SimplifyInstruction(I, DL)) {
649      // Add the users to the worklist. CAREFUL: an instruction can use itself,
650      // in the case of a phi node.
651      for (User *U : I->users()) {
652        if (U != I) {
653          WorkList.insert(cast<Instruction>(U));
654        }
655      }
656  
657      // Replace the instruction with its simplified value.
658      bool Changed = false;
659      if (!I->use_empty()) {
660        I->replaceAllUsesWith(SimpleV);
661        Changed = true;
662      }
663      if (isInstructionTriviallyDead(I, TLI)) {
664        I->eraseFromParent();
665        Changed = true;
666      }
667      return Changed;
668    }
669    return false;
670  }
671  
672  /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
673  /// simplify any instructions in it and recursively delete dead instructions.
674  ///
675  /// This returns true if it changed the code, note that it can delete
676  /// instructions in other blocks as well in this block.
677  bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
678                                         const TargetLibraryInfo *TLI) {
679    bool MadeChange = false;
680    const DataLayout &DL = BB->getModule()->getDataLayout();
681  
682  #ifndef NDEBUG
683    // In debug builds, ensure that the terminator of the block is never replaced
684    // or deleted by these simplifications. The idea of simplification is that it
685    // cannot introduce new instructions, and there is no way to replace the
686    // terminator of a block without introducing a new instruction.
687    AssertingVH<Instruction> TerminatorVH(&BB->back());
688  #endif
689  
690    SmallSetVector<Instruction *, 16> WorkList;
691    // Iterate over the original function, only adding insts to the worklist
692    // if they actually need to be revisited. This avoids having to pre-init
693    // the worklist with the entire function's worth of instructions.
694    for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
695         BI != E;) {
696      assert(!BI->isTerminator());
697      Instruction *I = &*BI;
698      ++BI;
699  
700      // We're visiting this instruction now, so make sure it's not in the
701      // worklist from an earlier visit.
702      if (!WorkList.count(I))
703        MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
704    }
705  
706    while (!WorkList.empty()) {
707      Instruction *I = WorkList.pop_back_val();
708      MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
709    }
710    return MadeChange;
711  }
712  
713  //===----------------------------------------------------------------------===//
714  //  Control Flow Graph Restructuring.
715  //
716  
717  void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
718                                         DomTreeUpdater *DTU) {
719  
720    // If BB has single-entry PHI nodes, fold them.
721    while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
722      Value *NewVal = PN->getIncomingValue(0);
723      // Replace self referencing PHI with undef, it must be dead.
724      if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
725      PN->replaceAllUsesWith(NewVal);
726      PN->eraseFromParent();
727    }
728  
729    BasicBlock *PredBB = DestBB->getSinglePredecessor();
730    assert(PredBB && "Block doesn't have a single predecessor!");
731  
732    bool ReplaceEntryBB = false;
733    if (PredBB == &DestBB->getParent()->getEntryBlock())
734      ReplaceEntryBB = true;
735  
736    // DTU updates: Collect all the edges that enter
737    // PredBB. These dominator edges will be redirected to DestBB.
738    SmallVector<DominatorTree::UpdateType, 32> Updates;
739  
740    if (DTU) {
741      for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
742        // This predecessor of PredBB may already have DestBB as a successor.
743        if (!llvm::is_contained(successors(*I), DestBB))
744          Updates.push_back({DominatorTree::Insert, *I, DestBB});
745        Updates.push_back({DominatorTree::Delete, *I, PredBB});
746      }
747      Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
748    }
749  
750    // Zap anything that took the address of DestBB.  Not doing this will give the
751    // address an invalid value.
752    if (DestBB->hasAddressTaken()) {
753      BlockAddress *BA = BlockAddress::get(DestBB);
754      Constant *Replacement =
755        ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
756      BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
757                                                       BA->getType()));
758      BA->destroyConstant();
759    }
760  
761    // Anything that branched to PredBB now branches to DestBB.
762    PredBB->replaceAllUsesWith(DestBB);
763  
764    // Splice all the instructions from PredBB to DestBB.
765    PredBB->getTerminator()->eraseFromParent();
766    DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
767    new UnreachableInst(PredBB->getContext(), PredBB);
768  
769    // If the PredBB is the entry block of the function, move DestBB up to
770    // become the entry block after we erase PredBB.
771    if (ReplaceEntryBB)
772      DestBB->moveAfter(PredBB);
773  
774    if (DTU) {
775      assert(PredBB->getInstList().size() == 1 &&
776             isa<UnreachableInst>(PredBB->getTerminator()) &&
777             "The successor list of PredBB isn't empty before "
778             "applying corresponding DTU updates.");
779      DTU->applyUpdatesPermissive(Updates);
780      DTU->deleteBB(PredBB);
781      // Recalculation of DomTree is needed when updating a forward DomTree and
782      // the Entry BB is replaced.
783      if (ReplaceEntryBB && DTU->hasDomTree()) {
784        // The entry block was removed and there is no external interface for
785        // the dominator tree to be notified of this change. In this corner-case
786        // we recalculate the entire tree.
787        DTU->recalculate(*(DestBB->getParent()));
788      }
789    }
790  
791    else {
792      PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
793    }
794  }
795  
796  /// Return true if we can choose one of these values to use in place of the
797  /// other. Note that we will always choose the non-undef value to keep.
798  static bool CanMergeValues(Value *First, Value *Second) {
799    return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
800  }
801  
802  /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
803  /// branch to Succ, into Succ.
804  ///
805  /// Assumption: Succ is the single successor for BB.
806  static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
807    assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
808  
809    LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
810                      << Succ->getName() << "\n");
811    // Shortcut, if there is only a single predecessor it must be BB and merging
812    // is always safe
813    if (Succ->getSinglePredecessor()) return true;
814  
815    // Make a list of the predecessors of BB
816    SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
817  
818    // Look at all the phi nodes in Succ, to see if they present a conflict when
819    // merging these blocks
820    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
821      PHINode *PN = cast<PHINode>(I);
822  
823      // If the incoming value from BB is again a PHINode in
824      // BB which has the same incoming value for *PI as PN does, we can
825      // merge the phi nodes and then the blocks can still be merged
826      PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
827      if (BBPN && BBPN->getParent() == BB) {
828        for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
829          BasicBlock *IBB = PN->getIncomingBlock(PI);
830          if (BBPreds.count(IBB) &&
831              !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
832                              PN->getIncomingValue(PI))) {
833            LLVM_DEBUG(dbgs()
834                       << "Can't fold, phi node " << PN->getName() << " in "
835                       << Succ->getName() << " is conflicting with "
836                       << BBPN->getName() << " with regard to common predecessor "
837                       << IBB->getName() << "\n");
838            return false;
839          }
840        }
841      } else {
842        Value* Val = PN->getIncomingValueForBlock(BB);
843        for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
844          // See if the incoming value for the common predecessor is equal to the
845          // one for BB, in which case this phi node will not prevent the merging
846          // of the block.
847          BasicBlock *IBB = PN->getIncomingBlock(PI);
848          if (BBPreds.count(IBB) &&
849              !CanMergeValues(Val, PN->getIncomingValue(PI))) {
850            LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
851                              << " in " << Succ->getName()
852                              << " is conflicting with regard to common "
853                              << "predecessor " << IBB->getName() << "\n");
854            return false;
855          }
856        }
857      }
858    }
859  
860    return true;
861  }
862  
863  using PredBlockVector = SmallVector<BasicBlock *, 16>;
864  using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
865  
866  /// Determines the value to use as the phi node input for a block.
867  ///
868  /// Select between \p OldVal any value that we know flows from \p BB
869  /// to a particular phi on the basis of which one (if either) is not
870  /// undef. Update IncomingValues based on the selected value.
871  ///
872  /// \param OldVal The value we are considering selecting.
873  /// \param BB The block that the value flows in from.
874  /// \param IncomingValues A map from block-to-value for other phi inputs
875  /// that we have examined.
876  ///
877  /// \returns the selected value.
878  static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
879                                            IncomingValueMap &IncomingValues) {
880    if (!isa<UndefValue>(OldVal)) {
881      assert((!IncomingValues.count(BB) ||
882              IncomingValues.find(BB)->second == OldVal) &&
883             "Expected OldVal to match incoming value from BB!");
884  
885      IncomingValues.insert(std::make_pair(BB, OldVal));
886      return OldVal;
887    }
888  
889    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
890    if (It != IncomingValues.end()) return It->second;
891  
892    return OldVal;
893  }
894  
895  /// Create a map from block to value for the operands of a
896  /// given phi.
897  ///
898  /// Create a map from block to value for each non-undef value flowing
899  /// into \p PN.
900  ///
901  /// \param PN The phi we are collecting the map for.
902  /// \param IncomingValues [out] The map from block to value for this phi.
903  static void gatherIncomingValuesToPhi(PHINode *PN,
904                                        IncomingValueMap &IncomingValues) {
905    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
906      BasicBlock *BB = PN->getIncomingBlock(i);
907      Value *V = PN->getIncomingValue(i);
908  
909      if (!isa<UndefValue>(V))
910        IncomingValues.insert(std::make_pair(BB, V));
911    }
912  }
913  
914  /// Replace the incoming undef values to a phi with the values
915  /// from a block-to-value map.
916  ///
917  /// \param PN The phi we are replacing the undefs in.
918  /// \param IncomingValues A map from block to value.
919  static void replaceUndefValuesInPhi(PHINode *PN,
920                                      const IncomingValueMap &IncomingValues) {
921    SmallVector<unsigned> TrueUndefOps;
922    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
923      Value *V = PN->getIncomingValue(i);
924  
925      if (!isa<UndefValue>(V)) continue;
926  
927      BasicBlock *BB = PN->getIncomingBlock(i);
928      IncomingValueMap::const_iterator It = IncomingValues.find(BB);
929  
930      // Keep track of undef/poison incoming values. Those must match, so we fix
931      // them up below if needed.
932      // Note: this is conservatively correct, but we could try harder and group
933      // the undef values per incoming basic block.
934      if (It == IncomingValues.end()) {
935        TrueUndefOps.push_back(i);
936        continue;
937      }
938  
939      // There is a defined value for this incoming block, so map this undef
940      // incoming value to the defined value.
941      PN->setIncomingValue(i, It->second);
942    }
943  
944    // If there are both undef and poison values incoming, then convert those
945    // values to undef. It is invalid to have different values for the same
946    // incoming block.
947    unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
948      return isa<PoisonValue>(PN->getIncomingValue(i));
949    });
950    if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
951      for (unsigned i : TrueUndefOps)
952        PN->setIncomingValue(i, UndefValue::get(PN->getType()));
953    }
954  }
955  
956  /// Replace a value flowing from a block to a phi with
957  /// potentially multiple instances of that value flowing from the
958  /// block's predecessors to the phi.
959  ///
960  /// \param BB The block with the value flowing into the phi.
961  /// \param BBPreds The predecessors of BB.
962  /// \param PN The phi that we are updating.
963  static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
964                                                  const PredBlockVector &BBPreds,
965                                                  PHINode *PN) {
966    Value *OldVal = PN->removeIncomingValue(BB, false);
967    assert(OldVal && "No entry in PHI for Pred BB!");
968  
969    IncomingValueMap IncomingValues;
970  
971    // We are merging two blocks - BB, and the block containing PN - and
972    // as a result we need to redirect edges from the predecessors of BB
973    // to go to the block containing PN, and update PN
974    // accordingly. Since we allow merging blocks in the case where the
975    // predecessor and successor blocks both share some predecessors,
976    // and where some of those common predecessors might have undef
977    // values flowing into PN, we want to rewrite those values to be
978    // consistent with the non-undef values.
979  
980    gatherIncomingValuesToPhi(PN, IncomingValues);
981  
982    // If this incoming value is one of the PHI nodes in BB, the new entries
983    // in the PHI node are the entries from the old PHI.
984    if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
985      PHINode *OldValPN = cast<PHINode>(OldVal);
986      for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
987        // Note that, since we are merging phi nodes and BB and Succ might
988        // have common predecessors, we could end up with a phi node with
989        // identical incoming branches. This will be cleaned up later (and
990        // will trigger asserts if we try to clean it up now, without also
991        // simplifying the corresponding conditional branch).
992        BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
993        Value *PredVal = OldValPN->getIncomingValue(i);
994        Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
995                                                      IncomingValues);
996  
997        // And add a new incoming value for this predecessor for the
998        // newly retargeted branch.
999        PN->addIncoming(Selected, PredBB);
1000      }
1001    } else {
1002      for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1003        // Update existing incoming values in PN for this
1004        // predecessor of BB.
1005        BasicBlock *PredBB = BBPreds[i];
1006        Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1007                                                      IncomingValues);
1008  
1009        // And add a new incoming value for this predecessor for the
1010        // newly retargeted branch.
1011        PN->addIncoming(Selected, PredBB);
1012      }
1013    }
1014  
1015    replaceUndefValuesInPhi(PN, IncomingValues);
1016  }
1017  
1018  bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1019                                                     DomTreeUpdater *DTU) {
1020    assert(BB != &BB->getParent()->getEntryBlock() &&
1021           "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1022  
1023    // We can't eliminate infinite loops.
1024    BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1025    if (BB == Succ) return false;
1026  
1027    // Check to see if merging these blocks would cause conflicts for any of the
1028    // phi nodes in BB or Succ. If not, we can safely merge.
1029    if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1030  
1031    // Check for cases where Succ has multiple predecessors and a PHI node in BB
1032    // has uses which will not disappear when the PHI nodes are merged.  It is
1033    // possible to handle such cases, but difficult: it requires checking whether
1034    // BB dominates Succ, which is non-trivial to calculate in the case where
1035    // Succ has multiple predecessors.  Also, it requires checking whether
1036    // constructing the necessary self-referential PHI node doesn't introduce any
1037    // conflicts; this isn't too difficult, but the previous code for doing this
1038    // was incorrect.
1039    //
1040    // Note that if this check finds a live use, BB dominates Succ, so BB is
1041    // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1042    // folding the branch isn't profitable in that case anyway.
1043    if (!Succ->getSinglePredecessor()) {
1044      BasicBlock::iterator BBI = BB->begin();
1045      while (isa<PHINode>(*BBI)) {
1046        for (Use &U : BBI->uses()) {
1047          if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1048            if (PN->getIncomingBlock(U) != BB)
1049              return false;
1050          } else {
1051            return false;
1052          }
1053        }
1054        ++BBI;
1055      }
1056    }
1057  
1058    // We cannot fold the block if it's a branch to an already present callbr
1059    // successor because that creates duplicate successors.
1060    for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1061      if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1062        if (Succ == CBI->getDefaultDest())
1063          return false;
1064        for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1065          if (Succ == CBI->getIndirectDest(i))
1066            return false;
1067      }
1068    }
1069  
1070    LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1071  
1072    SmallVector<DominatorTree::UpdateType, 32> Updates;
1073    if (DTU) {
1074      // All predecessors of BB will be moved to Succ.
1075      SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB));
1076      Updates.reserve(Updates.size() + 2 * Predecessors.size());
1077      for (auto *Predecessor : Predecessors) {
1078        // This predecessor of BB may already have Succ as a successor.
1079        if (!llvm::is_contained(successors(Predecessor), Succ))
1080          Updates.push_back({DominatorTree::Insert, Predecessor, Succ});
1081        Updates.push_back({DominatorTree::Delete, Predecessor, BB});
1082      }
1083      Updates.push_back({DominatorTree::Delete, BB, Succ});
1084    }
1085  
1086    if (isa<PHINode>(Succ->begin())) {
1087      // If there is more than one pred of succ, and there are PHI nodes in
1088      // the successor, then we need to add incoming edges for the PHI nodes
1089      //
1090      const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1091  
1092      // Loop over all of the PHI nodes in the successor of BB.
1093      for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1094        PHINode *PN = cast<PHINode>(I);
1095  
1096        redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1097      }
1098    }
1099  
1100    if (Succ->getSinglePredecessor()) {
1101      // BB is the only predecessor of Succ, so Succ will end up with exactly
1102      // the same predecessors BB had.
1103  
1104      // Copy over any phi, debug or lifetime instruction.
1105      BB->getTerminator()->eraseFromParent();
1106      Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1107                                 BB->getInstList());
1108    } else {
1109      while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1110        // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1111        assert(PN->use_empty() && "There shouldn't be any uses here!");
1112        PN->eraseFromParent();
1113      }
1114    }
1115  
1116    // If the unconditional branch we replaced contains llvm.loop metadata, we
1117    // add the metadata to the branch instructions in the predecessors.
1118    unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1119    Instruction *TI = BB->getTerminator();
1120    if (TI)
1121      if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1122        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1123          BasicBlock *Pred = *PI;
1124          Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1125        }
1126  
1127    // Everything that jumped to BB now goes to Succ.
1128    BB->replaceAllUsesWith(Succ);
1129    if (!Succ->hasName()) Succ->takeName(BB);
1130  
1131    // Clear the successor list of BB to match updates applying to DTU later.
1132    if (BB->getTerminator())
1133      BB->getInstList().pop_back();
1134    new UnreachableInst(BB->getContext(), BB);
1135    assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1136                             "applying corresponding DTU updates.");
1137  
1138    if (DTU) {
1139      DTU->applyUpdates(Updates);
1140      DTU->deleteBB(BB);
1141    } else {
1142      BB->eraseFromParent(); // Delete the old basic block.
1143    }
1144    return true;
1145  }
1146  
1147  static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1148    // This implementation doesn't currently consider undef operands
1149    // specially. Theoretically, two phis which are identical except for
1150    // one having an undef where the other doesn't could be collapsed.
1151  
1152    bool Changed = false;
1153  
1154    // Examine each PHI.
1155    // Note that increment of I must *NOT* be in the iteration_expression, since
1156    // we don't want to immediately advance when we restart from the beginning.
1157    for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1158      ++I;
1159      // Is there an identical PHI node in this basic block?
1160      // Note that we only look in the upper square's triangle,
1161      // we already checked that the lower triangle PHI's aren't identical.
1162      for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1163        if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1164          continue;
1165        // A duplicate. Replace this PHI with the base PHI.
1166        ++NumPHICSEs;
1167        DuplicatePN->replaceAllUsesWith(PN);
1168        DuplicatePN->eraseFromParent();
1169        Changed = true;
1170  
1171        // The RAUW can change PHIs that we already visited.
1172        I = BB->begin();
1173        break; // Start over from the beginning.
1174      }
1175    }
1176    return Changed;
1177  }
1178  
1179  static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1180    // This implementation doesn't currently consider undef operands
1181    // specially. Theoretically, two phis which are identical except for
1182    // one having an undef where the other doesn't could be collapsed.
1183  
1184    struct PHIDenseMapInfo {
1185      static PHINode *getEmptyKey() {
1186        return DenseMapInfo<PHINode *>::getEmptyKey();
1187      }
1188  
1189      static PHINode *getTombstoneKey() {
1190        return DenseMapInfo<PHINode *>::getTombstoneKey();
1191      }
1192  
1193      static bool isSentinel(PHINode *PN) {
1194        return PN == getEmptyKey() || PN == getTombstoneKey();
1195      }
1196  
1197      // WARNING: this logic must be kept in sync with
1198      //          Instruction::isIdenticalToWhenDefined()!
1199      static unsigned getHashValueImpl(PHINode *PN) {
1200        // Compute a hash value on the operands. Instcombine will likely have
1201        // sorted them, which helps expose duplicates, but we have to check all
1202        // the operands to be safe in case instcombine hasn't run.
1203        return static_cast<unsigned>(hash_combine(
1204            hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1205            hash_combine_range(PN->block_begin(), PN->block_end())));
1206      }
1207  
1208      static unsigned getHashValue(PHINode *PN) {
1209  #ifndef NDEBUG
1210        // If -phicse-debug-hash was specified, return a constant -- this
1211        // will force all hashing to collide, so we'll exhaustively search
1212        // the table for a match, and the assertion in isEqual will fire if
1213        // there's a bug causing equal keys to hash differently.
1214        if (PHICSEDebugHash)
1215          return 0;
1216  #endif
1217        return getHashValueImpl(PN);
1218      }
1219  
1220      static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1221        if (isSentinel(LHS) || isSentinel(RHS))
1222          return LHS == RHS;
1223        return LHS->isIdenticalTo(RHS);
1224      }
1225  
1226      static bool isEqual(PHINode *LHS, PHINode *RHS) {
1227        // These comparisons are nontrivial, so assert that equality implies
1228        // hash equality (DenseMap demands this as an invariant).
1229        bool Result = isEqualImpl(LHS, RHS);
1230        assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1231               getHashValueImpl(LHS) == getHashValueImpl(RHS));
1232        return Result;
1233      }
1234    };
1235  
1236    // Set of unique PHINodes.
1237    DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1238    PHISet.reserve(4 * PHICSENumPHISmallSize);
1239  
1240    // Examine each PHI.
1241    bool Changed = false;
1242    for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1243      auto Inserted = PHISet.insert(PN);
1244      if (!Inserted.second) {
1245        // A duplicate. Replace this PHI with its duplicate.
1246        ++NumPHICSEs;
1247        PN->replaceAllUsesWith(*Inserted.first);
1248        PN->eraseFromParent();
1249        Changed = true;
1250  
1251        // The RAUW can change PHIs that we already visited. Start over from the
1252        // beginning.
1253        PHISet.clear();
1254        I = BB->begin();
1255      }
1256    }
1257  
1258    return Changed;
1259  }
1260  
1261  bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1262    if (
1263  #ifndef NDEBUG
1264        !PHICSEDebugHash &&
1265  #endif
1266        hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1267      return EliminateDuplicatePHINodesNaiveImpl(BB);
1268    return EliminateDuplicatePHINodesSetBasedImpl(BB);
1269  }
1270  
1271  /// If the specified pointer points to an object that we control, try to modify
1272  /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1273  /// the value after the operation, which may be lower than PrefAlign.
1274  ///
1275  /// Increating value alignment isn't often possible though. If alignment is
1276  /// important, a more reliable approach is to simply align all global variables
1277  /// and allocation instructions to their preferred alignment from the beginning.
1278  static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1279                                   const DataLayout &DL) {
1280    V = V->stripPointerCasts();
1281  
1282    if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1283      // TODO: Ideally, this function would not be called if PrefAlign is smaller
1284      // than the current alignment, as the known bits calculation should have
1285      // already taken it into account. However, this is not always the case,
1286      // as computeKnownBits() has a depth limit, while stripPointerCasts()
1287      // doesn't.
1288      Align CurrentAlign = AI->getAlign();
1289      if (PrefAlign <= CurrentAlign)
1290        return CurrentAlign;
1291  
1292      // If the preferred alignment is greater than the natural stack alignment
1293      // then don't round up. This avoids dynamic stack realignment.
1294      if (DL.exceedsNaturalStackAlignment(PrefAlign))
1295        return CurrentAlign;
1296      AI->setAlignment(PrefAlign);
1297      return PrefAlign;
1298    }
1299  
1300    if (auto *GO = dyn_cast<GlobalObject>(V)) {
1301      // TODO: as above, this shouldn't be necessary.
1302      Align CurrentAlign = GO->getPointerAlignment(DL);
1303      if (PrefAlign <= CurrentAlign)
1304        return CurrentAlign;
1305  
1306      // If there is a large requested alignment and we can, bump up the alignment
1307      // of the global.  If the memory we set aside for the global may not be the
1308      // memory used by the final program then it is impossible for us to reliably
1309      // enforce the preferred alignment.
1310      if (!GO->canIncreaseAlignment())
1311        return CurrentAlign;
1312  
1313      GO->setAlignment(PrefAlign);
1314      return PrefAlign;
1315    }
1316  
1317    return Align(1);
1318  }
1319  
1320  Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1321                                         const DataLayout &DL,
1322                                         const Instruction *CxtI,
1323                                         AssumptionCache *AC,
1324                                         const DominatorTree *DT) {
1325    assert(V->getType()->isPointerTy() &&
1326           "getOrEnforceKnownAlignment expects a pointer!");
1327  
1328    KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1329    unsigned TrailZ = Known.countMinTrailingZeros();
1330  
1331    // Avoid trouble with ridiculously large TrailZ values, such as
1332    // those computed from a null pointer.
1333    // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1334    TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1335  
1336    Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1337  
1338    if (PrefAlign && *PrefAlign > Alignment)
1339      Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1340  
1341    // We don't need to make any adjustment.
1342    return Alignment;
1343  }
1344  
1345  ///===---------------------------------------------------------------------===//
1346  ///  Dbg Intrinsic utilities
1347  ///
1348  
1349  /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1350  static bool PhiHasDebugValue(DILocalVariable *DIVar,
1351                               DIExpression *DIExpr,
1352                               PHINode *APN) {
1353    // Since we can't guarantee that the original dbg.declare instrinsic
1354    // is removed by LowerDbgDeclare(), we need to make sure that we are
1355    // not inserting the same dbg.value intrinsic over and over.
1356    SmallVector<DbgValueInst *, 1> DbgValues;
1357    findDbgValues(DbgValues, APN);
1358    for (auto *DVI : DbgValues) {
1359      assert(DVI->getValue() == APN);
1360      if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1361        return true;
1362    }
1363    return false;
1364  }
1365  
1366  /// Check if the alloc size of \p ValTy is large enough to cover the variable
1367  /// (or fragment of the variable) described by \p DII.
1368  ///
1369  /// This is primarily intended as a helper for the different
1370  /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1371  /// converted describes an alloca'd variable, so we need to use the
1372  /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1373  /// identified as covering an n-bit fragment, if the store size of i1 is at
1374  /// least n bits.
1375  static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1376    const DataLayout &DL = DII->getModule()->getDataLayout();
1377    TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1378    if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1379      assert(!ValueSize.isScalable() &&
1380             "Fragments don't work on scalable types.");
1381      return ValueSize.getFixedSize() >= *FragmentSize;
1382    }
1383    // We can't always calculate the size of the DI variable (e.g. if it is a
1384    // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1385    // intead.
1386    if (DII->isAddressOfVariable())
1387      if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1388        if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1389          assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1390                 "Both sizes should agree on the scalable flag.");
1391          return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1392        }
1393    // Could not determine size of variable. Conservatively return false.
1394    return false;
1395  }
1396  
1397  /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1398  /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1399  /// only the scope and inlinedAt is significant. Zero line numbers are used in
1400  /// case this DebugLoc leaks into any adjacent instructions.
1401  static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1402    // Original dbg.declare must have a location.
1403    DebugLoc DeclareLoc = DII->getDebugLoc();
1404    MDNode *Scope = DeclareLoc.getScope();
1405    DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1406    // Produce an unknown location with the correct scope / inlinedAt fields.
1407    return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1408  }
1409  
1410  /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1411  /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1412  void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1413                                             StoreInst *SI, DIBuilder &Builder) {
1414    assert(DII->isAddressOfVariable());
1415    auto *DIVar = DII->getVariable();
1416    assert(DIVar && "Missing variable");
1417    auto *DIExpr = DII->getExpression();
1418    Value *DV = SI->getValueOperand();
1419  
1420    DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1421  
1422    if (!valueCoversEntireFragment(DV->getType(), DII)) {
1423      // FIXME: If storing to a part of the variable described by the dbg.declare,
1424      // then we want to insert a dbg.value for the corresponding fragment.
1425      LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1426                        << *DII << '\n');
1427      // For now, when there is a store to parts of the variable (but we do not
1428      // know which part) we insert an dbg.value instrinsic to indicate that we
1429      // know nothing about the variable's content.
1430      DV = UndefValue::get(DV->getType());
1431      Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1432      return;
1433    }
1434  
1435    Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1436  }
1437  
1438  /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1439  /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1440  void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1441                                             LoadInst *LI, DIBuilder &Builder) {
1442    auto *DIVar = DII->getVariable();
1443    auto *DIExpr = DII->getExpression();
1444    assert(DIVar && "Missing variable");
1445  
1446    if (!valueCoversEntireFragment(LI->getType(), DII)) {
1447      // FIXME: If only referring to a part of the variable described by the
1448      // dbg.declare, then we want to insert a dbg.value for the corresponding
1449      // fragment.
1450      LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1451                        << *DII << '\n');
1452      return;
1453    }
1454  
1455    DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1456  
1457    // We are now tracking the loaded value instead of the address. In the
1458    // future if multi-location support is added to the IR, it might be
1459    // preferable to keep tracking both the loaded value and the original
1460    // address in case the alloca can not be elided.
1461    Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1462        LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1463    DbgValue->insertAfter(LI);
1464  }
1465  
1466  /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1467  /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1468  void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1469                                             PHINode *APN, DIBuilder &Builder) {
1470    auto *DIVar = DII->getVariable();
1471    auto *DIExpr = DII->getExpression();
1472    assert(DIVar && "Missing variable");
1473  
1474    if (PhiHasDebugValue(DIVar, DIExpr, APN))
1475      return;
1476  
1477    if (!valueCoversEntireFragment(APN->getType(), DII)) {
1478      // FIXME: If only referring to a part of the variable described by the
1479      // dbg.declare, then we want to insert a dbg.value for the corresponding
1480      // fragment.
1481      LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1482                        << *DII << '\n');
1483      return;
1484    }
1485  
1486    BasicBlock *BB = APN->getParent();
1487    auto InsertionPt = BB->getFirstInsertionPt();
1488  
1489    DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1490  
1491    // The block may be a catchswitch block, which does not have a valid
1492    // insertion point.
1493    // FIXME: Insert dbg.value markers in the successors when appropriate.
1494    if (InsertionPt != BB->end())
1495      Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1496  }
1497  
1498  /// Determine whether this alloca is either a VLA or an array.
1499  static bool isArray(AllocaInst *AI) {
1500    return AI->isArrayAllocation() ||
1501           (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1502  }
1503  
1504  /// Determine whether this alloca is a structure.
1505  static bool isStructure(AllocaInst *AI) {
1506    return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1507  }
1508  
1509  /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1510  /// of llvm.dbg.value intrinsics.
1511  bool llvm::LowerDbgDeclare(Function &F) {
1512    bool Changed = false;
1513    DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1514    SmallVector<DbgDeclareInst *, 4> Dbgs;
1515    for (auto &FI : F)
1516      for (Instruction &BI : FI)
1517        if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1518          Dbgs.push_back(DDI);
1519  
1520    if (Dbgs.empty())
1521      return Changed;
1522  
1523    for (auto &I : Dbgs) {
1524      DbgDeclareInst *DDI = I;
1525      AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1526      // If this is an alloca for a scalar variable, insert a dbg.value
1527      // at each load and store to the alloca and erase the dbg.declare.
1528      // The dbg.values allow tracking a variable even if it is not
1529      // stored on the stack, while the dbg.declare can only describe
1530      // the stack slot (and at a lexical-scope granularity). Later
1531      // passes will attempt to elide the stack slot.
1532      if (!AI || isArray(AI) || isStructure(AI))
1533        continue;
1534  
1535      // A volatile load/store means that the alloca can't be elided anyway.
1536      if (llvm::any_of(AI->users(), [](User *U) -> bool {
1537            if (LoadInst *LI = dyn_cast<LoadInst>(U))
1538              return LI->isVolatile();
1539            if (StoreInst *SI = dyn_cast<StoreInst>(U))
1540              return SI->isVolatile();
1541            return false;
1542          }))
1543        continue;
1544  
1545      SmallVector<const Value *, 8> WorkList;
1546      WorkList.push_back(AI);
1547      while (!WorkList.empty()) {
1548        const Value *V = WorkList.pop_back_val();
1549        for (auto &AIUse : V->uses()) {
1550          User *U = AIUse.getUser();
1551          if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1552            if (AIUse.getOperandNo() == 1)
1553              ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1554          } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1555            ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1556          } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1557            // This is a call by-value or some other instruction that takes a
1558            // pointer to the variable. Insert a *value* intrinsic that describes
1559            // the variable by dereferencing the alloca.
1560            if (!CI->isLifetimeStartOrEnd()) {
1561              DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1562              auto *DerefExpr =
1563                  DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1564              DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1565                                          NewLoc, CI);
1566            }
1567          } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1568            if (BI->getType()->isPointerTy())
1569              WorkList.push_back(BI);
1570          }
1571        }
1572      }
1573      DDI->eraseFromParent();
1574      Changed = true;
1575    }
1576  
1577    if (Changed)
1578    for (BasicBlock &BB : F)
1579      RemoveRedundantDbgInstrs(&BB);
1580  
1581    return Changed;
1582  }
1583  
1584  /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1585  void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1586                                      SmallVectorImpl<PHINode *> &InsertedPHIs) {
1587    assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1588    if (InsertedPHIs.size() == 0)
1589      return;
1590  
1591    // Map existing PHI nodes to their dbg.values.
1592    ValueToValueMapTy DbgValueMap;
1593    for (auto &I : *BB) {
1594      if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1595        if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1596          DbgValueMap.insert({Loc, DbgII});
1597      }
1598    }
1599    if (DbgValueMap.size() == 0)
1600      return;
1601  
1602    // Then iterate through the new PHIs and look to see if they use one of the
1603    // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1604    // propagate the info through the new PHI.
1605    LLVMContext &C = BB->getContext();
1606    for (auto PHI : InsertedPHIs) {
1607      BasicBlock *Parent = PHI->getParent();
1608      // Avoid inserting an intrinsic into an EH block.
1609      if (Parent->getFirstNonPHI()->isEHPad())
1610        continue;
1611      auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1612      for (auto VI : PHI->operand_values()) {
1613        auto V = DbgValueMap.find(VI);
1614        if (V != DbgValueMap.end()) {
1615          auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1616          Instruction *NewDbgII = DbgII->clone();
1617          NewDbgII->setOperand(0, PhiMAV);
1618          auto InsertionPt = Parent->getFirstInsertionPt();
1619          assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1620          NewDbgII->insertBefore(&*InsertionPt);
1621        }
1622      }
1623    }
1624  }
1625  
1626  /// Finds all intrinsics declaring local variables as living in the memory that
1627  /// 'V' points to. This may include a mix of dbg.declare and
1628  /// dbg.addr intrinsics.
1629  TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1630    // This function is hot. Check whether the value has any metadata to avoid a
1631    // DenseMap lookup.
1632    if (!V->isUsedByMetadata())
1633      return {};
1634    auto *L = LocalAsMetadata::getIfExists(V);
1635    if (!L)
1636      return {};
1637    auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1638    if (!MDV)
1639      return {};
1640  
1641    TinyPtrVector<DbgVariableIntrinsic *> Declares;
1642    for (User *U : MDV->users()) {
1643      if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1644        if (DII->isAddressOfVariable())
1645          Declares.push_back(DII);
1646    }
1647  
1648    return Declares;
1649  }
1650  
1651  TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1652    TinyPtrVector<DbgDeclareInst *> DDIs;
1653    for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1654      if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1655        DDIs.push_back(DDI);
1656    return DDIs;
1657  }
1658  
1659  void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1660    // This function is hot. Check whether the value has any metadata to avoid a
1661    // DenseMap lookup.
1662    if (!V->isUsedByMetadata())
1663      return;
1664    if (auto *L = LocalAsMetadata::getIfExists(V))
1665      if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1666        for (User *U : MDV->users())
1667          if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1668            DbgValues.push_back(DVI);
1669  }
1670  
1671  void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1672                          Value *V) {
1673    // This function is hot. Check whether the value has any metadata to avoid a
1674    // DenseMap lookup.
1675    if (!V->isUsedByMetadata())
1676      return;
1677    if (auto *L = LocalAsMetadata::getIfExists(V))
1678      if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1679        for (User *U : MDV->users())
1680          if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1681            DbgUsers.push_back(DII);
1682  }
1683  
1684  bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1685                               DIBuilder &Builder, uint8_t DIExprFlags,
1686                               int Offset) {
1687    auto DbgAddrs = FindDbgAddrUses(Address);
1688    for (DbgVariableIntrinsic *DII : DbgAddrs) {
1689      DebugLoc Loc = DII->getDebugLoc();
1690      auto *DIVar = DII->getVariable();
1691      auto *DIExpr = DII->getExpression();
1692      assert(DIVar && "Missing variable");
1693      DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1694      // Insert llvm.dbg.declare immediately before DII, and remove old
1695      // llvm.dbg.declare.
1696      Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1697      DII->eraseFromParent();
1698    }
1699    return !DbgAddrs.empty();
1700  }
1701  
1702  static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1703                                          DIBuilder &Builder, int Offset) {
1704    DebugLoc Loc = DVI->getDebugLoc();
1705    auto *DIVar = DVI->getVariable();
1706    auto *DIExpr = DVI->getExpression();
1707    assert(DIVar && "Missing variable");
1708  
1709    // This is an alloca-based llvm.dbg.value. The first thing it should do with
1710    // the alloca pointer is dereference it. Otherwise we don't know how to handle
1711    // it and give up.
1712    if (!DIExpr || DIExpr->getNumElements() < 1 ||
1713        DIExpr->getElement(0) != dwarf::DW_OP_deref)
1714      return;
1715  
1716    // Insert the offset before the first deref.
1717    // We could just change the offset argument of dbg.value, but it's unsigned...
1718    if (Offset)
1719      DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1720  
1721    Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1722    DVI->eraseFromParent();
1723  }
1724  
1725  void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1726                                      DIBuilder &Builder, int Offset) {
1727    if (auto *L = LocalAsMetadata::getIfExists(AI))
1728      if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1729        for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1730          Use &U = *UI++;
1731          if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1732            replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1733        }
1734  }
1735  
1736  /// Wrap \p V in a ValueAsMetadata instance.
1737  static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1738    return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1739  }
1740  
1741  /// Where possible to salvage debug information for \p I do so
1742  /// and return True. If not possible mark undef and return False.
1743  void llvm::salvageDebugInfo(Instruction &I) {
1744    SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1745    findDbgUsers(DbgUsers, &I);
1746    salvageDebugInfoForDbgValues(I, DbgUsers);
1747  }
1748  
1749  void llvm::salvageDebugInfoForDbgValues(
1750      Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1751    auto &Ctx = I.getContext();
1752    bool Salvaged = false;
1753    auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1754  
1755    for (auto *DII : DbgUsers) {
1756      // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1757      // are implicitly pointing out the value as a DWARF memory location
1758      // description.
1759      bool StackValue = isa<DbgValueInst>(DII);
1760  
1761      DIExpression *DIExpr =
1762          salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1763  
1764      // salvageDebugInfoImpl should fail on examining the first element of
1765      // DbgUsers, or none of them.
1766      if (!DIExpr)
1767        break;
1768  
1769      DII->setOperand(0, wrapMD(I.getOperand(0)));
1770      DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1771      LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1772      Salvaged = true;
1773    }
1774  
1775    if (Salvaged)
1776      return;
1777  
1778    for (auto *DII : DbgUsers) {
1779      Value *Undef = UndefValue::get(I.getType());
1780      DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1781                                              ValueAsMetadata::get(Undef)));
1782    }
1783  }
1784  
1785  DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1786                                           DIExpression *SrcDIExpr,
1787                                           bool WithStackValue) {
1788    auto &M = *I.getModule();
1789    auto &DL = M.getDataLayout();
1790  
1791    // Apply a vector of opcodes to the source DIExpression.
1792    auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1793      DIExpression *DIExpr = SrcDIExpr;
1794      if (!Ops.empty()) {
1795        DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1796      }
1797      return DIExpr;
1798    };
1799  
1800    // Apply the given offset to the source DIExpression.
1801    auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1802      SmallVector<uint64_t, 8> Ops;
1803      DIExpression::appendOffset(Ops, Offset);
1804      return doSalvage(Ops);
1805    };
1806  
1807    // initializer-list helper for applying operators to the source DIExpression.
1808    auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1809      SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1810      return doSalvage(Ops);
1811    };
1812  
1813    if (auto *CI = dyn_cast<CastInst>(&I)) {
1814      // No-op casts are irrelevant for debug info.
1815      if (CI->isNoopCast(DL))
1816        return SrcDIExpr;
1817  
1818      Type *Type = CI->getType();
1819      // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1820      if (Type->isVectorTy() ||
1821          !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1822        return nullptr;
1823  
1824      Value *FromValue = CI->getOperand(0);
1825      unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1826      unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1827  
1828      return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1829                                              isa<SExtInst>(&I)));
1830    }
1831  
1832    if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1833      unsigned BitWidth =
1834          M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1835      // Rewrite a constant GEP into a DIExpression.
1836      APInt Offset(BitWidth, 0);
1837      if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1838        return applyOffset(Offset.getSExtValue());
1839      } else {
1840        return nullptr;
1841      }
1842    } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1843      // Rewrite binary operations with constant integer operands.
1844      auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1845      if (!ConstInt || ConstInt->getBitWidth() > 64)
1846        return nullptr;
1847  
1848      uint64_t Val = ConstInt->getSExtValue();
1849      switch (BI->getOpcode()) {
1850      case Instruction::Add:
1851        return applyOffset(Val);
1852      case Instruction::Sub:
1853        return applyOffset(-int64_t(Val));
1854      case Instruction::Mul:
1855        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1856      case Instruction::SDiv:
1857        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1858      case Instruction::SRem:
1859        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1860      case Instruction::Or:
1861        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1862      case Instruction::And:
1863        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1864      case Instruction::Xor:
1865        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1866      case Instruction::Shl:
1867        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1868      case Instruction::LShr:
1869        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1870      case Instruction::AShr:
1871        return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1872      default:
1873        // TODO: Salvage constants from each kind of binop we know about.
1874        return nullptr;
1875      }
1876      // *Not* to do: we should not attempt to salvage load instructions,
1877      // because the validity and lifetime of a dbg.value containing
1878      // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1879    }
1880    return nullptr;
1881  }
1882  
1883  /// A replacement for a dbg.value expression.
1884  using DbgValReplacement = Optional<DIExpression *>;
1885  
1886  /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1887  /// possibly moving/undefing users to prevent use-before-def. Returns true if
1888  /// changes are made.
1889  static bool rewriteDebugUsers(
1890      Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1891      function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1892    // Find debug users of From.
1893    SmallVector<DbgVariableIntrinsic *, 1> Users;
1894    findDbgUsers(Users, &From);
1895    if (Users.empty())
1896      return false;
1897  
1898    // Prevent use-before-def of To.
1899    bool Changed = false;
1900    SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1901    if (isa<Instruction>(&To)) {
1902      bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1903  
1904      for (auto *DII : Users) {
1905        // It's common to see a debug user between From and DomPoint. Move it
1906        // after DomPoint to preserve the variable update without any reordering.
1907        if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1908          LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1909          DII->moveAfter(&DomPoint);
1910          Changed = true;
1911  
1912        // Users which otherwise aren't dominated by the replacement value must
1913        // be salvaged or deleted.
1914        } else if (!DT.dominates(&DomPoint, DII)) {
1915          UndefOrSalvage.insert(DII);
1916        }
1917      }
1918    }
1919  
1920    // Update debug users without use-before-def risk.
1921    for (auto *DII : Users) {
1922      if (UndefOrSalvage.count(DII))
1923        continue;
1924  
1925      LLVMContext &Ctx = DII->getContext();
1926      DbgValReplacement DVR = RewriteExpr(*DII);
1927      if (!DVR)
1928        continue;
1929  
1930      DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1931      DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1932      LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1933      Changed = true;
1934    }
1935  
1936    if (!UndefOrSalvage.empty()) {
1937      // Try to salvage the remaining debug users.
1938      salvageDebugInfo(From);
1939      Changed = true;
1940    }
1941  
1942    return Changed;
1943  }
1944  
1945  /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1946  /// losslessly preserve the bits and semantics of the value. This predicate is
1947  /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1948  ///
1949  /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1950  /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1951  /// and also does not allow lossless pointer <-> integer conversions.
1952  static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1953                                           Type *ToTy) {
1954    // Trivially compatible types.
1955    if (FromTy == ToTy)
1956      return true;
1957  
1958    // Handle compatible pointer <-> integer conversions.
1959    if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1960      bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1961      bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1962                                !DL.isNonIntegralPointerType(ToTy);
1963      return SameSize && LosslessConversion;
1964    }
1965  
1966    // TODO: This is not exhaustive.
1967    return false;
1968  }
1969  
1970  bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1971                                   Instruction &DomPoint, DominatorTree &DT) {
1972    // Exit early if From has no debug users.
1973    if (!From.isUsedByMetadata())
1974      return false;
1975  
1976    assert(&From != &To && "Can't replace something with itself");
1977  
1978    Type *FromTy = From.getType();
1979    Type *ToTy = To.getType();
1980  
1981    auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1982      return DII.getExpression();
1983    };
1984  
1985    // Handle no-op conversions.
1986    Module &M = *From.getModule();
1987    const DataLayout &DL = M.getDataLayout();
1988    if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1989      return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1990  
1991    // Handle integer-to-integer widening and narrowing.
1992    // FIXME: Use DW_OP_convert when it's available everywhere.
1993    if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1994      uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1995      uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1996      assert(FromBits != ToBits && "Unexpected no-op conversion");
1997  
1998      // When the width of the result grows, assume that a debugger will only
1999      // access the low `FromBits` bits when inspecting the source variable.
2000      if (FromBits < ToBits)
2001        return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2002  
2003      // The width of the result has shrunk. Use sign/zero extension to describe
2004      // the source variable's high bits.
2005      auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2006        DILocalVariable *Var = DII.getVariable();
2007  
2008        // Without knowing signedness, sign/zero extension isn't possible.
2009        auto Signedness = Var->getSignedness();
2010        if (!Signedness)
2011          return None;
2012  
2013        bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2014        return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2015                                       Signed);
2016      };
2017      return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2018    }
2019  
2020    // TODO: Floating-point conversions, vectors.
2021    return false;
2022  }
2023  
2024  std::pair<unsigned, unsigned>
2025  llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2026    unsigned NumDeadInst = 0;
2027    unsigned NumDeadDbgInst = 0;
2028    // Delete the instructions backwards, as it has a reduced likelihood of
2029    // having to update as many def-use and use-def chains.
2030    Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2031    while (EndInst != &BB->front()) {
2032      // Delete the next to last instruction.
2033      Instruction *Inst = &*--EndInst->getIterator();
2034      if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2035        Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2036      if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2037        EndInst = Inst;
2038        continue;
2039      }
2040      if (isa<DbgInfoIntrinsic>(Inst))
2041        ++NumDeadDbgInst;
2042      else
2043        ++NumDeadInst;
2044      Inst->eraseFromParent();
2045    }
2046    return {NumDeadInst, NumDeadDbgInst};
2047  }
2048  
2049  unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2050                                     bool PreserveLCSSA, DomTreeUpdater *DTU,
2051                                     MemorySSAUpdater *MSSAU) {
2052    BasicBlock *BB = I->getParent();
2053  
2054    if (MSSAU)
2055      MSSAU->changeToUnreachable(I);
2056  
2057    SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2058  
2059    // Loop over all of the successors, removing BB's entry from any PHI
2060    // nodes.
2061    for (BasicBlock *Successor : successors(BB)) {
2062      Successor->removePredecessor(BB, PreserveLCSSA);
2063      if (DTU)
2064        UniqueSuccessors.insert(Successor);
2065    }
2066    // Insert a call to llvm.trap right before this.  This turns the undefined
2067    // behavior into a hard fail instead of falling through into random code.
2068    if (UseLLVMTrap) {
2069      Function *TrapFn =
2070        Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2071      CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2072      CallTrap->setDebugLoc(I->getDebugLoc());
2073    }
2074    auto *UI = new UnreachableInst(I->getContext(), I);
2075    UI->setDebugLoc(I->getDebugLoc());
2076  
2077    // All instructions after this are dead.
2078    unsigned NumInstrsRemoved = 0;
2079    BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2080    while (BBI != BBE) {
2081      if (!BBI->use_empty())
2082        BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2083      BB->getInstList().erase(BBI++);
2084      ++NumInstrsRemoved;
2085    }
2086    if (DTU) {
2087      SmallVector<DominatorTree::UpdateType, 8> Updates;
2088      Updates.reserve(UniqueSuccessors.size());
2089      for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2090        Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2091      DTU->applyUpdates(Updates);
2092    }
2093    return NumInstrsRemoved;
2094  }
2095  
2096  CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2097    SmallVector<Value *, 8> Args(II->args());
2098    SmallVector<OperandBundleDef, 1> OpBundles;
2099    II->getOperandBundlesAsDefs(OpBundles);
2100    CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2101                                         II->getCalledOperand(), Args, OpBundles);
2102    NewCall->setCallingConv(II->getCallingConv());
2103    NewCall->setAttributes(II->getAttributes());
2104    NewCall->setDebugLoc(II->getDebugLoc());
2105    NewCall->copyMetadata(*II);
2106  
2107    // If the invoke had profile metadata, try converting them for CallInst.
2108    uint64_t TotalWeight;
2109    if (NewCall->extractProfTotalWeight(TotalWeight)) {
2110      // Set the total weight if it fits into i32, otherwise reset.
2111      MDBuilder MDB(NewCall->getContext());
2112      auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2113                            ? nullptr
2114                            : MDB.createBranchWeights({uint32_t(TotalWeight)});
2115      NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2116    }
2117  
2118    return NewCall;
2119  }
2120  
2121  /// changeToCall - Convert the specified invoke into a normal call.
2122  void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2123    CallInst *NewCall = createCallMatchingInvoke(II);
2124    NewCall->takeName(II);
2125    NewCall->insertBefore(II);
2126    II->replaceAllUsesWith(NewCall);
2127  
2128    // Follow the call by a branch to the normal destination.
2129    BasicBlock *NormalDestBB = II->getNormalDest();
2130    BranchInst::Create(NormalDestBB, II);
2131  
2132    // Update PHI nodes in the unwind destination
2133    BasicBlock *BB = II->getParent();
2134    BasicBlock *UnwindDestBB = II->getUnwindDest();
2135    UnwindDestBB->removePredecessor(BB);
2136    II->eraseFromParent();
2137    if (DTU)
2138      DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2139  }
2140  
2141  BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2142                                                     BasicBlock *UnwindEdge) {
2143    BasicBlock *BB = CI->getParent();
2144  
2145    // Convert this function call into an invoke instruction.  First, split the
2146    // basic block.
2147    BasicBlock *Split =
2148        BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2149  
2150    // Delete the unconditional branch inserted by splitBasicBlock
2151    BB->getInstList().pop_back();
2152  
2153    // Create the new invoke instruction.
2154    SmallVector<Value *, 8> InvokeArgs(CI->args());
2155    SmallVector<OperandBundleDef, 1> OpBundles;
2156  
2157    CI->getOperandBundlesAsDefs(OpBundles);
2158  
2159    // Note: we're round tripping operand bundles through memory here, and that
2160    // can potentially be avoided with a cleverer API design that we do not have
2161    // as of this time.
2162  
2163    InvokeInst *II =
2164        InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2165                           UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2166    II->setDebugLoc(CI->getDebugLoc());
2167    II->setCallingConv(CI->getCallingConv());
2168    II->setAttributes(CI->getAttributes());
2169  
2170    // Make sure that anything using the call now uses the invoke!  This also
2171    // updates the CallGraph if present, because it uses a WeakTrackingVH.
2172    CI->replaceAllUsesWith(II);
2173  
2174    // Delete the original call
2175    Split->getInstList().pop_front();
2176    return Split;
2177  }
2178  
2179  static bool markAliveBlocks(Function &F,
2180                              SmallPtrSetImpl<BasicBlock *> &Reachable,
2181                              DomTreeUpdater *DTU = nullptr) {
2182    SmallVector<BasicBlock*, 128> Worklist;
2183    BasicBlock *BB = &F.front();
2184    Worklist.push_back(BB);
2185    Reachable.insert(BB);
2186    bool Changed = false;
2187    do {
2188      BB = Worklist.pop_back_val();
2189  
2190      // Do a quick scan of the basic block, turning any obviously unreachable
2191      // instructions into LLVM unreachable insts.  The instruction combining pass
2192      // canonicalizes unreachable insts into stores to null or undef.
2193      for (Instruction &I : *BB) {
2194        if (auto *CI = dyn_cast<CallInst>(&I)) {
2195          Value *Callee = CI->getCalledOperand();
2196          // Handle intrinsic calls.
2197          if (Function *F = dyn_cast<Function>(Callee)) {
2198            auto IntrinsicID = F->getIntrinsicID();
2199            // Assumptions that are known to be false are equivalent to
2200            // unreachable. Also, if the condition is undefined, then we make the
2201            // choice most beneficial to the optimizer, and choose that to also be
2202            // unreachable.
2203            if (IntrinsicID == Intrinsic::assume) {
2204              if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2205                // Don't insert a call to llvm.trap right before the unreachable.
2206                changeToUnreachable(CI, false, false, DTU);
2207                Changed = true;
2208                break;
2209              }
2210            } else if (IntrinsicID == Intrinsic::experimental_guard) {
2211              // A call to the guard intrinsic bails out of the current
2212              // compilation unit if the predicate passed to it is false. If the
2213              // predicate is a constant false, then we know the guard will bail
2214              // out of the current compile unconditionally, so all code following
2215              // it is dead.
2216              //
2217              // Note: unlike in llvm.assume, it is not "obviously profitable" for
2218              // guards to treat `undef` as `false` since a guard on `undef` can
2219              // still be useful for widening.
2220              if (match(CI->getArgOperand(0), m_Zero()))
2221                if (!isa<UnreachableInst>(CI->getNextNode())) {
2222                  changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2223                                      false, DTU);
2224                  Changed = true;
2225                  break;
2226                }
2227            }
2228          } else if ((isa<ConstantPointerNull>(Callee) &&
2229                      !NullPointerIsDefined(CI->getFunction())) ||
2230                     isa<UndefValue>(Callee)) {
2231            changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2232            Changed = true;
2233            break;
2234          }
2235          if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2236            // If we found a call to a no-return function, insert an unreachable
2237            // instruction after it.  Make sure there isn't *already* one there
2238            // though.
2239            if (!isa<UnreachableInst>(CI->getNextNode())) {
2240              // Don't insert a call to llvm.trap right before the unreachable.
2241              changeToUnreachable(CI->getNextNode(), false, false, DTU);
2242              Changed = true;
2243            }
2244            break;
2245          }
2246        } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2247          // Store to undef and store to null are undefined and used to signal
2248          // that they should be changed to unreachable by passes that can't
2249          // modify the CFG.
2250  
2251          // Don't touch volatile stores.
2252          if (SI->isVolatile()) continue;
2253  
2254          Value *Ptr = SI->getOperand(1);
2255  
2256          if (isa<UndefValue>(Ptr) ||
2257              (isa<ConstantPointerNull>(Ptr) &&
2258               !NullPointerIsDefined(SI->getFunction(),
2259                                     SI->getPointerAddressSpace()))) {
2260            changeToUnreachable(SI, true, false, DTU);
2261            Changed = true;
2262            break;
2263          }
2264        }
2265      }
2266  
2267      Instruction *Terminator = BB->getTerminator();
2268      if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2269        // Turn invokes that call 'nounwind' functions into ordinary calls.
2270        Value *Callee = II->getCalledOperand();
2271        if ((isa<ConstantPointerNull>(Callee) &&
2272             !NullPointerIsDefined(BB->getParent())) ||
2273            isa<UndefValue>(Callee)) {
2274          changeToUnreachable(II, true, false, DTU);
2275          Changed = true;
2276        } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2277          if (II->use_empty() && II->onlyReadsMemory()) {
2278            // jump to the normal destination branch.
2279            BasicBlock *NormalDestBB = II->getNormalDest();
2280            BasicBlock *UnwindDestBB = II->getUnwindDest();
2281            BranchInst::Create(NormalDestBB, II);
2282            UnwindDestBB->removePredecessor(II->getParent());
2283            II->eraseFromParent();
2284            if (DTU)
2285              DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2286          } else
2287            changeToCall(II, DTU);
2288          Changed = true;
2289        }
2290      } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2291        // Remove catchpads which cannot be reached.
2292        struct CatchPadDenseMapInfo {
2293          static CatchPadInst *getEmptyKey() {
2294            return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2295          }
2296  
2297          static CatchPadInst *getTombstoneKey() {
2298            return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2299          }
2300  
2301          static unsigned getHashValue(CatchPadInst *CatchPad) {
2302            return static_cast<unsigned>(hash_combine_range(
2303                CatchPad->value_op_begin(), CatchPad->value_op_end()));
2304          }
2305  
2306          static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2307            if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2308                RHS == getEmptyKey() || RHS == getTombstoneKey())
2309              return LHS == RHS;
2310            return LHS->isIdenticalTo(RHS);
2311          }
2312        };
2313  
2314        SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
2315        // Set of unique CatchPads.
2316        SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2317                      CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2318            HandlerSet;
2319        detail::DenseSetEmpty Empty;
2320        for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2321                                               E = CatchSwitch->handler_end();
2322             I != E; ++I) {
2323          BasicBlock *HandlerBB = *I;
2324          ++NumPerSuccessorCases[HandlerBB];
2325          auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2326          if (!HandlerSet.insert({CatchPad, Empty}).second) {
2327            --NumPerSuccessorCases[HandlerBB];
2328            CatchSwitch->removeHandler(I);
2329            --I;
2330            --E;
2331            Changed = true;
2332          }
2333        }
2334        std::vector<DominatorTree::UpdateType> Updates;
2335        for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2336          if (I.second == 0)
2337            Updates.push_back({DominatorTree::Delete, BB, I.first});
2338        if (DTU)
2339          DTU->applyUpdates(Updates);
2340      }
2341  
2342      Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2343      for (BasicBlock *Successor : successors(BB))
2344        if (Reachable.insert(Successor).second)
2345          Worklist.push_back(Successor);
2346    } while (!Worklist.empty());
2347    return Changed;
2348  }
2349  
2350  void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2351    Instruction *TI = BB->getTerminator();
2352  
2353    if (auto *II = dyn_cast<InvokeInst>(TI)) {
2354      changeToCall(II, DTU);
2355      return;
2356    }
2357  
2358    Instruction *NewTI;
2359    BasicBlock *UnwindDest;
2360  
2361    if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2362      NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2363      UnwindDest = CRI->getUnwindDest();
2364    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2365      auto *NewCatchSwitch = CatchSwitchInst::Create(
2366          CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2367          CatchSwitch->getName(), CatchSwitch);
2368      for (BasicBlock *PadBB : CatchSwitch->handlers())
2369        NewCatchSwitch->addHandler(PadBB);
2370  
2371      NewTI = NewCatchSwitch;
2372      UnwindDest = CatchSwitch->getUnwindDest();
2373    } else {
2374      llvm_unreachable("Could not find unwind successor");
2375    }
2376  
2377    NewTI->takeName(TI);
2378    NewTI->setDebugLoc(TI->getDebugLoc());
2379    UnwindDest->removePredecessor(BB);
2380    TI->replaceAllUsesWith(NewTI);
2381    TI->eraseFromParent();
2382    if (DTU)
2383      DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2384  }
2385  
2386  /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2387  /// if they are in a dead cycle.  Return true if a change was made, false
2388  /// otherwise.
2389  bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2390                                     MemorySSAUpdater *MSSAU) {
2391    SmallPtrSet<BasicBlock *, 16> Reachable;
2392    bool Changed = markAliveBlocks(F, Reachable, DTU);
2393  
2394    // If there are unreachable blocks in the CFG...
2395    if (Reachable.size() == F.size())
2396      return Changed;
2397  
2398    assert(Reachable.size() < F.size());
2399  
2400    // Are there any blocks left to actually delete?
2401    SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2402    for (BasicBlock &BB : F) {
2403      // Skip reachable basic blocks
2404      if (Reachable.count(&BB))
2405        continue;
2406      // Skip already-deleted blocks
2407      if (DTU && DTU->isBBPendingDeletion(&BB))
2408        continue;
2409      BlocksToRemove.insert(&BB);
2410    }
2411  
2412    if (BlocksToRemove.empty())
2413      return Changed;
2414  
2415    Changed = true;
2416    NumRemoved += BlocksToRemove.size();
2417  
2418    if (MSSAU)
2419      MSSAU->removeBlocks(BlocksToRemove);
2420  
2421    // Loop over all of the basic blocks that are up for removal, dropping all of
2422    // their internal references. Update DTU if available.
2423    std::vector<DominatorTree::UpdateType> Updates;
2424    for (auto *BB : BlocksToRemove) {
2425      SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2426      for (BasicBlock *Successor : successors(BB)) {
2427        // Only remove references to BB in reachable successors of BB.
2428        if (Reachable.count(Successor))
2429          Successor->removePredecessor(BB);
2430        if (DTU)
2431          UniqueSuccessors.insert(Successor);
2432      }
2433      BB->dropAllReferences();
2434      if (DTU) {
2435        Instruction *TI = BB->getTerminator();
2436        assert(TI && "Basic block should have a terminator");
2437        // Terminators like invoke can have users. We have to replace their users,
2438        // before removing them.
2439        if (!TI->use_empty())
2440          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2441        TI->eraseFromParent();
2442        new UnreachableInst(BB->getContext(), BB);
2443        assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2444                                 "applying corresponding DTU updates.");
2445        Updates.reserve(Updates.size() + UniqueSuccessors.size());
2446        for (auto *UniqueSuccessor : UniqueSuccessors)
2447          Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2448      }
2449    }
2450  
2451    if (DTU) {
2452      DTU->applyUpdates(Updates);
2453      for (auto *BB : BlocksToRemove)
2454        DTU->deleteBB(BB);
2455    } else {
2456      for (auto *BB : BlocksToRemove)
2457        BB->eraseFromParent();
2458    }
2459  
2460    return Changed;
2461  }
2462  
2463  void llvm::combineMetadata(Instruction *K, const Instruction *J,
2464                             ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2465    SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2466    K->dropUnknownNonDebugMetadata(KnownIDs);
2467    K->getAllMetadataOtherThanDebugLoc(Metadata);
2468    for (const auto &MD : Metadata) {
2469      unsigned Kind = MD.first;
2470      MDNode *JMD = J->getMetadata(Kind);
2471      MDNode *KMD = MD.second;
2472  
2473      switch (Kind) {
2474        default:
2475          K->setMetadata(Kind, nullptr); // Remove unknown metadata
2476          break;
2477        case LLVMContext::MD_dbg:
2478          llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2479        case LLVMContext::MD_tbaa:
2480          K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2481          break;
2482        case LLVMContext::MD_alias_scope:
2483          K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2484          break;
2485        case LLVMContext::MD_noalias:
2486        case LLVMContext::MD_mem_parallel_loop_access:
2487          K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2488          break;
2489        case LLVMContext::MD_access_group:
2490          K->setMetadata(LLVMContext::MD_access_group,
2491                         intersectAccessGroups(K, J));
2492          break;
2493        case LLVMContext::MD_range:
2494  
2495          // If K does move, use most generic range. Otherwise keep the range of
2496          // K.
2497          if (DoesKMove)
2498            // FIXME: If K does move, we should drop the range info and nonnull.
2499            //        Currently this function is used with DoesKMove in passes
2500            //        doing hoisting/sinking and the current behavior of using the
2501            //        most generic range is correct in those cases.
2502            K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2503          break;
2504        case LLVMContext::MD_fpmath:
2505          K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2506          break;
2507        case LLVMContext::MD_invariant_load:
2508          // Only set the !invariant.load if it is present in both instructions.
2509          K->setMetadata(Kind, JMD);
2510          break;
2511        case LLVMContext::MD_nonnull:
2512          // If K does move, keep nonull if it is present in both instructions.
2513          if (DoesKMove)
2514            K->setMetadata(Kind, JMD);
2515          break;
2516        case LLVMContext::MD_invariant_group:
2517          // Preserve !invariant.group in K.
2518          break;
2519        case LLVMContext::MD_align:
2520          K->setMetadata(Kind,
2521            MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2522          break;
2523        case LLVMContext::MD_dereferenceable:
2524        case LLVMContext::MD_dereferenceable_or_null:
2525          K->setMetadata(Kind,
2526            MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2527          break;
2528        case LLVMContext::MD_preserve_access_index:
2529          // Preserve !preserve.access.index in K.
2530          break;
2531      }
2532    }
2533    // Set !invariant.group from J if J has it. If both instructions have it
2534    // then we will just pick it from J - even when they are different.
2535    // Also make sure that K is load or store - f.e. combining bitcast with load
2536    // could produce bitcast with invariant.group metadata, which is invalid.
2537    // FIXME: we should try to preserve both invariant.group md if they are
2538    // different, but right now instruction can only have one invariant.group.
2539    if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2540      if (isa<LoadInst>(K) || isa<StoreInst>(K))
2541        K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2542  }
2543  
2544  void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2545                                   bool KDominatesJ) {
2546    unsigned KnownIDs[] = {
2547        LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2548        LLVMContext::MD_noalias,         LLVMContext::MD_range,
2549        LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2550        LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2551        LLVMContext::MD_dereferenceable,
2552        LLVMContext::MD_dereferenceable_or_null,
2553        LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2554    combineMetadata(K, J, KnownIDs, KDominatesJ);
2555  }
2556  
2557  void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2558    SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2559    Source.getAllMetadata(MD);
2560    MDBuilder MDB(Dest.getContext());
2561    Type *NewType = Dest.getType();
2562    const DataLayout &DL = Source.getModule()->getDataLayout();
2563    for (const auto &MDPair : MD) {
2564      unsigned ID = MDPair.first;
2565      MDNode *N = MDPair.second;
2566      // Note, essentially every kind of metadata should be preserved here! This
2567      // routine is supposed to clone a load instruction changing *only its type*.
2568      // The only metadata it makes sense to drop is metadata which is invalidated
2569      // when the pointer type changes. This should essentially never be the case
2570      // in LLVM, but we explicitly switch over only known metadata to be
2571      // conservatively correct. If you are adding metadata to LLVM which pertains
2572      // to loads, you almost certainly want to add it here.
2573      switch (ID) {
2574      case LLVMContext::MD_dbg:
2575      case LLVMContext::MD_tbaa:
2576      case LLVMContext::MD_prof:
2577      case LLVMContext::MD_fpmath:
2578      case LLVMContext::MD_tbaa_struct:
2579      case LLVMContext::MD_invariant_load:
2580      case LLVMContext::MD_alias_scope:
2581      case LLVMContext::MD_noalias:
2582      case LLVMContext::MD_nontemporal:
2583      case LLVMContext::MD_mem_parallel_loop_access:
2584      case LLVMContext::MD_access_group:
2585        // All of these directly apply.
2586        Dest.setMetadata(ID, N);
2587        break;
2588  
2589      case LLVMContext::MD_nonnull:
2590        copyNonnullMetadata(Source, N, Dest);
2591        break;
2592  
2593      case LLVMContext::MD_align:
2594      case LLVMContext::MD_dereferenceable:
2595      case LLVMContext::MD_dereferenceable_or_null:
2596        // These only directly apply if the new type is also a pointer.
2597        if (NewType->isPointerTy())
2598          Dest.setMetadata(ID, N);
2599        break;
2600  
2601      case LLVMContext::MD_range:
2602        copyRangeMetadata(DL, Source, N, Dest);
2603        break;
2604      }
2605    }
2606  }
2607  
2608  void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2609    auto *ReplInst = dyn_cast<Instruction>(Repl);
2610    if (!ReplInst)
2611      return;
2612  
2613    // Patch the replacement so that it is not more restrictive than the value
2614    // being replaced.
2615    // Note that if 'I' is a load being replaced by some operation,
2616    // for example, by an arithmetic operation, then andIRFlags()
2617    // would just erase all math flags from the original arithmetic
2618    // operation, which is clearly not wanted and not needed.
2619    if (!isa<LoadInst>(I))
2620      ReplInst->andIRFlags(I);
2621  
2622    // FIXME: If both the original and replacement value are part of the
2623    // same control-flow region (meaning that the execution of one
2624    // guarantees the execution of the other), then we can combine the
2625    // noalias scopes here and do better than the general conservative
2626    // answer used in combineMetadata().
2627  
2628    // In general, GVN unifies expressions over different control-flow
2629    // regions, and so we need a conservative combination of the noalias
2630    // scopes.
2631    static const unsigned KnownIDs[] = {
2632        LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2633        LLVMContext::MD_noalias,         LLVMContext::MD_range,
2634        LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2635        LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2636        LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2637    combineMetadata(ReplInst, I, KnownIDs, false);
2638  }
2639  
2640  template <typename RootType, typename DominatesFn>
2641  static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2642                                           const RootType &Root,
2643                                           const DominatesFn &Dominates) {
2644    assert(From->getType() == To->getType());
2645  
2646    unsigned Count = 0;
2647    for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2648         UI != UE;) {
2649      Use &U = *UI++;
2650      if (!Dominates(Root, U))
2651        continue;
2652      U.set(To);
2653      LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2654                        << "' as " << *To << " in " << *U << "\n");
2655      ++Count;
2656    }
2657    return Count;
2658  }
2659  
2660  unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2661     assert(From->getType() == To->getType());
2662     auto *BB = From->getParent();
2663     unsigned Count = 0;
2664  
2665    for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2666         UI != UE;) {
2667      Use &U = *UI++;
2668      auto *I = cast<Instruction>(U.getUser());
2669      if (I->getParent() == BB)
2670        continue;
2671      U.set(To);
2672      ++Count;
2673    }
2674    return Count;
2675  }
2676  
2677  unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2678                                          DominatorTree &DT,
2679                                          const BasicBlockEdge &Root) {
2680    auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2681      return DT.dominates(Root, U);
2682    };
2683    return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2684  }
2685  
2686  unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2687                                          DominatorTree &DT,
2688                                          const BasicBlock *BB) {
2689    auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2690      auto *I = cast<Instruction>(U.getUser())->getParent();
2691      return DT.properlyDominates(BB, I);
2692    };
2693    return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2694  }
2695  
2696  bool llvm::callsGCLeafFunction(const CallBase *Call,
2697                                 const TargetLibraryInfo &TLI) {
2698    // Check if the function is specifically marked as a gc leaf function.
2699    if (Call->hasFnAttr("gc-leaf-function"))
2700      return true;
2701    if (const Function *F = Call->getCalledFunction()) {
2702      if (F->hasFnAttribute("gc-leaf-function"))
2703        return true;
2704  
2705      if (auto IID = F->getIntrinsicID()) {
2706        // Most LLVM intrinsics do not take safepoints.
2707        return IID != Intrinsic::experimental_gc_statepoint &&
2708               IID != Intrinsic::experimental_deoptimize &&
2709               IID != Intrinsic::memcpy_element_unordered_atomic &&
2710               IID != Intrinsic::memmove_element_unordered_atomic;
2711      }
2712    }
2713  
2714    // Lib calls can be materialized by some passes, and won't be
2715    // marked as 'gc-leaf-function.' All available Libcalls are
2716    // GC-leaf.
2717    LibFunc LF;
2718    if (TLI.getLibFunc(*Call, LF)) {
2719      return TLI.has(LF);
2720    }
2721  
2722    return false;
2723  }
2724  
2725  void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2726                                 LoadInst &NewLI) {
2727    auto *NewTy = NewLI.getType();
2728  
2729    // This only directly applies if the new type is also a pointer.
2730    if (NewTy->isPointerTy()) {
2731      NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2732      return;
2733    }
2734  
2735    // The only other translation we can do is to integral loads with !range
2736    // metadata.
2737    if (!NewTy->isIntegerTy())
2738      return;
2739  
2740    MDBuilder MDB(NewLI.getContext());
2741    const Value *Ptr = OldLI.getPointerOperand();
2742    auto *ITy = cast<IntegerType>(NewTy);
2743    auto *NullInt = ConstantExpr::getPtrToInt(
2744        ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2745    auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2746    NewLI.setMetadata(LLVMContext::MD_range,
2747                      MDB.createRange(NonNullInt, NullInt));
2748  }
2749  
2750  void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2751                               MDNode *N, LoadInst &NewLI) {
2752    auto *NewTy = NewLI.getType();
2753  
2754    // Give up unless it is converted to a pointer where there is a single very
2755    // valuable mapping we can do reliably.
2756    // FIXME: It would be nice to propagate this in more ways, but the type
2757    // conversions make it hard.
2758    if (!NewTy->isPointerTy())
2759      return;
2760  
2761    unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2762    if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2763      MDNode *NN = MDNode::get(OldLI.getContext(), None);
2764      NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2765    }
2766  }
2767  
2768  void llvm::dropDebugUsers(Instruction &I) {
2769    SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2770    findDbgUsers(DbgUsers, &I);
2771    for (auto *DII : DbgUsers)
2772      DII->eraseFromParent();
2773  }
2774  
2775  void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2776                                      BasicBlock *BB) {
2777    // Since we are moving the instructions out of its basic block, we do not
2778    // retain their original debug locations (DILocations) and debug intrinsic
2779    // instructions.
2780    //
2781    // Doing so would degrade the debugging experience and adversely affect the
2782    // accuracy of profiling information.
2783    //
2784    // Currently, when hoisting the instructions, we take the following actions:
2785    // - Remove their debug intrinsic instructions.
2786    // - Set their debug locations to the values from the insertion point.
2787    //
2788    // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2789    // need to be deleted, is because there will not be any instructions with a
2790    // DILocation in either branch left after performing the transformation. We
2791    // can only insert a dbg.value after the two branches are joined again.
2792    //
2793    // See PR38762, PR39243 for more details.
2794    //
2795    // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2796    // encode predicated DIExpressions that yield different results on different
2797    // code paths.
2798    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2799      Instruction *I = &*II;
2800      I->dropUnknownNonDebugMetadata();
2801      if (I->isUsedByMetadata())
2802        dropDebugUsers(*I);
2803      if (isa<DbgInfoIntrinsic>(I)) {
2804        // Remove DbgInfo Intrinsics.
2805        II = I->eraseFromParent();
2806        continue;
2807      }
2808      I->setDebugLoc(InsertPt->getDebugLoc());
2809      ++II;
2810    }
2811    DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2812                                   BB->begin(),
2813                                   BB->getTerminator()->getIterator());
2814  }
2815  
2816  namespace {
2817  
2818  /// A potential constituent of a bitreverse or bswap expression. See
2819  /// collectBitParts for a fuller explanation.
2820  struct BitPart {
2821    BitPart(Value *P, unsigned BW) : Provider(P) {
2822      Provenance.resize(BW);
2823    }
2824  
2825    /// The Value that this is a bitreverse/bswap of.
2826    Value *Provider;
2827  
2828    /// The "provenance" of each bit. Provenance[A] = B means that bit A
2829    /// in Provider becomes bit B in the result of this expression.
2830    SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2831  
2832    enum { Unset = -1 };
2833  };
2834  
2835  } // end anonymous namespace
2836  
2837  /// Analyze the specified subexpression and see if it is capable of providing
2838  /// pieces of a bswap or bitreverse. The subexpression provides a potential
2839  /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2840  /// the output of the expression came from a corresponding bit in some other
2841  /// value. This function is recursive, and the end result is a mapping of
2842  /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2843  /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2844  ///
2845  /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2846  /// that the expression deposits the low byte of %X into the high byte of the
2847  /// result and that all other bits are zero. This expression is accepted and a
2848  /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2849  /// [0-7].
2850  ///
2851  /// For vector types, all analysis is performed at the per-element level. No
2852  /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2853  /// constant masks must be splatted across all elements.
2854  ///
2855  /// To avoid revisiting values, the BitPart results are memoized into the
2856  /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2857  /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2858  /// store BitParts objects, not pointers. As we need the concept of a nullptr
2859  /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2860  /// type instead to provide the same functionality.
2861  ///
2862  /// Because we pass around references into \c BPS, we must use a container that
2863  /// does not invalidate internal references (std::map instead of DenseMap).
2864  static const Optional<BitPart> &
2865  collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2866                  std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2867    auto I = BPS.find(V);
2868    if (I != BPS.end())
2869      return I->second;
2870  
2871    auto &Result = BPS[V] = None;
2872    auto BitWidth = V->getType()->getScalarSizeInBits();
2873  
2874    // Prevent stack overflow by limiting the recursion depth
2875    if (Depth == BitPartRecursionMaxDepth) {
2876      LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2877      return Result;
2878    }
2879  
2880    if (auto *I = dyn_cast<Instruction>(V)) {
2881      Value *X, *Y;
2882      const APInt *C;
2883  
2884      // If this is an or instruction, it may be an inner node of the bswap.
2885      if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2886        const auto &A =
2887            collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2888        const auto &B =
2889            collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2890        if (!A || !B)
2891          return Result;
2892  
2893        // Try and merge the two together.
2894        if (!A->Provider || A->Provider != B->Provider)
2895          return Result;
2896  
2897        Result = BitPart(A->Provider, BitWidth);
2898        for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2899          if (A->Provenance[BitIdx] != BitPart::Unset &&
2900              B->Provenance[BitIdx] != BitPart::Unset &&
2901              A->Provenance[BitIdx] != B->Provenance[BitIdx])
2902            return Result = None;
2903  
2904          if (A->Provenance[BitIdx] == BitPart::Unset)
2905            Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2906          else
2907            Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2908        }
2909  
2910        return Result;
2911      }
2912  
2913      // If this is a logical shift by a constant, recurse then shift the result.
2914      if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2915        const APInt &BitShift = *C;
2916  
2917        // Ensure the shift amount is defined.
2918        if (BitShift.uge(BitWidth))
2919          return Result;
2920  
2921        const auto &Res =
2922            collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2923        if (!Res)
2924          return Result;
2925        Result = Res;
2926  
2927        // Perform the "shift" on BitProvenance.
2928        auto &P = Result->Provenance;
2929        if (I->getOpcode() == Instruction::Shl) {
2930          P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2931          P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2932        } else {
2933          P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2934          P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2935        }
2936  
2937        return Result;
2938      }
2939  
2940      // If this is a logical 'and' with a mask that clears bits, recurse then
2941      // unset the appropriate bits.
2942      if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2943        const APInt &AndMask = *C;
2944  
2945        // Check that the mask allows a multiple of 8 bits for a bswap, for an
2946        // early exit.
2947        unsigned NumMaskedBits = AndMask.countPopulation();
2948        if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2949          return Result;
2950  
2951        const auto &Res =
2952            collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2953        if (!Res)
2954          return Result;
2955        Result = Res;
2956  
2957        for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2958          // If the AndMask is zero for this bit, clear the bit.
2959          if (AndMask[BitIdx] == 0)
2960            Result->Provenance[BitIdx] = BitPart::Unset;
2961        return Result;
2962      }
2963  
2964      // If this is a zext instruction zero extend the result.
2965      if (match(V, m_ZExt(m_Value(X)))) {
2966        const auto &Res =
2967            collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2968        if (!Res)
2969          return Result;
2970  
2971        Result = BitPart(Res->Provider, BitWidth);
2972        auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
2973        for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
2974          Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2975        for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
2976          Result->Provenance[BitIdx] = BitPart::Unset;
2977        return Result;
2978      }
2979  
2980      // BITREVERSE - most likely due to us previous matching a partial
2981      // bitreverse.
2982      if (match(V, m_BitReverse(m_Value(X)))) {
2983        const auto &Res =
2984            collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2985        if (!Res)
2986          return Result;
2987  
2988        Result = BitPart(Res->Provider, BitWidth);
2989        for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2990          Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
2991        return Result;
2992      }
2993  
2994      // BSWAP - most likely due to us previous matching a partial bswap.
2995      if (match(V, m_BSwap(m_Value(X)))) {
2996        const auto &Res =
2997            collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2998        if (!Res)
2999          return Result;
3000  
3001        unsigned ByteWidth = BitWidth / 8;
3002        Result = BitPart(Res->Provider, BitWidth);
3003        for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3004          unsigned ByteBitOfs = ByteIdx * 8;
3005          for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3006            Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3007                Res->Provenance[ByteBitOfs + BitIdx];
3008        }
3009        return Result;
3010      }
3011  
3012      // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3013      // amount (modulo).
3014      // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3015      // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3016      if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3017          match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3018        // We can treat fshr as a fshl by flipping the modulo amount.
3019        unsigned ModAmt = C->urem(BitWidth);
3020        if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3021          ModAmt = BitWidth - ModAmt;
3022  
3023        const auto &LHS =
3024            collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3025        const auto &RHS =
3026            collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3027  
3028        // Check we have both sources and they are from the same provider.
3029        if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider)
3030          return Result;
3031  
3032        unsigned StartBitRHS = BitWidth - ModAmt;
3033        Result = BitPart(LHS->Provider, BitWidth);
3034        for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3035          Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3036        for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3037          Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3038        return Result;
3039      }
3040    }
3041  
3042    // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
3043    // the input value to the bswap/bitreverse.
3044    Result = BitPart(V, BitWidth);
3045    for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3046      Result->Provenance[BitIdx] = BitIdx;
3047    return Result;
3048  }
3049  
3050  static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3051                                            unsigned BitWidth) {
3052    if (From % 8 != To % 8)
3053      return false;
3054    // Convert from bit indices to byte indices and check for a byte reversal.
3055    From >>= 3;
3056    To >>= 3;
3057    BitWidth >>= 3;
3058    return From == BitWidth - To - 1;
3059  }
3060  
3061  static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3062                                                 unsigned BitWidth) {
3063    return From == BitWidth - To - 1;
3064  }
3065  
3066  bool llvm::recognizeBSwapOrBitReverseIdiom(
3067      Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3068      SmallVectorImpl<Instruction *> &InsertedInsts) {
3069    if (Operator::getOpcode(I) != Instruction::Or)
3070      return false;
3071    if (!MatchBSwaps && !MatchBitReversals)
3072      return false;
3073    Type *ITy = I->getType();
3074    if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3075      return false;  // Can't do integer/elements > 128 bits.
3076  
3077    Type *DemandedTy = ITy;
3078    if (I->hasOneUse())
3079      if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3080        DemandedTy = Trunc->getType();
3081  
3082    // Try to find all the pieces corresponding to the bswap.
3083    std::map<Value *, Optional<BitPart>> BPS;
3084    auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
3085    if (!Res)
3086      return false;
3087    ArrayRef<int8_t> BitProvenance = Res->Provenance;
3088    assert(all_of(BitProvenance,
3089                  [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3090           "Illegal bit provenance index");
3091  
3092    // If the upper bits are zero, then attempt to perform as a truncated op.
3093    if (BitProvenance.back() == BitPart::Unset) {
3094      while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3095        BitProvenance = BitProvenance.drop_back();
3096      if (BitProvenance.empty())
3097        return false; // TODO - handle null value?
3098      DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3099      if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3100        DemandedTy = VectorType::get(DemandedTy, IVecTy);
3101    }
3102  
3103    // Check BitProvenance hasn't found a source larger than the result type.
3104    unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3105    if (DemandedBW > ITy->getScalarSizeInBits())
3106      return false;
3107  
3108    // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3109    // only byteswap values with an even number of bytes.
3110    APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3111    bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3112    bool OKForBitReverse = MatchBitReversals;
3113    for (unsigned BitIdx = 0;
3114         (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3115      if (BitProvenance[BitIdx] == BitPart::Unset) {
3116        DemandedMask.clearBit(BitIdx);
3117        continue;
3118      }
3119      OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3120                                                  DemandedBW);
3121      OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3122                                                            BitIdx, DemandedBW);
3123    }
3124  
3125    Intrinsic::ID Intrin;
3126    if (OKForBSwap)
3127      Intrin = Intrinsic::bswap;
3128    else if (OKForBitReverse)
3129      Intrin = Intrinsic::bitreverse;
3130    else
3131      return false;
3132  
3133    Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3134    Value *Provider = Res->Provider;
3135  
3136    // We may need to truncate the provider.
3137    if (DemandedTy != Provider->getType()) {
3138      auto *Trunc =
3139          CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3140      InsertedInsts.push_back(Trunc);
3141      Provider = Trunc;
3142    }
3143  
3144    Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3145    InsertedInsts.push_back(Result);
3146  
3147    if (!DemandedMask.isAllOnesValue()) {
3148      auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3149      Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3150      InsertedInsts.push_back(Result);
3151    }
3152  
3153    // We may need to zeroextend back to the result type.
3154    if (ITy != Result->getType()) {
3155      auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3156      InsertedInsts.push_back(ExtInst);
3157    }
3158  
3159    return true;
3160  }
3161  
3162  // CodeGen has special handling for some string functions that may replace
3163  // them with target-specific intrinsics.  Since that'd skip our interceptors
3164  // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3165  // we mark affected calls as NoBuiltin, which will disable optimization
3166  // in CodeGen.
3167  void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3168      CallInst *CI, const TargetLibraryInfo *TLI) {
3169    Function *F = CI->getCalledFunction();
3170    LibFunc Func;
3171    if (F && !F->hasLocalLinkage() && F->hasName() &&
3172        TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3173        !F->doesNotAccessMemory())
3174      CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3175  }
3176  
3177  bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3178    // We can't have a PHI with a metadata type.
3179    if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3180      return false;
3181  
3182    // Early exit.
3183    if (!isa<Constant>(I->getOperand(OpIdx)))
3184      return true;
3185  
3186    switch (I->getOpcode()) {
3187    default:
3188      return true;
3189    case Instruction::Call:
3190    case Instruction::Invoke: {
3191      const auto &CB = cast<CallBase>(*I);
3192  
3193      // Can't handle inline asm. Skip it.
3194      if (CB.isInlineAsm())
3195        return false;
3196  
3197      // Constant bundle operands may need to retain their constant-ness for
3198      // correctness.
3199      if (CB.isBundleOperand(OpIdx))
3200        return false;
3201  
3202      if (OpIdx < CB.getNumArgOperands()) {
3203        // Some variadic intrinsics require constants in the variadic arguments,
3204        // which currently aren't markable as immarg.
3205        if (isa<IntrinsicInst>(CB) &&
3206            OpIdx >= CB.getFunctionType()->getNumParams()) {
3207          // This is known to be OK for stackmap.
3208          return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3209        }
3210  
3211        // gcroot is a special case, since it requires a constant argument which
3212        // isn't also required to be a simple ConstantInt.
3213        if (CB.getIntrinsicID() == Intrinsic::gcroot)
3214          return false;
3215  
3216        // Some intrinsic operands are required to be immediates.
3217        return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3218      }
3219  
3220      // It is never allowed to replace the call argument to an intrinsic, but it
3221      // may be possible for a call.
3222      return !isa<IntrinsicInst>(CB);
3223    }
3224    case Instruction::ShuffleVector:
3225      // Shufflevector masks are constant.
3226      return OpIdx != 2;
3227    case Instruction::Switch:
3228    case Instruction::ExtractValue:
3229      // All operands apart from the first are constant.
3230      return OpIdx == 0;
3231    case Instruction::InsertValue:
3232      // All operands apart from the first and the second are constant.
3233      return OpIdx < 2;
3234    case Instruction::Alloca:
3235      // Static allocas (constant size in the entry block) are handled by
3236      // prologue/epilogue insertion so they're free anyway. We definitely don't
3237      // want to make them non-constant.
3238      return !cast<AllocaInst>(I)->isStaticAlloca();
3239    case Instruction::GetElementPtr:
3240      if (OpIdx == 0)
3241        return true;
3242      gep_type_iterator It = gep_type_begin(I);
3243      for (auto E = std::next(It, OpIdx); It != E; ++It)
3244        if (It.isStruct())
3245          return false;
3246      return true;
3247    }
3248  }
3249  
3250  Value *llvm::invertCondition(Value *Condition) {
3251    // First: Check if it's a constant
3252    if (Constant *C = dyn_cast<Constant>(Condition))
3253      return ConstantExpr::getNot(C);
3254  
3255    // Second: If the condition is already inverted, return the original value
3256    Value *NotCondition;
3257    if (match(Condition, m_Not(m_Value(NotCondition))))
3258      return NotCondition;
3259  
3260    BasicBlock *Parent = nullptr;
3261    Instruction *Inst = dyn_cast<Instruction>(Condition);
3262    if (Inst)
3263      Parent = Inst->getParent();
3264    else if (Argument *Arg = dyn_cast<Argument>(Condition))
3265      Parent = &Arg->getParent()->getEntryBlock();
3266    assert(Parent && "Unsupported condition to invert");
3267  
3268    // Third: Check all the users for an invert
3269    for (User *U : Condition->users())
3270      if (Instruction *I = dyn_cast<Instruction>(U))
3271        if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3272          return I;
3273  
3274    // Last option: Create a new instruction
3275    auto *Inverted =
3276        BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3277    if (Inst && !isa<PHINode>(Inst))
3278      Inverted->insertAfter(Inst);
3279    else
3280      Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3281    return Inverted;
3282  }
3283