1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 // Max recursion depth for collectBitParts used when detecting bswap and 95 // bitreverse idioms 96 static const unsigned BitPartRecursionMaxDepth = 64; 97 98 //===----------------------------------------------------------------------===// 99 // Local constant propagation. 100 // 101 102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 103 /// constant value, convert it into an unconditional branch to the constant 104 /// destination. This is a nontrivial operation because the successors of this 105 /// basic block must have their PHI nodes updated. 106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 107 /// conditions and indirectbr addresses this might make dead if 108 /// DeleteDeadConditions is true. 109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 110 const TargetLibraryInfo *TLI, 111 DomTreeUpdater *DTU) { 112 Instruction *T = BB->getTerminator(); 113 IRBuilder<> Builder(T); 114 115 // Branch - See if we are conditional jumping on constant 116 if (auto *BI = dyn_cast<BranchInst>(T)) { 117 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 118 BasicBlock *Dest1 = BI->getSuccessor(0); 119 BasicBlock *Dest2 = BI->getSuccessor(1); 120 121 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 122 // Are we branching on constant? 123 // YES. Change to unconditional branch... 124 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 125 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 126 127 // Let the basic block know that we are letting go of it. Based on this, 128 // it will adjust it's PHI nodes. 129 OldDest->removePredecessor(BB); 130 131 // Replace the conditional branch with an unconditional one. 132 Builder.CreateBr(Destination); 133 BI->eraseFromParent(); 134 if (DTU) 135 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 136 return true; 137 } 138 139 if (Dest2 == Dest1) { // Conditional branch to same location? 140 // This branch matches something like this: 141 // br bool %cond, label %Dest, label %Dest 142 // and changes it into: br label %Dest 143 144 // Let the basic block know that we are letting go of one copy of it. 145 assert(BI->getParent() && "Terminator not inserted in block!"); 146 Dest1->removePredecessor(BI->getParent()); 147 148 // Replace the conditional branch with an unconditional one. 149 Builder.CreateBr(Dest1); 150 Value *Cond = BI->getCondition(); 151 BI->eraseFromParent(); 152 if (DeleteDeadConditions) 153 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 154 return true; 155 } 156 return false; 157 } 158 159 if (auto *SI = dyn_cast<SwitchInst>(T)) { 160 // If we are switching on a constant, we can convert the switch to an 161 // unconditional branch. 162 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 163 BasicBlock *DefaultDest = SI->getDefaultDest(); 164 BasicBlock *TheOnlyDest = DefaultDest; 165 166 // If the default is unreachable, ignore it when searching for TheOnlyDest. 167 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 168 SI->getNumCases() > 0) { 169 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 170 } 171 172 // Figure out which case it goes to. 173 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 174 // Found case matching a constant operand? 175 if (i->getCaseValue() == CI) { 176 TheOnlyDest = i->getCaseSuccessor(); 177 break; 178 } 179 180 // Check to see if this branch is going to the same place as the default 181 // dest. If so, eliminate it as an explicit compare. 182 if (i->getCaseSuccessor() == DefaultDest) { 183 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 184 unsigned NCases = SI->getNumCases(); 185 // Fold the case metadata into the default if there will be any branches 186 // left, unless the metadata doesn't match the switch. 187 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 188 // Collect branch weights into a vector. 189 SmallVector<uint32_t, 8> Weights; 190 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 191 ++MD_i) { 192 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 193 Weights.push_back(CI->getValue().getZExtValue()); 194 } 195 // Merge weight of this case to the default weight. 196 unsigned idx = i->getCaseIndex(); 197 Weights[0] += Weights[idx+1]; 198 // Remove weight for this case. 199 std::swap(Weights[idx+1], Weights.back()); 200 Weights.pop_back(); 201 SI->setMetadata(LLVMContext::MD_prof, 202 MDBuilder(BB->getContext()). 203 createBranchWeights(Weights)); 204 } 205 // Remove this entry. 206 BasicBlock *ParentBB = SI->getParent(); 207 DefaultDest->removePredecessor(ParentBB); 208 i = SI->removeCase(i); 209 e = SI->case_end(); 210 if (DTU) 211 DTU->applyUpdatesPermissive( 212 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 213 continue; 214 } 215 216 // Otherwise, check to see if the switch only branches to one destination. 217 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 218 // destinations. 219 if (i->getCaseSuccessor() != TheOnlyDest) 220 TheOnlyDest = nullptr; 221 222 // Increment this iterator as we haven't removed the case. 223 ++i; 224 } 225 226 if (CI && !TheOnlyDest) { 227 // Branching on a constant, but not any of the cases, go to the default 228 // successor. 229 TheOnlyDest = SI->getDefaultDest(); 230 } 231 232 // If we found a single destination that we can fold the switch into, do so 233 // now. 234 if (TheOnlyDest) { 235 // Insert the new branch. 236 Builder.CreateBr(TheOnlyDest); 237 BasicBlock *BB = SI->getParent(); 238 std::vector <DominatorTree::UpdateType> Updates; 239 if (DTU) 240 Updates.reserve(SI->getNumSuccessors() - 1); 241 242 // Remove entries from PHI nodes which we no longer branch to... 243 for (BasicBlock *Succ : successors(SI)) { 244 // Found case matching a constant operand? 245 if (Succ == TheOnlyDest) { 246 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 247 } else { 248 Succ->removePredecessor(BB); 249 if (DTU) 250 Updates.push_back({DominatorTree::Delete, BB, Succ}); 251 } 252 } 253 254 // Delete the old switch. 255 Value *Cond = SI->getCondition(); 256 SI->eraseFromParent(); 257 if (DeleteDeadConditions) 258 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 259 if (DTU) 260 DTU->applyUpdatesPermissive(Updates); 261 return true; 262 } 263 264 if (SI->getNumCases() == 1) { 265 // Otherwise, we can fold this switch into a conditional branch 266 // instruction if it has only one non-default destination. 267 auto FirstCase = *SI->case_begin(); 268 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 269 FirstCase.getCaseValue(), "cond"); 270 271 // Insert the new branch. 272 BranchInst *NewBr = Builder.CreateCondBr(Cond, 273 FirstCase.getCaseSuccessor(), 274 SI->getDefaultDest()); 275 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 276 if (MD && MD->getNumOperands() == 3) { 277 ConstantInt *SICase = 278 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 279 ConstantInt *SIDef = 280 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 281 assert(SICase && SIDef); 282 // The TrueWeight should be the weight for the single case of SI. 283 NewBr->setMetadata(LLVMContext::MD_prof, 284 MDBuilder(BB->getContext()). 285 createBranchWeights(SICase->getValue().getZExtValue(), 286 SIDef->getValue().getZExtValue())); 287 } 288 289 // Update make.implicit metadata to the newly-created conditional branch. 290 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 291 if (MakeImplicitMD) 292 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 293 294 // Delete the old switch. 295 SI->eraseFromParent(); 296 return true; 297 } 298 return false; 299 } 300 301 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 302 // indirectbr blockaddress(@F, @BB) -> br label @BB 303 if (auto *BA = 304 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 305 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 306 std::vector <DominatorTree::UpdateType> Updates; 307 if (DTU) 308 Updates.reserve(IBI->getNumDestinations() - 1); 309 310 // Insert the new branch. 311 Builder.CreateBr(TheOnlyDest); 312 313 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 314 if (IBI->getDestination(i) == TheOnlyDest) { 315 TheOnlyDest = nullptr; 316 } else { 317 BasicBlock *ParentBB = IBI->getParent(); 318 BasicBlock *DestBB = IBI->getDestination(i); 319 DestBB->removePredecessor(ParentBB); 320 if (DTU) 321 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 322 } 323 } 324 Value *Address = IBI->getAddress(); 325 IBI->eraseFromParent(); 326 if (DeleteDeadConditions) 327 // Delete pointer cast instructions. 328 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 329 330 // Also zap the blockaddress constant if there are no users remaining, 331 // otherwise the destination is still marked as having its address taken. 332 if (BA->use_empty()) 333 BA->destroyConstant(); 334 335 // If we didn't find our destination in the IBI successor list, then we 336 // have undefined behavior. Replace the unconditional branch with an 337 // 'unreachable' instruction. 338 if (TheOnlyDest) { 339 BB->getTerminator()->eraseFromParent(); 340 new UnreachableInst(BB->getContext(), BB); 341 } 342 343 if (DTU) 344 DTU->applyUpdatesPermissive(Updates); 345 return true; 346 } 347 } 348 349 return false; 350 } 351 352 //===----------------------------------------------------------------------===// 353 // Local dead code elimination. 354 // 355 356 /// isInstructionTriviallyDead - Return true if the result produced by the 357 /// instruction is not used, and the instruction has no side effects. 358 /// 359 bool llvm::isInstructionTriviallyDead(Instruction *I, 360 const TargetLibraryInfo *TLI) { 361 if (!I->use_empty()) 362 return false; 363 return wouldInstructionBeTriviallyDead(I, TLI); 364 } 365 366 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 367 const TargetLibraryInfo *TLI) { 368 if (I->isTerminator()) 369 return false; 370 371 // We don't want the landingpad-like instructions removed by anything this 372 // general. 373 if (I->isEHPad()) 374 return false; 375 376 // We don't want debug info removed by anything this general, unless 377 // debug info is empty. 378 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 379 if (DDI->getAddress()) 380 return false; 381 return true; 382 } 383 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 384 if (DVI->getValue()) 385 return false; 386 return true; 387 } 388 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 389 if (DLI->getLabel()) 390 return false; 391 return true; 392 } 393 394 if (!I->mayHaveSideEffects()) 395 return true; 396 397 // Special case intrinsics that "may have side effects" but can be deleted 398 // when dead. 399 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 400 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 401 if (II->getIntrinsicID() == Intrinsic::stacksave || 402 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 403 return true; 404 405 // Lifetime intrinsics are dead when their right-hand is undef. 406 if (II->isLifetimeStartOrEnd()) 407 return isa<UndefValue>(II->getArgOperand(1)); 408 409 // Assumptions are dead if their condition is trivially true. Guards on 410 // true are operationally no-ops. In the future we can consider more 411 // sophisticated tradeoffs for guards considering potential for check 412 // widening, but for now we keep things simple. 413 if (II->getIntrinsicID() == Intrinsic::assume || 414 II->getIntrinsicID() == Intrinsic::experimental_guard) { 415 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 416 return !Cond->isZero(); 417 418 return false; 419 } 420 } 421 422 if (isAllocLikeFn(I, TLI)) 423 return true; 424 425 if (CallInst *CI = isFreeCall(I, TLI)) 426 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 427 return C->isNullValue() || isa<UndefValue>(C); 428 429 if (auto *Call = dyn_cast<CallBase>(I)) 430 if (isMathLibCallNoop(Call, TLI)) 431 return true; 432 433 return false; 434 } 435 436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 437 /// trivially dead instruction, delete it. If that makes any of its operands 438 /// trivially dead, delete them too, recursively. Return true if any 439 /// instructions were deleted. 440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 441 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 442 Instruction *I = dyn_cast<Instruction>(V); 443 if (!I || !isInstructionTriviallyDead(I, TLI)) 444 return false; 445 446 SmallVector<Instruction*, 16> DeadInsts; 447 DeadInsts.push_back(I); 448 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 449 450 return true; 451 } 452 453 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 454 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 455 MemorySSAUpdater *MSSAU) { 456 // Process the dead instruction list until empty. 457 while (!DeadInsts.empty()) { 458 Instruction &I = *DeadInsts.pop_back_val(); 459 assert(I.use_empty() && "Instructions with uses are not dead."); 460 assert(isInstructionTriviallyDead(&I, TLI) && 461 "Live instruction found in dead worklist!"); 462 463 // Don't lose the debug info while deleting the instructions. 464 salvageDebugInfo(I); 465 466 // Null out all of the instruction's operands to see if any operand becomes 467 // dead as we go. 468 for (Use &OpU : I.operands()) { 469 Value *OpV = OpU.get(); 470 OpU.set(nullptr); 471 472 if (!OpV->use_empty()) 473 continue; 474 475 // If the operand is an instruction that became dead as we nulled out the 476 // operand, and if it is 'trivially' dead, delete it in a future loop 477 // iteration. 478 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 479 if (isInstructionTriviallyDead(OpI, TLI)) 480 DeadInsts.push_back(OpI); 481 } 482 if (MSSAU) 483 MSSAU->removeMemoryAccess(&I); 484 485 I.eraseFromParent(); 486 } 487 } 488 489 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 490 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 491 findDbgUsers(DbgUsers, I); 492 for (auto *DII : DbgUsers) { 493 Value *Undef = UndefValue::get(I->getType()); 494 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 495 ValueAsMetadata::get(Undef))); 496 } 497 return !DbgUsers.empty(); 498 } 499 500 /// areAllUsesEqual - Check whether the uses of a value are all the same. 501 /// This is similar to Instruction::hasOneUse() except this will also return 502 /// true when there are no uses or multiple uses that all refer to the same 503 /// value. 504 static bool areAllUsesEqual(Instruction *I) { 505 Value::user_iterator UI = I->user_begin(); 506 Value::user_iterator UE = I->user_end(); 507 if (UI == UE) 508 return true; 509 510 User *TheUse = *UI; 511 for (++UI; UI != UE; ++UI) { 512 if (*UI != TheUse) 513 return false; 514 } 515 return true; 516 } 517 518 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 519 /// dead PHI node, due to being a def-use chain of single-use nodes that 520 /// either forms a cycle or is terminated by a trivially dead instruction, 521 /// delete it. If that makes any of its operands trivially dead, delete them 522 /// too, recursively. Return true if a change was made. 523 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 524 const TargetLibraryInfo *TLI) { 525 SmallPtrSet<Instruction*, 4> Visited; 526 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 527 I = cast<Instruction>(*I->user_begin())) { 528 if (I->use_empty()) 529 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 530 531 // If we find an instruction more than once, we're on a cycle that 532 // won't prove fruitful. 533 if (!Visited.insert(I).second) { 534 // Break the cycle and delete the instruction and its operands. 535 I->replaceAllUsesWith(UndefValue::get(I->getType())); 536 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 537 return true; 538 } 539 } 540 return false; 541 } 542 543 static bool 544 simplifyAndDCEInstruction(Instruction *I, 545 SmallSetVector<Instruction *, 16> &WorkList, 546 const DataLayout &DL, 547 const TargetLibraryInfo *TLI) { 548 if (isInstructionTriviallyDead(I, TLI)) { 549 salvageDebugInfo(*I); 550 551 // Null out all of the instruction's operands to see if any operand becomes 552 // dead as we go. 553 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 554 Value *OpV = I->getOperand(i); 555 I->setOperand(i, nullptr); 556 557 if (!OpV->use_empty() || I == OpV) 558 continue; 559 560 // If the operand is an instruction that became dead as we nulled out the 561 // operand, and if it is 'trivially' dead, delete it in a future loop 562 // iteration. 563 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 564 if (isInstructionTriviallyDead(OpI, TLI)) 565 WorkList.insert(OpI); 566 } 567 568 I->eraseFromParent(); 569 570 return true; 571 } 572 573 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 574 // Add the users to the worklist. CAREFUL: an instruction can use itself, 575 // in the case of a phi node. 576 for (User *U : I->users()) { 577 if (U != I) { 578 WorkList.insert(cast<Instruction>(U)); 579 } 580 } 581 582 // Replace the instruction with its simplified value. 583 bool Changed = false; 584 if (!I->use_empty()) { 585 I->replaceAllUsesWith(SimpleV); 586 Changed = true; 587 } 588 if (isInstructionTriviallyDead(I, TLI)) { 589 I->eraseFromParent(); 590 Changed = true; 591 } 592 return Changed; 593 } 594 return false; 595 } 596 597 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 598 /// simplify any instructions in it and recursively delete dead instructions. 599 /// 600 /// This returns true if it changed the code, note that it can delete 601 /// instructions in other blocks as well in this block. 602 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 603 const TargetLibraryInfo *TLI) { 604 bool MadeChange = false; 605 const DataLayout &DL = BB->getModule()->getDataLayout(); 606 607 #ifndef NDEBUG 608 // In debug builds, ensure that the terminator of the block is never replaced 609 // or deleted by these simplifications. The idea of simplification is that it 610 // cannot introduce new instructions, and there is no way to replace the 611 // terminator of a block without introducing a new instruction. 612 AssertingVH<Instruction> TerminatorVH(&BB->back()); 613 #endif 614 615 SmallSetVector<Instruction *, 16> WorkList; 616 // Iterate over the original function, only adding insts to the worklist 617 // if they actually need to be revisited. This avoids having to pre-init 618 // the worklist with the entire function's worth of instructions. 619 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 620 BI != E;) { 621 assert(!BI->isTerminator()); 622 Instruction *I = &*BI; 623 ++BI; 624 625 // We're visiting this instruction now, so make sure it's not in the 626 // worklist from an earlier visit. 627 if (!WorkList.count(I)) 628 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 629 } 630 631 while (!WorkList.empty()) { 632 Instruction *I = WorkList.pop_back_val(); 633 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 634 } 635 return MadeChange; 636 } 637 638 //===----------------------------------------------------------------------===// 639 // Control Flow Graph Restructuring. 640 // 641 642 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 643 DomTreeUpdater *DTU) { 644 // This only adjusts blocks with PHI nodes. 645 if (!isa<PHINode>(BB->begin())) 646 return; 647 648 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 649 // them down. This will leave us with single entry phi nodes and other phis 650 // that can be removed. 651 BB->removePredecessor(Pred, true); 652 653 WeakTrackingVH PhiIt = &BB->front(); 654 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 655 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 656 Value *OldPhiIt = PhiIt; 657 658 if (!recursivelySimplifyInstruction(PN)) 659 continue; 660 661 // If recursive simplification ended up deleting the next PHI node we would 662 // iterate to, then our iterator is invalid, restart scanning from the top 663 // of the block. 664 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 665 } 666 if (DTU) 667 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 668 } 669 670 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 671 DomTreeUpdater *DTU) { 672 673 // If BB has single-entry PHI nodes, fold them. 674 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 675 Value *NewVal = PN->getIncomingValue(0); 676 // Replace self referencing PHI with undef, it must be dead. 677 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 678 PN->replaceAllUsesWith(NewVal); 679 PN->eraseFromParent(); 680 } 681 682 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 683 assert(PredBB && "Block doesn't have a single predecessor!"); 684 685 bool ReplaceEntryBB = false; 686 if (PredBB == &DestBB->getParent()->getEntryBlock()) 687 ReplaceEntryBB = true; 688 689 // DTU updates: Collect all the edges that enter 690 // PredBB. These dominator edges will be redirected to DestBB. 691 SmallVector<DominatorTree::UpdateType, 32> Updates; 692 693 if (DTU) { 694 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 695 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 696 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 697 // This predecessor of PredBB may already have DestBB as a successor. 698 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 699 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 700 } 701 } 702 703 // Zap anything that took the address of DestBB. Not doing this will give the 704 // address an invalid value. 705 if (DestBB->hasAddressTaken()) { 706 BlockAddress *BA = BlockAddress::get(DestBB); 707 Constant *Replacement = 708 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 709 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 710 BA->getType())); 711 BA->destroyConstant(); 712 } 713 714 // Anything that branched to PredBB now branches to DestBB. 715 PredBB->replaceAllUsesWith(DestBB); 716 717 // Splice all the instructions from PredBB to DestBB. 718 PredBB->getTerminator()->eraseFromParent(); 719 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 720 new UnreachableInst(PredBB->getContext(), PredBB); 721 722 // If the PredBB is the entry block of the function, move DestBB up to 723 // become the entry block after we erase PredBB. 724 if (ReplaceEntryBB) 725 DestBB->moveAfter(PredBB); 726 727 if (DTU) { 728 assert(PredBB->getInstList().size() == 1 && 729 isa<UnreachableInst>(PredBB->getTerminator()) && 730 "The successor list of PredBB isn't empty before " 731 "applying corresponding DTU updates."); 732 DTU->applyUpdatesPermissive(Updates); 733 DTU->deleteBB(PredBB); 734 // Recalculation of DomTree is needed when updating a forward DomTree and 735 // the Entry BB is replaced. 736 if (ReplaceEntryBB && DTU->hasDomTree()) { 737 // The entry block was removed and there is no external interface for 738 // the dominator tree to be notified of this change. In this corner-case 739 // we recalculate the entire tree. 740 DTU->recalculate(*(DestBB->getParent())); 741 } 742 } 743 744 else { 745 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 746 } 747 } 748 749 /// Return true if we can choose one of these values to use in place of the 750 /// other. Note that we will always choose the non-undef value to keep. 751 static bool CanMergeValues(Value *First, Value *Second) { 752 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 753 } 754 755 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 756 /// branch to Succ, into Succ. 757 /// 758 /// Assumption: Succ is the single successor for BB. 759 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 760 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 761 762 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 763 << Succ->getName() << "\n"); 764 // Shortcut, if there is only a single predecessor it must be BB and merging 765 // is always safe 766 if (Succ->getSinglePredecessor()) return true; 767 768 // Make a list of the predecessors of BB 769 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 770 771 // Look at all the phi nodes in Succ, to see if they present a conflict when 772 // merging these blocks 773 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 774 PHINode *PN = cast<PHINode>(I); 775 776 // If the incoming value from BB is again a PHINode in 777 // BB which has the same incoming value for *PI as PN does, we can 778 // merge the phi nodes and then the blocks can still be merged 779 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 780 if (BBPN && BBPN->getParent() == BB) { 781 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 782 BasicBlock *IBB = PN->getIncomingBlock(PI); 783 if (BBPreds.count(IBB) && 784 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 785 PN->getIncomingValue(PI))) { 786 LLVM_DEBUG(dbgs() 787 << "Can't fold, phi node " << PN->getName() << " in " 788 << Succ->getName() << " is conflicting with " 789 << BBPN->getName() << " with regard to common predecessor " 790 << IBB->getName() << "\n"); 791 return false; 792 } 793 } 794 } else { 795 Value* Val = PN->getIncomingValueForBlock(BB); 796 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 797 // See if the incoming value for the common predecessor is equal to the 798 // one for BB, in which case this phi node will not prevent the merging 799 // of the block. 800 BasicBlock *IBB = PN->getIncomingBlock(PI); 801 if (BBPreds.count(IBB) && 802 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 803 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 804 << " in " << Succ->getName() 805 << " is conflicting with regard to common " 806 << "predecessor " << IBB->getName() << "\n"); 807 return false; 808 } 809 } 810 } 811 } 812 813 return true; 814 } 815 816 using PredBlockVector = SmallVector<BasicBlock *, 16>; 817 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 818 819 /// Determines the value to use as the phi node input for a block. 820 /// 821 /// Select between \p OldVal any value that we know flows from \p BB 822 /// to a particular phi on the basis of which one (if either) is not 823 /// undef. Update IncomingValues based on the selected value. 824 /// 825 /// \param OldVal The value we are considering selecting. 826 /// \param BB The block that the value flows in from. 827 /// \param IncomingValues A map from block-to-value for other phi inputs 828 /// that we have examined. 829 /// 830 /// \returns the selected value. 831 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 832 IncomingValueMap &IncomingValues) { 833 if (!isa<UndefValue>(OldVal)) { 834 assert((!IncomingValues.count(BB) || 835 IncomingValues.find(BB)->second == OldVal) && 836 "Expected OldVal to match incoming value from BB!"); 837 838 IncomingValues.insert(std::make_pair(BB, OldVal)); 839 return OldVal; 840 } 841 842 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 843 if (It != IncomingValues.end()) return It->second; 844 845 return OldVal; 846 } 847 848 /// Create a map from block to value for the operands of a 849 /// given phi. 850 /// 851 /// Create a map from block to value for each non-undef value flowing 852 /// into \p PN. 853 /// 854 /// \param PN The phi we are collecting the map for. 855 /// \param IncomingValues [out] The map from block to value for this phi. 856 static void gatherIncomingValuesToPhi(PHINode *PN, 857 IncomingValueMap &IncomingValues) { 858 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 859 BasicBlock *BB = PN->getIncomingBlock(i); 860 Value *V = PN->getIncomingValue(i); 861 862 if (!isa<UndefValue>(V)) 863 IncomingValues.insert(std::make_pair(BB, V)); 864 } 865 } 866 867 /// Replace the incoming undef values to a phi with the values 868 /// from a block-to-value map. 869 /// 870 /// \param PN The phi we are replacing the undefs in. 871 /// \param IncomingValues A map from block to value. 872 static void replaceUndefValuesInPhi(PHINode *PN, 873 const IncomingValueMap &IncomingValues) { 874 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 875 Value *V = PN->getIncomingValue(i); 876 877 if (!isa<UndefValue>(V)) continue; 878 879 BasicBlock *BB = PN->getIncomingBlock(i); 880 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 881 if (It == IncomingValues.end()) continue; 882 883 PN->setIncomingValue(i, It->second); 884 } 885 } 886 887 /// Replace a value flowing from a block to a phi with 888 /// potentially multiple instances of that value flowing from the 889 /// block's predecessors to the phi. 890 /// 891 /// \param BB The block with the value flowing into the phi. 892 /// \param BBPreds The predecessors of BB. 893 /// \param PN The phi that we are updating. 894 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 895 const PredBlockVector &BBPreds, 896 PHINode *PN) { 897 Value *OldVal = PN->removeIncomingValue(BB, false); 898 assert(OldVal && "No entry in PHI for Pred BB!"); 899 900 IncomingValueMap IncomingValues; 901 902 // We are merging two blocks - BB, and the block containing PN - and 903 // as a result we need to redirect edges from the predecessors of BB 904 // to go to the block containing PN, and update PN 905 // accordingly. Since we allow merging blocks in the case where the 906 // predecessor and successor blocks both share some predecessors, 907 // and where some of those common predecessors might have undef 908 // values flowing into PN, we want to rewrite those values to be 909 // consistent with the non-undef values. 910 911 gatherIncomingValuesToPhi(PN, IncomingValues); 912 913 // If this incoming value is one of the PHI nodes in BB, the new entries 914 // in the PHI node are the entries from the old PHI. 915 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 916 PHINode *OldValPN = cast<PHINode>(OldVal); 917 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 918 // Note that, since we are merging phi nodes and BB and Succ might 919 // have common predecessors, we could end up with a phi node with 920 // identical incoming branches. This will be cleaned up later (and 921 // will trigger asserts if we try to clean it up now, without also 922 // simplifying the corresponding conditional branch). 923 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 924 Value *PredVal = OldValPN->getIncomingValue(i); 925 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 926 IncomingValues); 927 928 // And add a new incoming value for this predecessor for the 929 // newly retargeted branch. 930 PN->addIncoming(Selected, PredBB); 931 } 932 } else { 933 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 934 // Update existing incoming values in PN for this 935 // predecessor of BB. 936 BasicBlock *PredBB = BBPreds[i]; 937 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 938 IncomingValues); 939 940 // And add a new incoming value for this predecessor for the 941 // newly retargeted branch. 942 PN->addIncoming(Selected, PredBB); 943 } 944 } 945 946 replaceUndefValuesInPhi(PN, IncomingValues); 947 } 948 949 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 950 DomTreeUpdater *DTU) { 951 assert(BB != &BB->getParent()->getEntryBlock() && 952 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 953 954 // We can't eliminate infinite loops. 955 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 956 if (BB == Succ) return false; 957 958 // Check to see if merging these blocks would cause conflicts for any of the 959 // phi nodes in BB or Succ. If not, we can safely merge. 960 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 961 962 // Check for cases where Succ has multiple predecessors and a PHI node in BB 963 // has uses which will not disappear when the PHI nodes are merged. It is 964 // possible to handle such cases, but difficult: it requires checking whether 965 // BB dominates Succ, which is non-trivial to calculate in the case where 966 // Succ has multiple predecessors. Also, it requires checking whether 967 // constructing the necessary self-referential PHI node doesn't introduce any 968 // conflicts; this isn't too difficult, but the previous code for doing this 969 // was incorrect. 970 // 971 // Note that if this check finds a live use, BB dominates Succ, so BB is 972 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 973 // folding the branch isn't profitable in that case anyway. 974 if (!Succ->getSinglePredecessor()) { 975 BasicBlock::iterator BBI = BB->begin(); 976 while (isa<PHINode>(*BBI)) { 977 for (Use &U : BBI->uses()) { 978 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 979 if (PN->getIncomingBlock(U) != BB) 980 return false; 981 } else { 982 return false; 983 } 984 } 985 ++BBI; 986 } 987 } 988 989 // We cannot fold the block if it's a branch to an already present callbr 990 // successor because that creates duplicate successors. 991 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 992 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 993 if (Succ == CBI->getDefaultDest()) 994 return false; 995 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 996 if (Succ == CBI->getIndirectDest(i)) 997 return false; 998 } 999 } 1000 1001 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1002 1003 SmallVector<DominatorTree::UpdateType, 32> Updates; 1004 if (DTU) { 1005 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1006 // All predecessors of BB will be moved to Succ. 1007 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1008 Updates.push_back({DominatorTree::Delete, *I, BB}); 1009 // This predecessor of BB may already have Succ as a successor. 1010 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1011 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1012 } 1013 } 1014 1015 if (isa<PHINode>(Succ->begin())) { 1016 // If there is more than one pred of succ, and there are PHI nodes in 1017 // the successor, then we need to add incoming edges for the PHI nodes 1018 // 1019 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1020 1021 // Loop over all of the PHI nodes in the successor of BB. 1022 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1023 PHINode *PN = cast<PHINode>(I); 1024 1025 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1026 } 1027 } 1028 1029 if (Succ->getSinglePredecessor()) { 1030 // BB is the only predecessor of Succ, so Succ will end up with exactly 1031 // the same predecessors BB had. 1032 1033 // Copy over any phi, debug or lifetime instruction. 1034 BB->getTerminator()->eraseFromParent(); 1035 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1036 BB->getInstList()); 1037 } else { 1038 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1039 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1040 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1041 PN->eraseFromParent(); 1042 } 1043 } 1044 1045 // If the unconditional branch we replaced contains llvm.loop metadata, we 1046 // add the metadata to the branch instructions in the predecessors. 1047 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1048 Instruction *TI = BB->getTerminator(); 1049 if (TI) 1050 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1051 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1052 BasicBlock *Pred = *PI; 1053 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1054 } 1055 1056 // Everything that jumped to BB now goes to Succ. 1057 BB->replaceAllUsesWith(Succ); 1058 if (!Succ->hasName()) Succ->takeName(BB); 1059 1060 // Clear the successor list of BB to match updates applying to DTU later. 1061 if (BB->getTerminator()) 1062 BB->getInstList().pop_back(); 1063 new UnreachableInst(BB->getContext(), BB); 1064 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1065 "applying corresponding DTU updates."); 1066 1067 if (DTU) { 1068 DTU->applyUpdatesPermissive(Updates); 1069 DTU->deleteBB(BB); 1070 } else { 1071 BB->eraseFromParent(); // Delete the old basic block. 1072 } 1073 return true; 1074 } 1075 1076 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1077 // This implementation doesn't currently consider undef operands 1078 // specially. Theoretically, two phis which are identical except for 1079 // one having an undef where the other doesn't could be collapsed. 1080 1081 struct PHIDenseMapInfo { 1082 static PHINode *getEmptyKey() { 1083 return DenseMapInfo<PHINode *>::getEmptyKey(); 1084 } 1085 1086 static PHINode *getTombstoneKey() { 1087 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1088 } 1089 1090 static unsigned getHashValue(PHINode *PN) { 1091 // Compute a hash value on the operands. Instcombine will likely have 1092 // sorted them, which helps expose duplicates, but we have to check all 1093 // the operands to be safe in case instcombine hasn't run. 1094 return static_cast<unsigned>(hash_combine( 1095 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1096 hash_combine_range(PN->block_begin(), PN->block_end()))); 1097 } 1098 1099 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1100 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1101 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1102 return LHS == RHS; 1103 return LHS->isIdenticalTo(RHS); 1104 } 1105 }; 1106 1107 // Set of unique PHINodes. 1108 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1109 1110 // Examine each PHI. 1111 bool Changed = false; 1112 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1113 auto Inserted = PHISet.insert(PN); 1114 if (!Inserted.second) { 1115 // A duplicate. Replace this PHI with its duplicate. 1116 PN->replaceAllUsesWith(*Inserted.first); 1117 PN->eraseFromParent(); 1118 Changed = true; 1119 1120 // The RAUW can change PHIs that we already visited. Start over from the 1121 // beginning. 1122 PHISet.clear(); 1123 I = BB->begin(); 1124 } 1125 } 1126 1127 return Changed; 1128 } 1129 1130 /// enforceKnownAlignment - If the specified pointer points to an object that 1131 /// we control, modify the object's alignment to PrefAlign. This isn't 1132 /// often possible though. If alignment is important, a more reliable approach 1133 /// is to simply align all global variables and allocation instructions to 1134 /// their preferred alignment from the beginning. 1135 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment, 1136 unsigned PrefAlign, 1137 const DataLayout &DL) { 1138 assert(PrefAlign > Alignment); 1139 1140 V = V->stripPointerCasts(); 1141 1142 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 // TODO: ideally, computeKnownBits ought to have used 1144 // AllocaInst::getAlignment() in its computation already, making 1145 // the below max redundant. But, as it turns out, 1146 // stripPointerCasts recurses through infinite layers of bitcasts, 1147 // while computeKnownBits is not allowed to traverse more than 6 1148 // levels. 1149 Alignment = std::max(AI->getAlignment(), Alignment); 1150 if (PrefAlign <= Alignment) 1151 return Alignment; 1152 1153 // If the preferred alignment is greater than the natural stack alignment 1154 // then don't round up. This avoids dynamic stack realignment. 1155 if (DL.exceedsNaturalStackAlignment(Align(PrefAlign))) 1156 return Alignment; 1157 AI->setAlignment(MaybeAlign(PrefAlign)); 1158 return PrefAlign; 1159 } 1160 1161 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1162 // TODO: as above, this shouldn't be necessary. 1163 Alignment = std::max(GO->getAlignment(), Alignment); 1164 if (PrefAlign <= Alignment) 1165 return Alignment; 1166 1167 // If there is a large requested alignment and we can, bump up the alignment 1168 // of the global. If the memory we set aside for the global may not be the 1169 // memory used by the final program then it is impossible for us to reliably 1170 // enforce the preferred alignment. 1171 if (!GO->canIncreaseAlignment()) 1172 return Alignment; 1173 1174 GO->setAlignment(MaybeAlign(PrefAlign)); 1175 return PrefAlign; 1176 } 1177 1178 return Alignment; 1179 } 1180 1181 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1182 const DataLayout &DL, 1183 const Instruction *CxtI, 1184 AssumptionCache *AC, 1185 const DominatorTree *DT) { 1186 assert(V->getType()->isPointerTy() && 1187 "getOrEnforceKnownAlignment expects a pointer!"); 1188 1189 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1190 unsigned TrailZ = Known.countMinTrailingZeros(); 1191 1192 // Avoid trouble with ridiculously large TrailZ values, such as 1193 // those computed from a null pointer. 1194 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1195 1196 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1197 1198 // LLVM doesn't support alignments larger than this currently. 1199 Align = std::min(Align, +Value::MaximumAlignment); 1200 1201 if (PrefAlign > Align) 1202 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1203 1204 // We don't need to make any adjustment. 1205 return Align; 1206 } 1207 1208 ///===---------------------------------------------------------------------===// 1209 /// Dbg Intrinsic utilities 1210 /// 1211 1212 /// See if there is a dbg.value intrinsic for DIVar before I. 1213 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1214 Instruction *I) { 1215 // Since we can't guarantee that the original dbg.declare instrinsic 1216 // is removed by LowerDbgDeclare(), we need to make sure that we are 1217 // not inserting the same dbg.value intrinsic over and over. 1218 BasicBlock::InstListType::iterator PrevI(I); 1219 if (PrevI != I->getParent()->getInstList().begin()) { 1220 --PrevI; 1221 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1222 if (DVI->getValue() == I->getOperand(0) && 1223 DVI->getVariable() == DIVar && 1224 DVI->getExpression() == DIExpr) 1225 return true; 1226 } 1227 return false; 1228 } 1229 1230 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1231 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1232 DIExpression *DIExpr, 1233 PHINode *APN) { 1234 // Since we can't guarantee that the original dbg.declare instrinsic 1235 // is removed by LowerDbgDeclare(), we need to make sure that we are 1236 // not inserting the same dbg.value intrinsic over and over. 1237 SmallVector<DbgValueInst *, 1> DbgValues; 1238 findDbgValues(DbgValues, APN); 1239 for (auto *DVI : DbgValues) { 1240 assert(DVI->getValue() == APN); 1241 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1242 return true; 1243 } 1244 return false; 1245 } 1246 1247 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1248 /// (or fragment of the variable) described by \p DII. 1249 /// 1250 /// This is primarily intended as a helper for the different 1251 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1252 /// converted describes an alloca'd variable, so we need to use the 1253 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1254 /// identified as covering an n-bit fragment, if the store size of i1 is at 1255 /// least n bits. 1256 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1257 const DataLayout &DL = DII->getModule()->getDataLayout(); 1258 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1259 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1260 return ValueSize >= *FragmentSize; 1261 // We can't always calculate the size of the DI variable (e.g. if it is a 1262 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1263 // intead. 1264 if (DII->isAddressOfVariable()) 1265 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1266 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1267 return ValueSize >= *FragmentSize; 1268 // Could not determine size of variable. Conservatively return false. 1269 return false; 1270 } 1271 1272 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1273 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1274 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1275 /// case this DebugLoc leaks into any adjacent instructions. 1276 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1277 // Original dbg.declare must have a location. 1278 DebugLoc DeclareLoc = DII->getDebugLoc(); 1279 MDNode *Scope = DeclareLoc.getScope(); 1280 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1281 // Produce an unknown location with the correct scope / inlinedAt fields. 1282 return DebugLoc::get(0, 0, Scope, InlinedAt); 1283 } 1284 1285 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1286 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1287 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1288 StoreInst *SI, DIBuilder &Builder) { 1289 assert(DII->isAddressOfVariable()); 1290 auto *DIVar = DII->getVariable(); 1291 assert(DIVar && "Missing variable"); 1292 auto *DIExpr = DII->getExpression(); 1293 Value *DV = SI->getValueOperand(); 1294 1295 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1296 1297 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1298 // FIXME: If storing to a part of the variable described by the dbg.declare, 1299 // then we want to insert a dbg.value for the corresponding fragment. 1300 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1301 << *DII << '\n'); 1302 // For now, when there is a store to parts of the variable (but we do not 1303 // know which part) we insert an dbg.value instrinsic to indicate that we 1304 // know nothing about the variable's content. 1305 DV = UndefValue::get(DV->getType()); 1306 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1307 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1308 return; 1309 } 1310 1311 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1312 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1313 } 1314 1315 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1316 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1317 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1318 LoadInst *LI, DIBuilder &Builder) { 1319 auto *DIVar = DII->getVariable(); 1320 auto *DIExpr = DII->getExpression(); 1321 assert(DIVar && "Missing variable"); 1322 1323 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1324 return; 1325 1326 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1327 // FIXME: If only referring to a part of the variable described by the 1328 // dbg.declare, then we want to insert a dbg.value for the corresponding 1329 // fragment. 1330 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1331 << *DII << '\n'); 1332 return; 1333 } 1334 1335 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1336 1337 // We are now tracking the loaded value instead of the address. In the 1338 // future if multi-location support is added to the IR, it might be 1339 // preferable to keep tracking both the loaded value and the original 1340 // address in case the alloca can not be elided. 1341 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1342 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1343 DbgValue->insertAfter(LI); 1344 } 1345 1346 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1347 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1348 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1349 PHINode *APN, DIBuilder &Builder) { 1350 auto *DIVar = DII->getVariable(); 1351 auto *DIExpr = DII->getExpression(); 1352 assert(DIVar && "Missing variable"); 1353 1354 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1355 return; 1356 1357 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1358 // FIXME: If only referring to a part of the variable described by the 1359 // dbg.declare, then we want to insert a dbg.value for the corresponding 1360 // fragment. 1361 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1362 << *DII << '\n'); 1363 return; 1364 } 1365 1366 BasicBlock *BB = APN->getParent(); 1367 auto InsertionPt = BB->getFirstInsertionPt(); 1368 1369 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1370 1371 // The block may be a catchswitch block, which does not have a valid 1372 // insertion point. 1373 // FIXME: Insert dbg.value markers in the successors when appropriate. 1374 if (InsertionPt != BB->end()) 1375 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1376 } 1377 1378 /// Determine whether this alloca is either a VLA or an array. 1379 static bool isArray(AllocaInst *AI) { 1380 return AI->isArrayAllocation() || 1381 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1382 } 1383 1384 /// Determine whether this alloca is a structure. 1385 static bool isStructure(AllocaInst *AI) { 1386 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1387 } 1388 1389 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1390 /// of llvm.dbg.value intrinsics. 1391 bool llvm::LowerDbgDeclare(Function &F) { 1392 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1393 SmallVector<DbgDeclareInst *, 4> Dbgs; 1394 for (auto &FI : F) 1395 for (Instruction &BI : FI) 1396 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1397 Dbgs.push_back(DDI); 1398 1399 if (Dbgs.empty()) 1400 return false; 1401 1402 for (auto &I : Dbgs) { 1403 DbgDeclareInst *DDI = I; 1404 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1405 // If this is an alloca for a scalar variable, insert a dbg.value 1406 // at each load and store to the alloca and erase the dbg.declare. 1407 // The dbg.values allow tracking a variable even if it is not 1408 // stored on the stack, while the dbg.declare can only describe 1409 // the stack slot (and at a lexical-scope granularity). Later 1410 // passes will attempt to elide the stack slot. 1411 if (!AI || isArray(AI) || isStructure(AI)) 1412 continue; 1413 1414 // A volatile load/store means that the alloca can't be elided anyway. 1415 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1416 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1417 return LI->isVolatile(); 1418 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1419 return SI->isVolatile(); 1420 return false; 1421 })) 1422 continue; 1423 1424 SmallVector<const Value *, 8> WorkList; 1425 WorkList.push_back(AI); 1426 while (!WorkList.empty()) { 1427 const Value *V = WorkList.pop_back_val(); 1428 for (auto &AIUse : V->uses()) { 1429 User *U = AIUse.getUser(); 1430 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1431 if (AIUse.getOperandNo() == 1) 1432 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1433 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1434 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1435 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1436 // This is a call by-value or some other instruction that takes a 1437 // pointer to the variable. Insert a *value* intrinsic that describes 1438 // the variable by dereferencing the alloca. 1439 if (!CI->isLifetimeStartOrEnd()) { 1440 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1441 auto *DerefExpr = 1442 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1443 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1444 NewLoc, CI); 1445 } 1446 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1447 if (BI->getType()->isPointerTy()) 1448 WorkList.push_back(BI); 1449 } 1450 } 1451 } 1452 DDI->eraseFromParent(); 1453 } 1454 return true; 1455 } 1456 1457 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1458 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1459 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1460 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1461 if (InsertedPHIs.size() == 0) 1462 return; 1463 1464 // Map existing PHI nodes to their dbg.values. 1465 ValueToValueMapTy DbgValueMap; 1466 for (auto &I : *BB) { 1467 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1468 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1469 DbgValueMap.insert({Loc, DbgII}); 1470 } 1471 } 1472 if (DbgValueMap.size() == 0) 1473 return; 1474 1475 // Then iterate through the new PHIs and look to see if they use one of the 1476 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1477 // propagate the info through the new PHI. 1478 LLVMContext &C = BB->getContext(); 1479 for (auto PHI : InsertedPHIs) { 1480 BasicBlock *Parent = PHI->getParent(); 1481 // Avoid inserting an intrinsic into an EH block. 1482 if (Parent->getFirstNonPHI()->isEHPad()) 1483 continue; 1484 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1485 for (auto VI : PHI->operand_values()) { 1486 auto V = DbgValueMap.find(VI); 1487 if (V != DbgValueMap.end()) { 1488 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1489 Instruction *NewDbgII = DbgII->clone(); 1490 NewDbgII->setOperand(0, PhiMAV); 1491 auto InsertionPt = Parent->getFirstInsertionPt(); 1492 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1493 NewDbgII->insertBefore(&*InsertionPt); 1494 } 1495 } 1496 } 1497 } 1498 1499 /// Finds all intrinsics declaring local variables as living in the memory that 1500 /// 'V' points to. This may include a mix of dbg.declare and 1501 /// dbg.addr intrinsics. 1502 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1503 // This function is hot. Check whether the value has any metadata to avoid a 1504 // DenseMap lookup. 1505 if (!V->isUsedByMetadata()) 1506 return {}; 1507 auto *L = LocalAsMetadata::getIfExists(V); 1508 if (!L) 1509 return {}; 1510 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1511 if (!MDV) 1512 return {}; 1513 1514 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1515 for (User *U : MDV->users()) { 1516 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1517 if (DII->isAddressOfVariable()) 1518 Declares.push_back(DII); 1519 } 1520 1521 return Declares; 1522 } 1523 1524 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1525 // This function is hot. Check whether the value has any metadata to avoid a 1526 // DenseMap lookup. 1527 if (!V->isUsedByMetadata()) 1528 return; 1529 if (auto *L = LocalAsMetadata::getIfExists(V)) 1530 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1531 for (User *U : MDV->users()) 1532 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1533 DbgValues.push_back(DVI); 1534 } 1535 1536 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1537 Value *V) { 1538 // This function is hot. Check whether the value has any metadata to avoid a 1539 // DenseMap lookup. 1540 if (!V->isUsedByMetadata()) 1541 return; 1542 if (auto *L = LocalAsMetadata::getIfExists(V)) 1543 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1544 for (User *U : MDV->users()) 1545 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1546 DbgUsers.push_back(DII); 1547 } 1548 1549 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1550 Instruction *InsertBefore, DIBuilder &Builder, 1551 uint8_t DIExprFlags, int Offset) { 1552 auto DbgAddrs = FindDbgAddrUses(Address); 1553 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1554 DebugLoc Loc = DII->getDebugLoc(); 1555 auto *DIVar = DII->getVariable(); 1556 auto *DIExpr = DII->getExpression(); 1557 assert(DIVar && "Missing variable"); 1558 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1559 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1560 // llvm.dbg.declare. 1561 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1562 if (DII == InsertBefore) 1563 InsertBefore = InsertBefore->getNextNode(); 1564 DII->eraseFromParent(); 1565 } 1566 return !DbgAddrs.empty(); 1567 } 1568 1569 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1570 DIBuilder &Builder, uint8_t DIExprFlags, 1571 int Offset) { 1572 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1573 DIExprFlags, Offset); 1574 } 1575 1576 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1577 DIBuilder &Builder, int Offset) { 1578 DebugLoc Loc = DVI->getDebugLoc(); 1579 auto *DIVar = DVI->getVariable(); 1580 auto *DIExpr = DVI->getExpression(); 1581 assert(DIVar && "Missing variable"); 1582 1583 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1584 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1585 // it and give up. 1586 if (!DIExpr || DIExpr->getNumElements() < 1 || 1587 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1588 return; 1589 1590 // Insert the offset before the first deref. 1591 // We could just change the offset argument of dbg.value, but it's unsigned... 1592 if (Offset) 1593 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1594 1595 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1596 DVI->eraseFromParent(); 1597 } 1598 1599 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1600 DIBuilder &Builder, int Offset) { 1601 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1602 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1603 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1604 Use &U = *UI++; 1605 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1606 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1607 } 1608 } 1609 1610 /// Wrap \p V in a ValueAsMetadata instance. 1611 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1612 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1613 } 1614 1615 bool llvm::salvageDebugInfo(Instruction &I) { 1616 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1617 findDbgUsers(DbgUsers, &I); 1618 if (DbgUsers.empty()) 1619 return false; 1620 1621 return salvageDebugInfoForDbgValues(I, DbgUsers); 1622 } 1623 1624 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) { 1625 if (!salvageDebugInfo(I)) 1626 replaceDbgUsesWithUndef(&I); 1627 } 1628 1629 bool llvm::salvageDebugInfoForDbgValues( 1630 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1631 auto &Ctx = I.getContext(); 1632 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1633 1634 for (auto *DII : DbgUsers) { 1635 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1636 // are implicitly pointing out the value as a DWARF memory location 1637 // description. 1638 bool StackValue = isa<DbgValueInst>(DII); 1639 1640 DIExpression *DIExpr = 1641 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1642 1643 // salvageDebugInfoImpl should fail on examining the first element of 1644 // DbgUsers, or none of them. 1645 if (!DIExpr) 1646 return false; 1647 1648 DII->setOperand(0, wrapMD(I.getOperand(0))); 1649 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1650 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1651 } 1652 1653 return true; 1654 } 1655 1656 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1657 DIExpression *SrcDIExpr, 1658 bool WithStackValue) { 1659 auto &M = *I.getModule(); 1660 auto &DL = M.getDataLayout(); 1661 1662 // Apply a vector of opcodes to the source DIExpression. 1663 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1664 DIExpression *DIExpr = SrcDIExpr; 1665 if (!Ops.empty()) { 1666 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1667 } 1668 return DIExpr; 1669 }; 1670 1671 // Apply the given offset to the source DIExpression. 1672 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1673 SmallVector<uint64_t, 8> Ops; 1674 DIExpression::appendOffset(Ops, Offset); 1675 return doSalvage(Ops); 1676 }; 1677 1678 // initializer-list helper for applying operators to the source DIExpression. 1679 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1680 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1681 return doSalvage(Ops); 1682 }; 1683 1684 if (auto *CI = dyn_cast<CastInst>(&I)) { 1685 // No-op casts and zexts are irrelevant for debug info. 1686 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1687 return SrcDIExpr; 1688 1689 Type *Type = CI->getType(); 1690 // Casts other than Trunc or SExt to scalar types cannot be salvaged. 1691 if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I))) 1692 return nullptr; 1693 1694 Value *FromValue = CI->getOperand(0); 1695 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1696 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1697 1698 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1699 isa<SExtInst>(&I))); 1700 } 1701 1702 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1703 unsigned BitWidth = 1704 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1705 // Rewrite a constant GEP into a DIExpression. 1706 APInt Offset(BitWidth, 0); 1707 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1708 return applyOffset(Offset.getSExtValue()); 1709 } else { 1710 return nullptr; 1711 } 1712 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1713 // Rewrite binary operations with constant integer operands. 1714 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1715 if (!ConstInt || ConstInt->getBitWidth() > 64) 1716 return nullptr; 1717 1718 uint64_t Val = ConstInt->getSExtValue(); 1719 switch (BI->getOpcode()) { 1720 case Instruction::Add: 1721 return applyOffset(Val); 1722 case Instruction::Sub: 1723 return applyOffset(-int64_t(Val)); 1724 case Instruction::Mul: 1725 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1726 case Instruction::SDiv: 1727 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1728 case Instruction::SRem: 1729 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1730 case Instruction::Or: 1731 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1732 case Instruction::And: 1733 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1734 case Instruction::Xor: 1735 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1736 case Instruction::Shl: 1737 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1738 case Instruction::LShr: 1739 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1740 case Instruction::AShr: 1741 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1742 default: 1743 // TODO: Salvage constants from each kind of binop we know about. 1744 return nullptr; 1745 } 1746 // *Not* to do: we should not attempt to salvage load instructions, 1747 // because the validity and lifetime of a dbg.value containing 1748 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1749 } 1750 return nullptr; 1751 } 1752 1753 /// A replacement for a dbg.value expression. 1754 using DbgValReplacement = Optional<DIExpression *>; 1755 1756 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1757 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1758 /// changes are made. 1759 static bool rewriteDebugUsers( 1760 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1761 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1762 // Find debug users of From. 1763 SmallVector<DbgVariableIntrinsic *, 1> Users; 1764 findDbgUsers(Users, &From); 1765 if (Users.empty()) 1766 return false; 1767 1768 // Prevent use-before-def of To. 1769 bool Changed = false; 1770 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1771 if (isa<Instruction>(&To)) { 1772 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1773 1774 for (auto *DII : Users) { 1775 // It's common to see a debug user between From and DomPoint. Move it 1776 // after DomPoint to preserve the variable update without any reordering. 1777 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1778 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1779 DII->moveAfter(&DomPoint); 1780 Changed = true; 1781 1782 // Users which otherwise aren't dominated by the replacement value must 1783 // be salvaged or deleted. 1784 } else if (!DT.dominates(&DomPoint, DII)) { 1785 UndefOrSalvage.insert(DII); 1786 } 1787 } 1788 } 1789 1790 // Update debug users without use-before-def risk. 1791 for (auto *DII : Users) { 1792 if (UndefOrSalvage.count(DII)) 1793 continue; 1794 1795 LLVMContext &Ctx = DII->getContext(); 1796 DbgValReplacement DVR = RewriteExpr(*DII); 1797 if (!DVR) 1798 continue; 1799 1800 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1801 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1802 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1803 Changed = true; 1804 } 1805 1806 if (!UndefOrSalvage.empty()) { 1807 // Try to salvage the remaining debug users. 1808 salvageDebugInfoOrMarkUndef(From); 1809 Changed = true; 1810 } 1811 1812 return Changed; 1813 } 1814 1815 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1816 /// losslessly preserve the bits and semantics of the value. This predicate is 1817 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1818 /// 1819 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1820 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1821 /// and also does not allow lossless pointer <-> integer conversions. 1822 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1823 Type *ToTy) { 1824 // Trivially compatible types. 1825 if (FromTy == ToTy) 1826 return true; 1827 1828 // Handle compatible pointer <-> integer conversions. 1829 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1830 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1831 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1832 !DL.isNonIntegralPointerType(ToTy); 1833 return SameSize && LosslessConversion; 1834 } 1835 1836 // TODO: This is not exhaustive. 1837 return false; 1838 } 1839 1840 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1841 Instruction &DomPoint, DominatorTree &DT) { 1842 // Exit early if From has no debug users. 1843 if (!From.isUsedByMetadata()) 1844 return false; 1845 1846 assert(&From != &To && "Can't replace something with itself"); 1847 1848 Type *FromTy = From.getType(); 1849 Type *ToTy = To.getType(); 1850 1851 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1852 return DII.getExpression(); 1853 }; 1854 1855 // Handle no-op conversions. 1856 Module &M = *From.getModule(); 1857 const DataLayout &DL = M.getDataLayout(); 1858 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1859 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1860 1861 // Handle integer-to-integer widening and narrowing. 1862 // FIXME: Use DW_OP_convert when it's available everywhere. 1863 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1864 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1865 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1866 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1867 1868 // When the width of the result grows, assume that a debugger will only 1869 // access the low `FromBits` bits when inspecting the source variable. 1870 if (FromBits < ToBits) 1871 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1872 1873 // The width of the result has shrunk. Use sign/zero extension to describe 1874 // the source variable's high bits. 1875 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1876 DILocalVariable *Var = DII.getVariable(); 1877 1878 // Without knowing signedness, sign/zero extension isn't possible. 1879 auto Signedness = Var->getSignedness(); 1880 if (!Signedness) 1881 return None; 1882 1883 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1884 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1885 Signed); 1886 }; 1887 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1888 } 1889 1890 // TODO: Floating-point conversions, vectors. 1891 return false; 1892 } 1893 1894 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1895 unsigned NumDeadInst = 0; 1896 // Delete the instructions backwards, as it has a reduced likelihood of 1897 // having to update as many def-use and use-def chains. 1898 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1899 while (EndInst != &BB->front()) { 1900 // Delete the next to last instruction. 1901 Instruction *Inst = &*--EndInst->getIterator(); 1902 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1903 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1904 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1905 EndInst = Inst; 1906 continue; 1907 } 1908 if (!isa<DbgInfoIntrinsic>(Inst)) 1909 ++NumDeadInst; 1910 Inst->eraseFromParent(); 1911 } 1912 return NumDeadInst; 1913 } 1914 1915 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1916 bool PreserveLCSSA, DomTreeUpdater *DTU, 1917 MemorySSAUpdater *MSSAU) { 1918 BasicBlock *BB = I->getParent(); 1919 std::vector <DominatorTree::UpdateType> Updates; 1920 1921 if (MSSAU) 1922 MSSAU->changeToUnreachable(I); 1923 1924 // Loop over all of the successors, removing BB's entry from any PHI 1925 // nodes. 1926 if (DTU) 1927 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1928 for (BasicBlock *Successor : successors(BB)) { 1929 Successor->removePredecessor(BB, PreserveLCSSA); 1930 if (DTU) 1931 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1932 } 1933 // Insert a call to llvm.trap right before this. This turns the undefined 1934 // behavior into a hard fail instead of falling through into random code. 1935 if (UseLLVMTrap) { 1936 Function *TrapFn = 1937 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1938 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1939 CallTrap->setDebugLoc(I->getDebugLoc()); 1940 } 1941 auto *UI = new UnreachableInst(I->getContext(), I); 1942 UI->setDebugLoc(I->getDebugLoc()); 1943 1944 // All instructions after this are dead. 1945 unsigned NumInstrsRemoved = 0; 1946 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1947 while (BBI != BBE) { 1948 if (!BBI->use_empty()) 1949 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1950 BB->getInstList().erase(BBI++); 1951 ++NumInstrsRemoved; 1952 } 1953 if (DTU) 1954 DTU->applyUpdatesPermissive(Updates); 1955 return NumInstrsRemoved; 1956 } 1957 1958 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 1959 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 1960 SmallVector<OperandBundleDef, 1> OpBundles; 1961 II->getOperandBundlesAsDefs(OpBundles); 1962 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 1963 II->getCalledValue(), Args, OpBundles); 1964 NewCall->setCallingConv(II->getCallingConv()); 1965 NewCall->setAttributes(II->getAttributes()); 1966 NewCall->setDebugLoc(II->getDebugLoc()); 1967 NewCall->copyMetadata(*II); 1968 return NewCall; 1969 } 1970 1971 /// changeToCall - Convert the specified invoke into a normal call. 1972 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 1973 CallInst *NewCall = createCallMatchingInvoke(II); 1974 NewCall->takeName(II); 1975 NewCall->insertBefore(II); 1976 II->replaceAllUsesWith(NewCall); 1977 1978 // Follow the call by a branch to the normal destination. 1979 BasicBlock *NormalDestBB = II->getNormalDest(); 1980 BranchInst::Create(NormalDestBB, II); 1981 1982 // Update PHI nodes in the unwind destination 1983 BasicBlock *BB = II->getParent(); 1984 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1985 UnwindDestBB->removePredecessor(BB); 1986 II->eraseFromParent(); 1987 if (DTU) 1988 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 1989 } 1990 1991 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1992 BasicBlock *UnwindEdge) { 1993 BasicBlock *BB = CI->getParent(); 1994 1995 // Convert this function call into an invoke instruction. First, split the 1996 // basic block. 1997 BasicBlock *Split = 1998 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1999 2000 // Delete the unconditional branch inserted by splitBasicBlock 2001 BB->getInstList().pop_back(); 2002 2003 // Create the new invoke instruction. 2004 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2005 SmallVector<OperandBundleDef, 1> OpBundles; 2006 2007 CI->getOperandBundlesAsDefs(OpBundles); 2008 2009 // Note: we're round tripping operand bundles through memory here, and that 2010 // can potentially be avoided with a cleverer API design that we do not have 2011 // as of this time. 2012 2013 InvokeInst *II = 2014 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 2015 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2016 II->setDebugLoc(CI->getDebugLoc()); 2017 II->setCallingConv(CI->getCallingConv()); 2018 II->setAttributes(CI->getAttributes()); 2019 2020 // Make sure that anything using the call now uses the invoke! This also 2021 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2022 CI->replaceAllUsesWith(II); 2023 2024 // Delete the original call 2025 Split->getInstList().pop_front(); 2026 return Split; 2027 } 2028 2029 static bool markAliveBlocks(Function &F, 2030 SmallPtrSetImpl<BasicBlock *> &Reachable, 2031 DomTreeUpdater *DTU = nullptr) { 2032 SmallVector<BasicBlock*, 128> Worklist; 2033 BasicBlock *BB = &F.front(); 2034 Worklist.push_back(BB); 2035 Reachable.insert(BB); 2036 bool Changed = false; 2037 do { 2038 BB = Worklist.pop_back_val(); 2039 2040 // Do a quick scan of the basic block, turning any obviously unreachable 2041 // instructions into LLVM unreachable insts. The instruction combining pass 2042 // canonicalizes unreachable insts into stores to null or undef. 2043 for (Instruction &I : *BB) { 2044 if (auto *CI = dyn_cast<CallInst>(&I)) { 2045 Value *Callee = CI->getCalledValue(); 2046 // Handle intrinsic calls. 2047 if (Function *F = dyn_cast<Function>(Callee)) { 2048 auto IntrinsicID = F->getIntrinsicID(); 2049 // Assumptions that are known to be false are equivalent to 2050 // unreachable. Also, if the condition is undefined, then we make the 2051 // choice most beneficial to the optimizer, and choose that to also be 2052 // unreachable. 2053 if (IntrinsicID == Intrinsic::assume) { 2054 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2055 // Don't insert a call to llvm.trap right before the unreachable. 2056 changeToUnreachable(CI, false, false, DTU); 2057 Changed = true; 2058 break; 2059 } 2060 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2061 // A call to the guard intrinsic bails out of the current 2062 // compilation unit if the predicate passed to it is false. If the 2063 // predicate is a constant false, then we know the guard will bail 2064 // out of the current compile unconditionally, so all code following 2065 // it is dead. 2066 // 2067 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2068 // guards to treat `undef` as `false` since a guard on `undef` can 2069 // still be useful for widening. 2070 if (match(CI->getArgOperand(0), m_Zero())) 2071 if (!isa<UnreachableInst>(CI->getNextNode())) { 2072 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2073 false, DTU); 2074 Changed = true; 2075 break; 2076 } 2077 } 2078 } else if ((isa<ConstantPointerNull>(Callee) && 2079 !NullPointerIsDefined(CI->getFunction())) || 2080 isa<UndefValue>(Callee)) { 2081 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2082 Changed = true; 2083 break; 2084 } 2085 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2086 // If we found a call to a no-return function, insert an unreachable 2087 // instruction after it. Make sure there isn't *already* one there 2088 // though. 2089 if (!isa<UnreachableInst>(CI->getNextNode())) { 2090 // Don't insert a call to llvm.trap right before the unreachable. 2091 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2092 Changed = true; 2093 } 2094 break; 2095 } 2096 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2097 // Store to undef and store to null are undefined and used to signal 2098 // that they should be changed to unreachable by passes that can't 2099 // modify the CFG. 2100 2101 // Don't touch volatile stores. 2102 if (SI->isVolatile()) continue; 2103 2104 Value *Ptr = SI->getOperand(1); 2105 2106 if (isa<UndefValue>(Ptr) || 2107 (isa<ConstantPointerNull>(Ptr) && 2108 !NullPointerIsDefined(SI->getFunction(), 2109 SI->getPointerAddressSpace()))) { 2110 changeToUnreachable(SI, true, false, DTU); 2111 Changed = true; 2112 break; 2113 } 2114 } 2115 } 2116 2117 Instruction *Terminator = BB->getTerminator(); 2118 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2119 // Turn invokes that call 'nounwind' functions into ordinary calls. 2120 Value *Callee = II->getCalledValue(); 2121 if ((isa<ConstantPointerNull>(Callee) && 2122 !NullPointerIsDefined(BB->getParent())) || 2123 isa<UndefValue>(Callee)) { 2124 changeToUnreachable(II, true, false, DTU); 2125 Changed = true; 2126 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2127 if (II->use_empty() && II->onlyReadsMemory()) { 2128 // jump to the normal destination branch. 2129 BasicBlock *NormalDestBB = II->getNormalDest(); 2130 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2131 BranchInst::Create(NormalDestBB, II); 2132 UnwindDestBB->removePredecessor(II->getParent()); 2133 II->eraseFromParent(); 2134 if (DTU) 2135 DTU->applyUpdatesPermissive( 2136 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2137 } else 2138 changeToCall(II, DTU); 2139 Changed = true; 2140 } 2141 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2142 // Remove catchpads which cannot be reached. 2143 struct CatchPadDenseMapInfo { 2144 static CatchPadInst *getEmptyKey() { 2145 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2146 } 2147 2148 static CatchPadInst *getTombstoneKey() { 2149 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2150 } 2151 2152 static unsigned getHashValue(CatchPadInst *CatchPad) { 2153 return static_cast<unsigned>(hash_combine_range( 2154 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2155 } 2156 2157 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2158 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2159 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2160 return LHS == RHS; 2161 return LHS->isIdenticalTo(RHS); 2162 } 2163 }; 2164 2165 // Set of unique CatchPads. 2166 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2167 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2168 HandlerSet; 2169 detail::DenseSetEmpty Empty; 2170 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2171 E = CatchSwitch->handler_end(); 2172 I != E; ++I) { 2173 BasicBlock *HandlerBB = *I; 2174 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2175 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2176 CatchSwitch->removeHandler(I); 2177 --I; 2178 --E; 2179 Changed = true; 2180 } 2181 } 2182 } 2183 2184 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2185 for (BasicBlock *Successor : successors(BB)) 2186 if (Reachable.insert(Successor).second) 2187 Worklist.push_back(Successor); 2188 } while (!Worklist.empty()); 2189 return Changed; 2190 } 2191 2192 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2193 Instruction *TI = BB->getTerminator(); 2194 2195 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2196 changeToCall(II, DTU); 2197 return; 2198 } 2199 2200 Instruction *NewTI; 2201 BasicBlock *UnwindDest; 2202 2203 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2204 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2205 UnwindDest = CRI->getUnwindDest(); 2206 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2207 auto *NewCatchSwitch = CatchSwitchInst::Create( 2208 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2209 CatchSwitch->getName(), CatchSwitch); 2210 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2211 NewCatchSwitch->addHandler(PadBB); 2212 2213 NewTI = NewCatchSwitch; 2214 UnwindDest = CatchSwitch->getUnwindDest(); 2215 } else { 2216 llvm_unreachable("Could not find unwind successor"); 2217 } 2218 2219 NewTI->takeName(TI); 2220 NewTI->setDebugLoc(TI->getDebugLoc()); 2221 UnwindDest->removePredecessor(BB); 2222 TI->replaceAllUsesWith(NewTI); 2223 TI->eraseFromParent(); 2224 if (DTU) 2225 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2226 } 2227 2228 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2229 /// if they are in a dead cycle. Return true if a change was made, false 2230 /// otherwise. 2231 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2232 MemorySSAUpdater *MSSAU) { 2233 SmallPtrSet<BasicBlock *, 16> Reachable; 2234 bool Changed = markAliveBlocks(F, Reachable, DTU); 2235 2236 // If there are unreachable blocks in the CFG... 2237 if (Reachable.size() == F.size()) 2238 return Changed; 2239 2240 assert(Reachable.size() < F.size()); 2241 NumRemoved += F.size() - Reachable.size(); 2242 2243 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2244 for (BasicBlock &BB : F) { 2245 // Skip reachable basic blocks 2246 if (Reachable.find(&BB) != Reachable.end()) 2247 continue; 2248 DeadBlockSet.insert(&BB); 2249 } 2250 2251 if (MSSAU) 2252 MSSAU->removeBlocks(DeadBlockSet); 2253 2254 // Loop over all of the basic blocks that are not reachable, dropping all of 2255 // their internal references. Update DTU if available. 2256 std::vector<DominatorTree::UpdateType> Updates; 2257 for (auto *BB : DeadBlockSet) { 2258 for (BasicBlock *Successor : successors(BB)) { 2259 if (!DeadBlockSet.count(Successor)) 2260 Successor->removePredecessor(BB); 2261 if (DTU) 2262 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2263 } 2264 BB->dropAllReferences(); 2265 if (DTU) { 2266 Instruction *TI = BB->getTerminator(); 2267 assert(TI && "Basic block should have a terminator"); 2268 // Terminators like invoke can have users. We have to replace their users, 2269 // before removing them. 2270 if (!TI->use_empty()) 2271 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2272 TI->eraseFromParent(); 2273 new UnreachableInst(BB->getContext(), BB); 2274 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2275 "applying corresponding DTU updates."); 2276 } 2277 } 2278 2279 if (DTU) { 2280 DTU->applyUpdatesPermissive(Updates); 2281 bool Deleted = false; 2282 for (auto *BB : DeadBlockSet) { 2283 if (DTU->isBBPendingDeletion(BB)) 2284 --NumRemoved; 2285 else 2286 Deleted = true; 2287 DTU->deleteBB(BB); 2288 } 2289 if (!Deleted) 2290 return false; 2291 } else { 2292 for (auto *BB : DeadBlockSet) 2293 BB->eraseFromParent(); 2294 } 2295 2296 return true; 2297 } 2298 2299 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2300 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2301 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2302 K->dropUnknownNonDebugMetadata(KnownIDs); 2303 K->getAllMetadataOtherThanDebugLoc(Metadata); 2304 for (const auto &MD : Metadata) { 2305 unsigned Kind = MD.first; 2306 MDNode *JMD = J->getMetadata(Kind); 2307 MDNode *KMD = MD.second; 2308 2309 switch (Kind) { 2310 default: 2311 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2312 break; 2313 case LLVMContext::MD_dbg: 2314 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2315 case LLVMContext::MD_tbaa: 2316 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2317 break; 2318 case LLVMContext::MD_alias_scope: 2319 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2320 break; 2321 case LLVMContext::MD_noalias: 2322 case LLVMContext::MD_mem_parallel_loop_access: 2323 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2324 break; 2325 case LLVMContext::MD_access_group: 2326 K->setMetadata(LLVMContext::MD_access_group, 2327 intersectAccessGroups(K, J)); 2328 break; 2329 case LLVMContext::MD_range: 2330 2331 // If K does move, use most generic range. Otherwise keep the range of 2332 // K. 2333 if (DoesKMove) 2334 // FIXME: If K does move, we should drop the range info and nonnull. 2335 // Currently this function is used with DoesKMove in passes 2336 // doing hoisting/sinking and the current behavior of using the 2337 // most generic range is correct in those cases. 2338 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2339 break; 2340 case LLVMContext::MD_fpmath: 2341 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2342 break; 2343 case LLVMContext::MD_invariant_load: 2344 // Only set the !invariant.load if it is present in both instructions. 2345 K->setMetadata(Kind, JMD); 2346 break; 2347 case LLVMContext::MD_nonnull: 2348 // If K does move, keep nonull if it is present in both instructions. 2349 if (DoesKMove) 2350 K->setMetadata(Kind, JMD); 2351 break; 2352 case LLVMContext::MD_invariant_group: 2353 // Preserve !invariant.group in K. 2354 break; 2355 case LLVMContext::MD_align: 2356 K->setMetadata(Kind, 2357 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2358 break; 2359 case LLVMContext::MD_dereferenceable: 2360 case LLVMContext::MD_dereferenceable_or_null: 2361 K->setMetadata(Kind, 2362 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2363 break; 2364 case LLVMContext::MD_preserve_access_index: 2365 // Preserve !preserve.access.index in K. 2366 break; 2367 } 2368 } 2369 // Set !invariant.group from J if J has it. If both instructions have it 2370 // then we will just pick it from J - even when they are different. 2371 // Also make sure that K is load or store - f.e. combining bitcast with load 2372 // could produce bitcast with invariant.group metadata, which is invalid. 2373 // FIXME: we should try to preserve both invariant.group md if they are 2374 // different, but right now instruction can only have one invariant.group. 2375 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2376 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2377 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2378 } 2379 2380 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2381 bool KDominatesJ) { 2382 unsigned KnownIDs[] = { 2383 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2384 LLVMContext::MD_noalias, LLVMContext::MD_range, 2385 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2386 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2387 LLVMContext::MD_dereferenceable, 2388 LLVMContext::MD_dereferenceable_or_null, 2389 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2390 combineMetadata(K, J, KnownIDs, KDominatesJ); 2391 } 2392 2393 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2394 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2395 Source.getAllMetadata(MD); 2396 MDBuilder MDB(Dest.getContext()); 2397 Type *NewType = Dest.getType(); 2398 const DataLayout &DL = Source.getModule()->getDataLayout(); 2399 for (const auto &MDPair : MD) { 2400 unsigned ID = MDPair.first; 2401 MDNode *N = MDPair.second; 2402 // Note, essentially every kind of metadata should be preserved here! This 2403 // routine is supposed to clone a load instruction changing *only its type*. 2404 // The only metadata it makes sense to drop is metadata which is invalidated 2405 // when the pointer type changes. This should essentially never be the case 2406 // in LLVM, but we explicitly switch over only known metadata to be 2407 // conservatively correct. If you are adding metadata to LLVM which pertains 2408 // to loads, you almost certainly want to add it here. 2409 switch (ID) { 2410 case LLVMContext::MD_dbg: 2411 case LLVMContext::MD_tbaa: 2412 case LLVMContext::MD_prof: 2413 case LLVMContext::MD_fpmath: 2414 case LLVMContext::MD_tbaa_struct: 2415 case LLVMContext::MD_invariant_load: 2416 case LLVMContext::MD_alias_scope: 2417 case LLVMContext::MD_noalias: 2418 case LLVMContext::MD_nontemporal: 2419 case LLVMContext::MD_mem_parallel_loop_access: 2420 case LLVMContext::MD_access_group: 2421 // All of these directly apply. 2422 Dest.setMetadata(ID, N); 2423 break; 2424 2425 case LLVMContext::MD_nonnull: 2426 copyNonnullMetadata(Source, N, Dest); 2427 break; 2428 2429 case LLVMContext::MD_align: 2430 case LLVMContext::MD_dereferenceable: 2431 case LLVMContext::MD_dereferenceable_or_null: 2432 // These only directly apply if the new type is also a pointer. 2433 if (NewType->isPointerTy()) 2434 Dest.setMetadata(ID, N); 2435 break; 2436 2437 case LLVMContext::MD_range: 2438 copyRangeMetadata(DL, Source, N, Dest); 2439 break; 2440 } 2441 } 2442 } 2443 2444 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2445 auto *ReplInst = dyn_cast<Instruction>(Repl); 2446 if (!ReplInst) 2447 return; 2448 2449 // Patch the replacement so that it is not more restrictive than the value 2450 // being replaced. 2451 // Note that if 'I' is a load being replaced by some operation, 2452 // for example, by an arithmetic operation, then andIRFlags() 2453 // would just erase all math flags from the original arithmetic 2454 // operation, which is clearly not wanted and not needed. 2455 if (!isa<LoadInst>(I)) 2456 ReplInst->andIRFlags(I); 2457 2458 // FIXME: If both the original and replacement value are part of the 2459 // same control-flow region (meaning that the execution of one 2460 // guarantees the execution of the other), then we can combine the 2461 // noalias scopes here and do better than the general conservative 2462 // answer used in combineMetadata(). 2463 2464 // In general, GVN unifies expressions over different control-flow 2465 // regions, and so we need a conservative combination of the noalias 2466 // scopes. 2467 static const unsigned KnownIDs[] = { 2468 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2469 LLVMContext::MD_noalias, LLVMContext::MD_range, 2470 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2471 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2472 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2473 combineMetadata(ReplInst, I, KnownIDs, false); 2474 } 2475 2476 template <typename RootType, typename DominatesFn> 2477 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2478 const RootType &Root, 2479 const DominatesFn &Dominates) { 2480 assert(From->getType() == To->getType()); 2481 2482 unsigned Count = 0; 2483 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2484 UI != UE;) { 2485 Use &U = *UI++; 2486 if (!Dominates(Root, U)) 2487 continue; 2488 U.set(To); 2489 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2490 << "' as " << *To << " in " << *U << "\n"); 2491 ++Count; 2492 } 2493 return Count; 2494 } 2495 2496 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2497 assert(From->getType() == To->getType()); 2498 auto *BB = From->getParent(); 2499 unsigned Count = 0; 2500 2501 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2502 UI != UE;) { 2503 Use &U = *UI++; 2504 auto *I = cast<Instruction>(U.getUser()); 2505 if (I->getParent() == BB) 2506 continue; 2507 U.set(To); 2508 ++Count; 2509 } 2510 return Count; 2511 } 2512 2513 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2514 DominatorTree &DT, 2515 const BasicBlockEdge &Root) { 2516 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2517 return DT.dominates(Root, U); 2518 }; 2519 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2520 } 2521 2522 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2523 DominatorTree &DT, 2524 const BasicBlock *BB) { 2525 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2526 auto *I = cast<Instruction>(U.getUser())->getParent(); 2527 return DT.properlyDominates(BB, I); 2528 }; 2529 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2530 } 2531 2532 bool llvm::callsGCLeafFunction(const CallBase *Call, 2533 const TargetLibraryInfo &TLI) { 2534 // Check if the function is specifically marked as a gc leaf function. 2535 if (Call->hasFnAttr("gc-leaf-function")) 2536 return true; 2537 if (const Function *F = Call->getCalledFunction()) { 2538 if (F->hasFnAttribute("gc-leaf-function")) 2539 return true; 2540 2541 if (auto IID = F->getIntrinsicID()) 2542 // Most LLVM intrinsics do not take safepoints. 2543 return IID != Intrinsic::experimental_gc_statepoint && 2544 IID != Intrinsic::experimental_deoptimize; 2545 } 2546 2547 // Lib calls can be materialized by some passes, and won't be 2548 // marked as 'gc-leaf-function.' All available Libcalls are 2549 // GC-leaf. 2550 LibFunc LF; 2551 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) { 2552 return TLI.has(LF); 2553 } 2554 2555 return false; 2556 } 2557 2558 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2559 LoadInst &NewLI) { 2560 auto *NewTy = NewLI.getType(); 2561 2562 // This only directly applies if the new type is also a pointer. 2563 if (NewTy->isPointerTy()) { 2564 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2565 return; 2566 } 2567 2568 // The only other translation we can do is to integral loads with !range 2569 // metadata. 2570 if (!NewTy->isIntegerTy()) 2571 return; 2572 2573 MDBuilder MDB(NewLI.getContext()); 2574 const Value *Ptr = OldLI.getPointerOperand(); 2575 auto *ITy = cast<IntegerType>(NewTy); 2576 auto *NullInt = ConstantExpr::getPtrToInt( 2577 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2578 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2579 NewLI.setMetadata(LLVMContext::MD_range, 2580 MDB.createRange(NonNullInt, NullInt)); 2581 } 2582 2583 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2584 MDNode *N, LoadInst &NewLI) { 2585 auto *NewTy = NewLI.getType(); 2586 2587 // Give up unless it is converted to a pointer where there is a single very 2588 // valuable mapping we can do reliably. 2589 // FIXME: It would be nice to propagate this in more ways, but the type 2590 // conversions make it hard. 2591 if (!NewTy->isPointerTy()) 2592 return; 2593 2594 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2595 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2596 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2597 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2598 } 2599 } 2600 2601 void llvm::dropDebugUsers(Instruction &I) { 2602 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2603 findDbgUsers(DbgUsers, &I); 2604 for (auto *DII : DbgUsers) 2605 DII->eraseFromParent(); 2606 } 2607 2608 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2609 BasicBlock *BB) { 2610 // Since we are moving the instructions out of its basic block, we do not 2611 // retain their original debug locations (DILocations) and debug intrinsic 2612 // instructions. 2613 // 2614 // Doing so would degrade the debugging experience and adversely affect the 2615 // accuracy of profiling information. 2616 // 2617 // Currently, when hoisting the instructions, we take the following actions: 2618 // - Remove their debug intrinsic instructions. 2619 // - Set their debug locations to the values from the insertion point. 2620 // 2621 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2622 // need to be deleted, is because there will not be any instructions with a 2623 // DILocation in either branch left after performing the transformation. We 2624 // can only insert a dbg.value after the two branches are joined again. 2625 // 2626 // See PR38762, PR39243 for more details. 2627 // 2628 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2629 // encode predicated DIExpressions that yield different results on different 2630 // code paths. 2631 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2632 Instruction *I = &*II; 2633 I->dropUnknownNonDebugMetadata(); 2634 if (I->isUsedByMetadata()) 2635 dropDebugUsers(*I); 2636 if (isa<DbgInfoIntrinsic>(I)) { 2637 // Remove DbgInfo Intrinsics. 2638 II = I->eraseFromParent(); 2639 continue; 2640 } 2641 I->setDebugLoc(InsertPt->getDebugLoc()); 2642 ++II; 2643 } 2644 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2645 BB->begin(), 2646 BB->getTerminator()->getIterator()); 2647 } 2648 2649 namespace { 2650 2651 /// A potential constituent of a bitreverse or bswap expression. See 2652 /// collectBitParts for a fuller explanation. 2653 struct BitPart { 2654 BitPart(Value *P, unsigned BW) : Provider(P) { 2655 Provenance.resize(BW); 2656 } 2657 2658 /// The Value that this is a bitreverse/bswap of. 2659 Value *Provider; 2660 2661 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2662 /// in Provider becomes bit B in the result of this expression. 2663 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2664 2665 enum { Unset = -1 }; 2666 }; 2667 2668 } // end anonymous namespace 2669 2670 /// Analyze the specified subexpression and see if it is capable of providing 2671 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2672 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2673 /// the output of the expression came from a corresponding bit in some other 2674 /// value. This function is recursive, and the end result is a mapping of 2675 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2676 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2677 /// 2678 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2679 /// that the expression deposits the low byte of %X into the high byte of the 2680 /// result and that all other bits are zero. This expression is accepted and a 2681 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2682 /// [0-7]. 2683 /// 2684 /// To avoid revisiting values, the BitPart results are memoized into the 2685 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2686 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2687 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2688 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2689 /// type instead to provide the same functionality. 2690 /// 2691 /// Because we pass around references into \c BPS, we must use a container that 2692 /// does not invalidate internal references (std::map instead of DenseMap). 2693 static const Optional<BitPart> & 2694 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2695 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2696 auto I = BPS.find(V); 2697 if (I != BPS.end()) 2698 return I->second; 2699 2700 auto &Result = BPS[V] = None; 2701 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2702 2703 // Prevent stack overflow by limiting the recursion depth 2704 if (Depth == BitPartRecursionMaxDepth) { 2705 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2706 return Result; 2707 } 2708 2709 if (Instruction *I = dyn_cast<Instruction>(V)) { 2710 // If this is an or instruction, it may be an inner node of the bswap. 2711 if (I->getOpcode() == Instruction::Or) { 2712 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2713 MatchBitReversals, BPS, Depth + 1); 2714 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2715 MatchBitReversals, BPS, Depth + 1); 2716 if (!A || !B) 2717 return Result; 2718 2719 // Try and merge the two together. 2720 if (!A->Provider || A->Provider != B->Provider) 2721 return Result; 2722 2723 Result = BitPart(A->Provider, BitWidth); 2724 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2725 if (A->Provenance[i] != BitPart::Unset && 2726 B->Provenance[i] != BitPart::Unset && 2727 A->Provenance[i] != B->Provenance[i]) 2728 return Result = None; 2729 2730 if (A->Provenance[i] == BitPart::Unset) 2731 Result->Provenance[i] = B->Provenance[i]; 2732 else 2733 Result->Provenance[i] = A->Provenance[i]; 2734 } 2735 2736 return Result; 2737 } 2738 2739 // If this is a logical shift by a constant, recurse then shift the result. 2740 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2741 unsigned BitShift = 2742 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2743 // Ensure the shift amount is defined. 2744 if (BitShift > BitWidth) 2745 return Result; 2746 2747 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2748 MatchBitReversals, BPS, Depth + 1); 2749 if (!Res) 2750 return Result; 2751 Result = Res; 2752 2753 // Perform the "shift" on BitProvenance. 2754 auto &P = Result->Provenance; 2755 if (I->getOpcode() == Instruction::Shl) { 2756 P.erase(std::prev(P.end(), BitShift), P.end()); 2757 P.insert(P.begin(), BitShift, BitPart::Unset); 2758 } else { 2759 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2760 P.insert(P.end(), BitShift, BitPart::Unset); 2761 } 2762 2763 return Result; 2764 } 2765 2766 // If this is a logical 'and' with a mask that clears bits, recurse then 2767 // unset the appropriate bits. 2768 if (I->getOpcode() == Instruction::And && 2769 isa<ConstantInt>(I->getOperand(1))) { 2770 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2771 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2772 2773 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2774 // early exit. 2775 unsigned NumMaskedBits = AndMask.countPopulation(); 2776 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2777 return Result; 2778 2779 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2780 MatchBitReversals, BPS, Depth + 1); 2781 if (!Res) 2782 return Result; 2783 Result = Res; 2784 2785 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2786 // If the AndMask is zero for this bit, clear the bit. 2787 if ((AndMask & Bit) == 0) 2788 Result->Provenance[i] = BitPart::Unset; 2789 return Result; 2790 } 2791 2792 // If this is a zext instruction zero extend the result. 2793 if (I->getOpcode() == Instruction::ZExt) { 2794 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2795 MatchBitReversals, BPS, Depth + 1); 2796 if (!Res) 2797 return Result; 2798 2799 Result = BitPart(Res->Provider, BitWidth); 2800 auto NarrowBitWidth = 2801 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2802 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2803 Result->Provenance[i] = Res->Provenance[i]; 2804 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2805 Result->Provenance[i] = BitPart::Unset; 2806 return Result; 2807 } 2808 } 2809 2810 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2811 // the input value to the bswap/bitreverse. 2812 Result = BitPart(V, BitWidth); 2813 for (unsigned i = 0; i < BitWidth; ++i) 2814 Result->Provenance[i] = i; 2815 return Result; 2816 } 2817 2818 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2819 unsigned BitWidth) { 2820 if (From % 8 != To % 8) 2821 return false; 2822 // Convert from bit indices to byte indices and check for a byte reversal. 2823 From >>= 3; 2824 To >>= 3; 2825 BitWidth >>= 3; 2826 return From == BitWidth - To - 1; 2827 } 2828 2829 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2830 unsigned BitWidth) { 2831 return From == BitWidth - To - 1; 2832 } 2833 2834 bool llvm::recognizeBSwapOrBitReverseIdiom( 2835 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2836 SmallVectorImpl<Instruction *> &InsertedInsts) { 2837 if (Operator::getOpcode(I) != Instruction::Or) 2838 return false; 2839 if (!MatchBSwaps && !MatchBitReversals) 2840 return false; 2841 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2842 if (!ITy || ITy->getBitWidth() > 128) 2843 return false; // Can't do vectors or integers > 128 bits. 2844 unsigned BW = ITy->getBitWidth(); 2845 2846 unsigned DemandedBW = BW; 2847 IntegerType *DemandedTy = ITy; 2848 if (I->hasOneUse()) { 2849 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2850 DemandedTy = cast<IntegerType>(Trunc->getType()); 2851 DemandedBW = DemandedTy->getBitWidth(); 2852 } 2853 } 2854 2855 // Try to find all the pieces corresponding to the bswap. 2856 std::map<Value *, Optional<BitPart>> BPS; 2857 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2858 if (!Res) 2859 return false; 2860 auto &BitProvenance = Res->Provenance; 2861 2862 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2863 // only byteswap values with an even number of bytes. 2864 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2865 for (unsigned i = 0; i < DemandedBW; ++i) { 2866 OKForBSwap &= 2867 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2868 OKForBitReverse &= 2869 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2870 } 2871 2872 Intrinsic::ID Intrin; 2873 if (OKForBSwap && MatchBSwaps) 2874 Intrin = Intrinsic::bswap; 2875 else if (OKForBitReverse && MatchBitReversals) 2876 Intrin = Intrinsic::bitreverse; 2877 else 2878 return false; 2879 2880 if (ITy != DemandedTy) { 2881 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2882 Value *Provider = Res->Provider; 2883 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2884 // We may need to truncate the provider. 2885 if (DemandedTy != ProviderTy) { 2886 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2887 "trunc", I); 2888 InsertedInsts.push_back(Trunc); 2889 Provider = Trunc; 2890 } 2891 auto *CI = CallInst::Create(F, Provider, "rev", I); 2892 InsertedInsts.push_back(CI); 2893 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2894 InsertedInsts.push_back(ExtInst); 2895 return true; 2896 } 2897 2898 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2899 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2900 return true; 2901 } 2902 2903 // CodeGen has special handling for some string functions that may replace 2904 // them with target-specific intrinsics. Since that'd skip our interceptors 2905 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2906 // we mark affected calls as NoBuiltin, which will disable optimization 2907 // in CodeGen. 2908 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2909 CallInst *CI, const TargetLibraryInfo *TLI) { 2910 Function *F = CI->getCalledFunction(); 2911 LibFunc Func; 2912 if (F && !F->hasLocalLinkage() && F->hasName() && 2913 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2914 !F->doesNotAccessMemory()) 2915 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2916 } 2917 2918 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2919 // We can't have a PHI with a metadata type. 2920 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2921 return false; 2922 2923 // Early exit. 2924 if (!isa<Constant>(I->getOperand(OpIdx))) 2925 return true; 2926 2927 switch (I->getOpcode()) { 2928 default: 2929 return true; 2930 case Instruction::Call: 2931 case Instruction::Invoke: 2932 // Can't handle inline asm. Skip it. 2933 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2934 return false; 2935 // Many arithmetic intrinsics have no issue taking a 2936 // variable, however it's hard to distingish these from 2937 // specials such as @llvm.frameaddress that require a constant. 2938 if (isa<IntrinsicInst>(I)) 2939 return false; 2940 2941 // Constant bundle operands may need to retain their constant-ness for 2942 // correctness. 2943 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2944 return false; 2945 return true; 2946 case Instruction::ShuffleVector: 2947 // Shufflevector masks are constant. 2948 return OpIdx != 2; 2949 case Instruction::Switch: 2950 case Instruction::ExtractValue: 2951 // All operands apart from the first are constant. 2952 return OpIdx == 0; 2953 case Instruction::InsertValue: 2954 // All operands apart from the first and the second are constant. 2955 return OpIdx < 2; 2956 case Instruction::Alloca: 2957 // Static allocas (constant size in the entry block) are handled by 2958 // prologue/epilogue insertion so they're free anyway. We definitely don't 2959 // want to make them non-constant. 2960 return !cast<AllocaInst>(I)->isStaticAlloca(); 2961 case Instruction::GetElementPtr: 2962 if (OpIdx == 0) 2963 return true; 2964 gep_type_iterator It = gep_type_begin(I); 2965 for (auto E = std::next(It, OpIdx); It != E; ++It) 2966 if (It.isStruct()) 2967 return false; 2968 return true; 2969 } 2970 } 2971 2972 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2973 AllocaInst *llvm::findAllocaForValue(Value *V, 2974 AllocaForValueMapTy &AllocaForValue) { 2975 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2976 return AI; 2977 // See if we've already calculated (or started to calculate) alloca for a 2978 // given value. 2979 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2980 if (I != AllocaForValue.end()) 2981 return I->second; 2982 // Store 0 while we're calculating alloca for value V to avoid 2983 // infinite recursion if the value references itself. 2984 AllocaForValue[V] = nullptr; 2985 AllocaInst *Res = nullptr; 2986 if (CastInst *CI = dyn_cast<CastInst>(V)) 2987 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 2988 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2989 for (Value *IncValue : PN->incoming_values()) { 2990 // Allow self-referencing phi-nodes. 2991 if (IncValue == PN) 2992 continue; 2993 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 2994 // AI for incoming values should exist and should all be equal. 2995 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2996 return nullptr; 2997 Res = IncValueAI; 2998 } 2999 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3000 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 3001 } else { 3002 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 3003 << *V << "\n"); 3004 } 3005 if (Res) 3006 AllocaForValue[V] = Res; 3007 return Res; 3008 } 3009