1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 159 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 160 // Are we branching on constant? 161 // YES. Change to unconditional branch... 162 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 163 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 164 165 // Let the basic block know that we are letting go of it. Based on this, 166 // it will adjust it's PHI nodes. 167 OldDest->removePredecessor(BB); 168 169 // Replace the conditional branch with an unconditional one. 170 Builder.CreateBr(Destination); 171 BI->eraseFromParent(); 172 if (DTU) 173 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 174 return true; 175 } 176 177 return false; 178 } 179 180 if (auto *SI = dyn_cast<SwitchInst>(T)) { 181 // If we are switching on a constant, we can convert the switch to an 182 // unconditional branch. 183 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 184 BasicBlock *DefaultDest = SI->getDefaultDest(); 185 BasicBlock *TheOnlyDest = DefaultDest; 186 187 // If the default is unreachable, ignore it when searching for TheOnlyDest. 188 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 189 SI->getNumCases() > 0) { 190 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 191 } 192 193 bool Changed = false; 194 195 // Figure out which case it goes to. 196 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 197 // Found case matching a constant operand? 198 if (i->getCaseValue() == CI) { 199 TheOnlyDest = i->getCaseSuccessor(); 200 break; 201 } 202 203 // Check to see if this branch is going to the same place as the default 204 // dest. If so, eliminate it as an explicit compare. 205 if (i->getCaseSuccessor() == DefaultDest) { 206 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 207 unsigned NCases = SI->getNumCases(); 208 // Fold the case metadata into the default if there will be any branches 209 // left, unless the metadata doesn't match the switch. 210 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 211 // Collect branch weights into a vector. 212 SmallVector<uint32_t, 8> Weights; 213 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 214 ++MD_i) { 215 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 216 Weights.push_back(CI->getValue().getZExtValue()); 217 } 218 // Merge weight of this case to the default weight. 219 unsigned idx = i->getCaseIndex(); 220 Weights[0] += Weights[idx+1]; 221 // Remove weight for this case. 222 std::swap(Weights[idx+1], Weights.back()); 223 Weights.pop_back(); 224 SI->setMetadata(LLVMContext::MD_prof, 225 MDBuilder(BB->getContext()). 226 createBranchWeights(Weights)); 227 } 228 // Remove this entry. 229 BasicBlock *ParentBB = SI->getParent(); 230 DefaultDest->removePredecessor(ParentBB); 231 i = SI->removeCase(i); 232 e = SI->case_end(); 233 Changed = true; 234 continue; 235 } 236 237 // Otherwise, check to see if the switch only branches to one destination. 238 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 239 // destinations. 240 if (i->getCaseSuccessor() != TheOnlyDest) 241 TheOnlyDest = nullptr; 242 243 // Increment this iterator as we haven't removed the case. 244 ++i; 245 } 246 247 if (CI && !TheOnlyDest) { 248 // Branching on a constant, but not any of the cases, go to the default 249 // successor. 250 TheOnlyDest = SI->getDefaultDest(); 251 } 252 253 // If we found a single destination that we can fold the switch into, do so 254 // now. 255 if (TheOnlyDest) { 256 // Insert the new branch. 257 Builder.CreateBr(TheOnlyDest); 258 BasicBlock *BB = SI->getParent(); 259 260 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 261 262 // Remove entries from PHI nodes which we no longer branch to... 263 BasicBlock *SuccToKeep = TheOnlyDest; 264 for (BasicBlock *Succ : successors(SI)) { 265 if (DTU && Succ != TheOnlyDest) 266 RemovedSuccessors.insert(Succ); 267 // Found case matching a constant operand? 268 if (Succ == SuccToKeep) { 269 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 270 } else { 271 Succ->removePredecessor(BB); 272 } 273 } 274 275 // Delete the old switch. 276 Value *Cond = SI->getCondition(); 277 SI->eraseFromParent(); 278 if (DeleteDeadConditions) 279 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 280 if (DTU) { 281 std::vector<DominatorTree::UpdateType> Updates; 282 Updates.reserve(RemovedSuccessors.size()); 283 for (auto *RemovedSuccessor : RemovedSuccessors) 284 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 285 DTU->applyUpdates(Updates); 286 } 287 return true; 288 } 289 290 if (SI->getNumCases() == 1) { 291 // Otherwise, we can fold this switch into a conditional branch 292 // instruction if it has only one non-default destination. 293 auto FirstCase = *SI->case_begin(); 294 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 295 FirstCase.getCaseValue(), "cond"); 296 297 // Insert the new branch. 298 BranchInst *NewBr = Builder.CreateCondBr(Cond, 299 FirstCase.getCaseSuccessor(), 300 SI->getDefaultDest()); 301 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 302 if (MD && MD->getNumOperands() == 3) { 303 ConstantInt *SICase = 304 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 305 ConstantInt *SIDef = 306 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 307 assert(SICase && SIDef); 308 // The TrueWeight should be the weight for the single case of SI. 309 NewBr->setMetadata(LLVMContext::MD_prof, 310 MDBuilder(BB->getContext()). 311 createBranchWeights(SICase->getValue().getZExtValue(), 312 SIDef->getValue().getZExtValue())); 313 } 314 315 // Update make.implicit metadata to the newly-created conditional branch. 316 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 317 if (MakeImplicitMD) 318 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 319 320 // Delete the old switch. 321 SI->eraseFromParent(); 322 return true; 323 } 324 return Changed; 325 } 326 327 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 328 // indirectbr blockaddress(@F, @BB) -> br label @BB 329 if (auto *BA = 330 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 331 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 332 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 333 334 // Insert the new branch. 335 Builder.CreateBr(TheOnlyDest); 336 337 BasicBlock *SuccToKeep = TheOnlyDest; 338 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 339 BasicBlock *DestBB = IBI->getDestination(i); 340 if (DTU && DestBB != TheOnlyDest) 341 RemovedSuccessors.insert(DestBB); 342 if (IBI->getDestination(i) == SuccToKeep) { 343 SuccToKeep = nullptr; 344 } else { 345 DestBB->removePredecessor(BB); 346 } 347 } 348 Value *Address = IBI->getAddress(); 349 IBI->eraseFromParent(); 350 if (DeleteDeadConditions) 351 // Delete pointer cast instructions. 352 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 353 354 // Also zap the blockaddress constant if there are no users remaining, 355 // otherwise the destination is still marked as having its address taken. 356 if (BA->use_empty()) 357 BA->destroyConstant(); 358 359 // If we didn't find our destination in the IBI successor list, then we 360 // have undefined behavior. Replace the unconditional branch with an 361 // 'unreachable' instruction. 362 if (SuccToKeep) { 363 BB->getTerminator()->eraseFromParent(); 364 new UnreachableInst(BB->getContext(), BB); 365 } 366 367 if (DTU) { 368 std::vector<DominatorTree::UpdateType> Updates; 369 Updates.reserve(RemovedSuccessors.size()); 370 for (auto *RemovedSuccessor : RemovedSuccessors) 371 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 372 DTU->applyUpdates(Updates); 373 } 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 //===----------------------------------------------------------------------===// 382 // Local dead code elimination. 383 // 384 385 /// isInstructionTriviallyDead - Return true if the result produced by the 386 /// instruction is not used, and the instruction has no side effects. 387 /// 388 bool llvm::isInstructionTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (!I->use_empty()) 391 return false; 392 return wouldInstructionBeTriviallyDead(I, TLI); 393 } 394 395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (I->isTerminator()) 398 return false; 399 400 // We don't want the landingpad-like instructions removed by anything this 401 // general. 402 if (I->isEHPad()) 403 return false; 404 405 // We don't want debug info removed by anything this general, unless 406 // debug info is empty. 407 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 408 if (DDI->getAddress()) 409 return false; 410 return true; 411 } 412 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 413 if (DVI->getValue()) 414 return false; 415 return true; 416 } 417 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 418 if (DLI->getLabel()) 419 return false; 420 return true; 421 } 422 423 if (!I->willReturn()) 424 return false; 425 426 if (!I->mayHaveSideEffects()) 427 return true; 428 429 // Special case intrinsics that "may have side effects" but can be deleted 430 // when dead. 431 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 432 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 433 if (II->getIntrinsicID() == Intrinsic::stacksave || 434 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 435 return true; 436 437 if (II->isLifetimeStartOrEnd()) { 438 auto *Arg = II->getArgOperand(1); 439 // Lifetime intrinsics are dead when their right-hand is undef. 440 if (isa<UndefValue>(Arg)) 441 return true; 442 // If the right-hand is an alloc, global, or argument and the only uses 443 // are lifetime intrinsics then the intrinsics are dead. 444 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 445 return llvm::all_of(Arg->uses(), [](Use &Use) { 446 if (IntrinsicInst *IntrinsicUse = 447 dyn_cast<IntrinsicInst>(Use.getUser())) 448 return IntrinsicUse->isLifetimeStartOrEnd(); 449 return false; 450 }); 451 return false; 452 } 453 454 // Assumptions are dead if their condition is trivially true. Guards on 455 // true are operationally no-ops. In the future we can consider more 456 // sophisticated tradeoffs for guards considering potential for check 457 // widening, but for now we keep things simple. 458 if ((II->getIntrinsicID() == Intrinsic::assume && 459 isAssumeWithEmptyBundle(*II)) || 460 II->getIntrinsicID() == Intrinsic::experimental_guard) { 461 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 462 return !Cond->isZero(); 463 464 return false; 465 } 466 } 467 468 if (isAllocLikeFn(I, TLI)) 469 return true; 470 471 if (CallInst *CI = isFreeCall(I, TLI)) 472 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 473 return C->isNullValue() || isa<UndefValue>(C); 474 475 if (auto *Call = dyn_cast<CallBase>(I)) 476 if (isMathLibCallNoop(Call, TLI)) 477 return true; 478 479 return false; 480 } 481 482 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 483 /// trivially dead instruction, delete it. If that makes any of its operands 484 /// trivially dead, delete them too, recursively. Return true if any 485 /// instructions were deleted. 486 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 487 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 488 std::function<void(Value *)> AboutToDeleteCallback) { 489 Instruction *I = dyn_cast<Instruction>(V); 490 if (!I || !isInstructionTriviallyDead(I, TLI)) 491 return false; 492 493 SmallVector<WeakTrackingVH, 16> DeadInsts; 494 DeadInsts.push_back(I); 495 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 496 AboutToDeleteCallback); 497 498 return true; 499 } 500 501 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 502 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 503 MemorySSAUpdater *MSSAU, 504 std::function<void(Value *)> AboutToDeleteCallback) { 505 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 506 for (; S != E; ++S) { 507 auto *I = cast<Instruction>(DeadInsts[S]); 508 if (!isInstructionTriviallyDead(I)) { 509 DeadInsts[S] = nullptr; 510 ++Alive; 511 } 512 } 513 if (Alive == E) 514 return false; 515 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 516 AboutToDeleteCallback); 517 return true; 518 } 519 520 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 521 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 522 MemorySSAUpdater *MSSAU, 523 std::function<void(Value *)> AboutToDeleteCallback) { 524 // Process the dead instruction list until empty. 525 while (!DeadInsts.empty()) { 526 Value *V = DeadInsts.pop_back_val(); 527 Instruction *I = cast_or_null<Instruction>(V); 528 if (!I) 529 continue; 530 assert(isInstructionTriviallyDead(I, TLI) && 531 "Live instruction found in dead worklist!"); 532 assert(I->use_empty() && "Instructions with uses are not dead."); 533 534 // Don't lose the debug info while deleting the instructions. 535 salvageDebugInfo(*I); 536 537 if (AboutToDeleteCallback) 538 AboutToDeleteCallback(I); 539 540 // Null out all of the instruction's operands to see if any operand becomes 541 // dead as we go. 542 for (Use &OpU : I->operands()) { 543 Value *OpV = OpU.get(); 544 OpU.set(nullptr); 545 546 if (!OpV->use_empty()) 547 continue; 548 549 // If the operand is an instruction that became dead as we nulled out the 550 // operand, and if it is 'trivially' dead, delete it in a future loop 551 // iteration. 552 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 553 if (isInstructionTriviallyDead(OpI, TLI)) 554 DeadInsts.push_back(OpI); 555 } 556 if (MSSAU) 557 MSSAU->removeMemoryAccess(I); 558 559 I->eraseFromParent(); 560 } 561 } 562 563 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 564 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 565 findDbgUsers(DbgUsers, I); 566 for (auto *DII : DbgUsers) { 567 Value *Undef = UndefValue::get(I->getType()); 568 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 569 ValueAsMetadata::get(Undef))); 570 } 571 return !DbgUsers.empty(); 572 } 573 574 /// areAllUsesEqual - Check whether the uses of a value are all the same. 575 /// This is similar to Instruction::hasOneUse() except this will also return 576 /// true when there are no uses or multiple uses that all refer to the same 577 /// value. 578 static bool areAllUsesEqual(Instruction *I) { 579 Value::user_iterator UI = I->user_begin(); 580 Value::user_iterator UE = I->user_end(); 581 if (UI == UE) 582 return true; 583 584 User *TheUse = *UI; 585 for (++UI; UI != UE; ++UI) { 586 if (*UI != TheUse) 587 return false; 588 } 589 return true; 590 } 591 592 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 593 /// dead PHI node, due to being a def-use chain of single-use nodes that 594 /// either forms a cycle or is terminated by a trivially dead instruction, 595 /// delete it. If that makes any of its operands trivially dead, delete them 596 /// too, recursively. Return true if a change was made. 597 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 598 const TargetLibraryInfo *TLI, 599 llvm::MemorySSAUpdater *MSSAU) { 600 SmallPtrSet<Instruction*, 4> Visited; 601 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 602 I = cast<Instruction>(*I->user_begin())) { 603 if (I->use_empty()) 604 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 605 606 // If we find an instruction more than once, we're on a cycle that 607 // won't prove fruitful. 608 if (!Visited.insert(I).second) { 609 // Break the cycle and delete the instruction and its operands. 610 I->replaceAllUsesWith(UndefValue::get(I->getType())); 611 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 612 return true; 613 } 614 } 615 return false; 616 } 617 618 static bool 619 simplifyAndDCEInstruction(Instruction *I, 620 SmallSetVector<Instruction *, 16> &WorkList, 621 const DataLayout &DL, 622 const TargetLibraryInfo *TLI) { 623 if (isInstructionTriviallyDead(I, TLI)) { 624 salvageDebugInfo(*I); 625 626 // Null out all of the instruction's operands to see if any operand becomes 627 // dead as we go. 628 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 629 Value *OpV = I->getOperand(i); 630 I->setOperand(i, nullptr); 631 632 if (!OpV->use_empty() || I == OpV) 633 continue; 634 635 // If the operand is an instruction that became dead as we nulled out the 636 // operand, and if it is 'trivially' dead, delete it in a future loop 637 // iteration. 638 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 639 if (isInstructionTriviallyDead(OpI, TLI)) 640 WorkList.insert(OpI); 641 } 642 643 I->eraseFromParent(); 644 645 return true; 646 } 647 648 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 649 // Add the users to the worklist. CAREFUL: an instruction can use itself, 650 // in the case of a phi node. 651 for (User *U : I->users()) { 652 if (U != I) { 653 WorkList.insert(cast<Instruction>(U)); 654 } 655 } 656 657 // Replace the instruction with its simplified value. 658 bool Changed = false; 659 if (!I->use_empty()) { 660 I->replaceAllUsesWith(SimpleV); 661 Changed = true; 662 } 663 if (isInstructionTriviallyDead(I, TLI)) { 664 I->eraseFromParent(); 665 Changed = true; 666 } 667 return Changed; 668 } 669 return false; 670 } 671 672 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 673 /// simplify any instructions in it and recursively delete dead instructions. 674 /// 675 /// This returns true if it changed the code, note that it can delete 676 /// instructions in other blocks as well in this block. 677 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 678 const TargetLibraryInfo *TLI) { 679 bool MadeChange = false; 680 const DataLayout &DL = BB->getModule()->getDataLayout(); 681 682 #ifndef NDEBUG 683 // In debug builds, ensure that the terminator of the block is never replaced 684 // or deleted by these simplifications. The idea of simplification is that it 685 // cannot introduce new instructions, and there is no way to replace the 686 // terminator of a block without introducing a new instruction. 687 AssertingVH<Instruction> TerminatorVH(&BB->back()); 688 #endif 689 690 SmallSetVector<Instruction *, 16> WorkList; 691 // Iterate over the original function, only adding insts to the worklist 692 // if they actually need to be revisited. This avoids having to pre-init 693 // the worklist with the entire function's worth of instructions. 694 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 695 BI != E;) { 696 assert(!BI->isTerminator()); 697 Instruction *I = &*BI; 698 ++BI; 699 700 // We're visiting this instruction now, so make sure it's not in the 701 // worklist from an earlier visit. 702 if (!WorkList.count(I)) 703 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 704 } 705 706 while (!WorkList.empty()) { 707 Instruction *I = WorkList.pop_back_val(); 708 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 709 } 710 return MadeChange; 711 } 712 713 //===----------------------------------------------------------------------===// 714 // Control Flow Graph Restructuring. 715 // 716 717 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 718 DomTreeUpdater *DTU) { 719 720 // If BB has single-entry PHI nodes, fold them. 721 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 722 Value *NewVal = PN->getIncomingValue(0); 723 // Replace self referencing PHI with undef, it must be dead. 724 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 725 PN->replaceAllUsesWith(NewVal); 726 PN->eraseFromParent(); 727 } 728 729 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 730 assert(PredBB && "Block doesn't have a single predecessor!"); 731 732 bool ReplaceEntryBB = false; 733 if (PredBB == &DestBB->getParent()->getEntryBlock()) 734 ReplaceEntryBB = true; 735 736 // DTU updates: Collect all the edges that enter 737 // PredBB. These dominator edges will be redirected to DestBB. 738 SmallVector<DominatorTree::UpdateType, 32> Updates; 739 740 if (DTU) { 741 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 742 // This predecessor of PredBB may already have DestBB as a successor. 743 if (!llvm::is_contained(successors(*I), DestBB)) 744 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 745 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 746 } 747 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 748 } 749 750 // Zap anything that took the address of DestBB. Not doing this will give the 751 // address an invalid value. 752 if (DestBB->hasAddressTaken()) { 753 BlockAddress *BA = BlockAddress::get(DestBB); 754 Constant *Replacement = 755 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 756 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 757 BA->getType())); 758 BA->destroyConstant(); 759 } 760 761 // Anything that branched to PredBB now branches to DestBB. 762 PredBB->replaceAllUsesWith(DestBB); 763 764 // Splice all the instructions from PredBB to DestBB. 765 PredBB->getTerminator()->eraseFromParent(); 766 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 767 new UnreachableInst(PredBB->getContext(), PredBB); 768 769 // If the PredBB is the entry block of the function, move DestBB up to 770 // become the entry block after we erase PredBB. 771 if (ReplaceEntryBB) 772 DestBB->moveAfter(PredBB); 773 774 if (DTU) { 775 assert(PredBB->getInstList().size() == 1 && 776 isa<UnreachableInst>(PredBB->getTerminator()) && 777 "The successor list of PredBB isn't empty before " 778 "applying corresponding DTU updates."); 779 DTU->applyUpdatesPermissive(Updates); 780 DTU->deleteBB(PredBB); 781 // Recalculation of DomTree is needed when updating a forward DomTree and 782 // the Entry BB is replaced. 783 if (ReplaceEntryBB && DTU->hasDomTree()) { 784 // The entry block was removed and there is no external interface for 785 // the dominator tree to be notified of this change. In this corner-case 786 // we recalculate the entire tree. 787 DTU->recalculate(*(DestBB->getParent())); 788 } 789 } 790 791 else { 792 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 793 } 794 } 795 796 /// Return true if we can choose one of these values to use in place of the 797 /// other. Note that we will always choose the non-undef value to keep. 798 static bool CanMergeValues(Value *First, Value *Second) { 799 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 800 } 801 802 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 803 /// branch to Succ, into Succ. 804 /// 805 /// Assumption: Succ is the single successor for BB. 806 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 807 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 808 809 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 810 << Succ->getName() << "\n"); 811 // Shortcut, if there is only a single predecessor it must be BB and merging 812 // is always safe 813 if (Succ->getSinglePredecessor()) return true; 814 815 // Make a list of the predecessors of BB 816 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 817 818 // Look at all the phi nodes in Succ, to see if they present a conflict when 819 // merging these blocks 820 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 821 PHINode *PN = cast<PHINode>(I); 822 823 // If the incoming value from BB is again a PHINode in 824 // BB which has the same incoming value for *PI as PN does, we can 825 // merge the phi nodes and then the blocks can still be merged 826 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 827 if (BBPN && BBPN->getParent() == BB) { 828 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 829 BasicBlock *IBB = PN->getIncomingBlock(PI); 830 if (BBPreds.count(IBB) && 831 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 832 PN->getIncomingValue(PI))) { 833 LLVM_DEBUG(dbgs() 834 << "Can't fold, phi node " << PN->getName() << " in " 835 << Succ->getName() << " is conflicting with " 836 << BBPN->getName() << " with regard to common predecessor " 837 << IBB->getName() << "\n"); 838 return false; 839 } 840 } 841 } else { 842 Value* Val = PN->getIncomingValueForBlock(BB); 843 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 844 // See if the incoming value for the common predecessor is equal to the 845 // one for BB, in which case this phi node will not prevent the merging 846 // of the block. 847 BasicBlock *IBB = PN->getIncomingBlock(PI); 848 if (BBPreds.count(IBB) && 849 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 850 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 851 << " in " << Succ->getName() 852 << " is conflicting with regard to common " 853 << "predecessor " << IBB->getName() << "\n"); 854 return false; 855 } 856 } 857 } 858 } 859 860 return true; 861 } 862 863 using PredBlockVector = SmallVector<BasicBlock *, 16>; 864 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 865 866 /// Determines the value to use as the phi node input for a block. 867 /// 868 /// Select between \p OldVal any value that we know flows from \p BB 869 /// to a particular phi on the basis of which one (if either) is not 870 /// undef. Update IncomingValues based on the selected value. 871 /// 872 /// \param OldVal The value we are considering selecting. 873 /// \param BB The block that the value flows in from. 874 /// \param IncomingValues A map from block-to-value for other phi inputs 875 /// that we have examined. 876 /// 877 /// \returns the selected value. 878 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 879 IncomingValueMap &IncomingValues) { 880 if (!isa<UndefValue>(OldVal)) { 881 assert((!IncomingValues.count(BB) || 882 IncomingValues.find(BB)->second == OldVal) && 883 "Expected OldVal to match incoming value from BB!"); 884 885 IncomingValues.insert(std::make_pair(BB, OldVal)); 886 return OldVal; 887 } 888 889 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 890 if (It != IncomingValues.end()) return It->second; 891 892 return OldVal; 893 } 894 895 /// Create a map from block to value for the operands of a 896 /// given phi. 897 /// 898 /// Create a map from block to value for each non-undef value flowing 899 /// into \p PN. 900 /// 901 /// \param PN The phi we are collecting the map for. 902 /// \param IncomingValues [out] The map from block to value for this phi. 903 static void gatherIncomingValuesToPhi(PHINode *PN, 904 IncomingValueMap &IncomingValues) { 905 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 906 BasicBlock *BB = PN->getIncomingBlock(i); 907 Value *V = PN->getIncomingValue(i); 908 909 if (!isa<UndefValue>(V)) 910 IncomingValues.insert(std::make_pair(BB, V)); 911 } 912 } 913 914 /// Replace the incoming undef values to a phi with the values 915 /// from a block-to-value map. 916 /// 917 /// \param PN The phi we are replacing the undefs in. 918 /// \param IncomingValues A map from block to value. 919 static void replaceUndefValuesInPhi(PHINode *PN, 920 const IncomingValueMap &IncomingValues) { 921 SmallVector<unsigned> TrueUndefOps; 922 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 923 Value *V = PN->getIncomingValue(i); 924 925 if (!isa<UndefValue>(V)) continue; 926 927 BasicBlock *BB = PN->getIncomingBlock(i); 928 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 929 930 // Keep track of undef/poison incoming values. Those must match, so we fix 931 // them up below if needed. 932 // Note: this is conservatively correct, but we could try harder and group 933 // the undef values per incoming basic block. 934 if (It == IncomingValues.end()) { 935 TrueUndefOps.push_back(i); 936 continue; 937 } 938 939 // There is a defined value for this incoming block, so map this undef 940 // incoming value to the defined value. 941 PN->setIncomingValue(i, It->second); 942 } 943 944 // If there are both undef and poison values incoming, then convert those 945 // values to undef. It is invalid to have different values for the same 946 // incoming block. 947 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 948 return isa<PoisonValue>(PN->getIncomingValue(i)); 949 }); 950 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 951 for (unsigned i : TrueUndefOps) 952 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 953 } 954 } 955 956 /// Replace a value flowing from a block to a phi with 957 /// potentially multiple instances of that value flowing from the 958 /// block's predecessors to the phi. 959 /// 960 /// \param BB The block with the value flowing into the phi. 961 /// \param BBPreds The predecessors of BB. 962 /// \param PN The phi that we are updating. 963 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 964 const PredBlockVector &BBPreds, 965 PHINode *PN) { 966 Value *OldVal = PN->removeIncomingValue(BB, false); 967 assert(OldVal && "No entry in PHI for Pred BB!"); 968 969 IncomingValueMap IncomingValues; 970 971 // We are merging two blocks - BB, and the block containing PN - and 972 // as a result we need to redirect edges from the predecessors of BB 973 // to go to the block containing PN, and update PN 974 // accordingly. Since we allow merging blocks in the case where the 975 // predecessor and successor blocks both share some predecessors, 976 // and where some of those common predecessors might have undef 977 // values flowing into PN, we want to rewrite those values to be 978 // consistent with the non-undef values. 979 980 gatherIncomingValuesToPhi(PN, IncomingValues); 981 982 // If this incoming value is one of the PHI nodes in BB, the new entries 983 // in the PHI node are the entries from the old PHI. 984 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 985 PHINode *OldValPN = cast<PHINode>(OldVal); 986 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 987 // Note that, since we are merging phi nodes and BB and Succ might 988 // have common predecessors, we could end up with a phi node with 989 // identical incoming branches. This will be cleaned up later (and 990 // will trigger asserts if we try to clean it up now, without also 991 // simplifying the corresponding conditional branch). 992 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 993 Value *PredVal = OldValPN->getIncomingValue(i); 994 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 995 IncomingValues); 996 997 // And add a new incoming value for this predecessor for the 998 // newly retargeted branch. 999 PN->addIncoming(Selected, PredBB); 1000 } 1001 } else { 1002 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1003 // Update existing incoming values in PN for this 1004 // predecessor of BB. 1005 BasicBlock *PredBB = BBPreds[i]; 1006 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1007 IncomingValues); 1008 1009 // And add a new incoming value for this predecessor for the 1010 // newly retargeted branch. 1011 PN->addIncoming(Selected, PredBB); 1012 } 1013 } 1014 1015 replaceUndefValuesInPhi(PN, IncomingValues); 1016 } 1017 1018 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1019 DomTreeUpdater *DTU) { 1020 assert(BB != &BB->getParent()->getEntryBlock() && 1021 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1022 1023 // We can't eliminate infinite loops. 1024 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1025 if (BB == Succ) return false; 1026 1027 // Check to see if merging these blocks would cause conflicts for any of the 1028 // phi nodes in BB or Succ. If not, we can safely merge. 1029 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1030 1031 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1032 // has uses which will not disappear when the PHI nodes are merged. It is 1033 // possible to handle such cases, but difficult: it requires checking whether 1034 // BB dominates Succ, which is non-trivial to calculate in the case where 1035 // Succ has multiple predecessors. Also, it requires checking whether 1036 // constructing the necessary self-referential PHI node doesn't introduce any 1037 // conflicts; this isn't too difficult, but the previous code for doing this 1038 // was incorrect. 1039 // 1040 // Note that if this check finds a live use, BB dominates Succ, so BB is 1041 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1042 // folding the branch isn't profitable in that case anyway. 1043 if (!Succ->getSinglePredecessor()) { 1044 BasicBlock::iterator BBI = BB->begin(); 1045 while (isa<PHINode>(*BBI)) { 1046 for (Use &U : BBI->uses()) { 1047 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1048 if (PN->getIncomingBlock(U) != BB) 1049 return false; 1050 } else { 1051 return false; 1052 } 1053 } 1054 ++BBI; 1055 } 1056 } 1057 1058 // We cannot fold the block if it's a branch to an already present callbr 1059 // successor because that creates duplicate successors. 1060 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1061 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1062 if (Succ == CBI->getDefaultDest()) 1063 return false; 1064 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1065 if (Succ == CBI->getIndirectDest(i)) 1066 return false; 1067 } 1068 } 1069 1070 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1071 1072 SmallVector<DominatorTree::UpdateType, 32> Updates; 1073 if (DTU) { 1074 // All predecessors of BB will be moved to Succ. 1075 SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB)); 1076 Updates.reserve(Updates.size() + 2 * Predecessors.size()); 1077 for (auto *Predecessor : Predecessors) { 1078 // This predecessor of BB may already have Succ as a successor. 1079 if (!llvm::is_contained(successors(Predecessor), Succ)) 1080 Updates.push_back({DominatorTree::Insert, Predecessor, Succ}); 1081 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 1082 } 1083 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1084 } 1085 1086 if (isa<PHINode>(Succ->begin())) { 1087 // If there is more than one pred of succ, and there are PHI nodes in 1088 // the successor, then we need to add incoming edges for the PHI nodes 1089 // 1090 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1091 1092 // Loop over all of the PHI nodes in the successor of BB. 1093 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1094 PHINode *PN = cast<PHINode>(I); 1095 1096 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1097 } 1098 } 1099 1100 if (Succ->getSinglePredecessor()) { 1101 // BB is the only predecessor of Succ, so Succ will end up with exactly 1102 // the same predecessors BB had. 1103 1104 // Copy over any phi, debug or lifetime instruction. 1105 BB->getTerminator()->eraseFromParent(); 1106 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1107 BB->getInstList()); 1108 } else { 1109 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1110 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1111 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1112 PN->eraseFromParent(); 1113 } 1114 } 1115 1116 // If the unconditional branch we replaced contains llvm.loop metadata, we 1117 // add the metadata to the branch instructions in the predecessors. 1118 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1119 Instruction *TI = BB->getTerminator(); 1120 if (TI) 1121 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1122 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1123 BasicBlock *Pred = *PI; 1124 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1125 } 1126 1127 // Everything that jumped to BB now goes to Succ. 1128 BB->replaceAllUsesWith(Succ); 1129 if (!Succ->hasName()) Succ->takeName(BB); 1130 1131 // Clear the successor list of BB to match updates applying to DTU later. 1132 if (BB->getTerminator()) 1133 BB->getInstList().pop_back(); 1134 new UnreachableInst(BB->getContext(), BB); 1135 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1136 "applying corresponding DTU updates."); 1137 1138 if (DTU) { 1139 DTU->applyUpdates(Updates); 1140 DTU->deleteBB(BB); 1141 } else { 1142 BB->eraseFromParent(); // Delete the old basic block. 1143 } 1144 return true; 1145 } 1146 1147 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1148 // This implementation doesn't currently consider undef operands 1149 // specially. Theoretically, two phis which are identical except for 1150 // one having an undef where the other doesn't could be collapsed. 1151 1152 bool Changed = false; 1153 1154 // Examine each PHI. 1155 // Note that increment of I must *NOT* be in the iteration_expression, since 1156 // we don't want to immediately advance when we restart from the beginning. 1157 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1158 ++I; 1159 // Is there an identical PHI node in this basic block? 1160 // Note that we only look in the upper square's triangle, 1161 // we already checked that the lower triangle PHI's aren't identical. 1162 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1163 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1164 continue; 1165 // A duplicate. Replace this PHI with the base PHI. 1166 ++NumPHICSEs; 1167 DuplicatePN->replaceAllUsesWith(PN); 1168 DuplicatePN->eraseFromParent(); 1169 Changed = true; 1170 1171 // The RAUW can change PHIs that we already visited. 1172 I = BB->begin(); 1173 break; // Start over from the beginning. 1174 } 1175 } 1176 return Changed; 1177 } 1178 1179 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1180 // This implementation doesn't currently consider undef operands 1181 // specially. Theoretically, two phis which are identical except for 1182 // one having an undef where the other doesn't could be collapsed. 1183 1184 struct PHIDenseMapInfo { 1185 static PHINode *getEmptyKey() { 1186 return DenseMapInfo<PHINode *>::getEmptyKey(); 1187 } 1188 1189 static PHINode *getTombstoneKey() { 1190 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1191 } 1192 1193 static bool isSentinel(PHINode *PN) { 1194 return PN == getEmptyKey() || PN == getTombstoneKey(); 1195 } 1196 1197 // WARNING: this logic must be kept in sync with 1198 // Instruction::isIdenticalToWhenDefined()! 1199 static unsigned getHashValueImpl(PHINode *PN) { 1200 // Compute a hash value on the operands. Instcombine will likely have 1201 // sorted them, which helps expose duplicates, but we have to check all 1202 // the operands to be safe in case instcombine hasn't run. 1203 return static_cast<unsigned>(hash_combine( 1204 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1205 hash_combine_range(PN->block_begin(), PN->block_end()))); 1206 } 1207 1208 static unsigned getHashValue(PHINode *PN) { 1209 #ifndef NDEBUG 1210 // If -phicse-debug-hash was specified, return a constant -- this 1211 // will force all hashing to collide, so we'll exhaustively search 1212 // the table for a match, and the assertion in isEqual will fire if 1213 // there's a bug causing equal keys to hash differently. 1214 if (PHICSEDebugHash) 1215 return 0; 1216 #endif 1217 return getHashValueImpl(PN); 1218 } 1219 1220 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1221 if (isSentinel(LHS) || isSentinel(RHS)) 1222 return LHS == RHS; 1223 return LHS->isIdenticalTo(RHS); 1224 } 1225 1226 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1227 // These comparisons are nontrivial, so assert that equality implies 1228 // hash equality (DenseMap demands this as an invariant). 1229 bool Result = isEqualImpl(LHS, RHS); 1230 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1231 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1232 return Result; 1233 } 1234 }; 1235 1236 // Set of unique PHINodes. 1237 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1238 PHISet.reserve(4 * PHICSENumPHISmallSize); 1239 1240 // Examine each PHI. 1241 bool Changed = false; 1242 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1243 auto Inserted = PHISet.insert(PN); 1244 if (!Inserted.second) { 1245 // A duplicate. Replace this PHI with its duplicate. 1246 ++NumPHICSEs; 1247 PN->replaceAllUsesWith(*Inserted.first); 1248 PN->eraseFromParent(); 1249 Changed = true; 1250 1251 // The RAUW can change PHIs that we already visited. Start over from the 1252 // beginning. 1253 PHISet.clear(); 1254 I = BB->begin(); 1255 } 1256 } 1257 1258 return Changed; 1259 } 1260 1261 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1262 if ( 1263 #ifndef NDEBUG 1264 !PHICSEDebugHash && 1265 #endif 1266 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1267 return EliminateDuplicatePHINodesNaiveImpl(BB); 1268 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1269 } 1270 1271 /// If the specified pointer points to an object that we control, try to modify 1272 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1273 /// the value after the operation, which may be lower than PrefAlign. 1274 /// 1275 /// Increating value alignment isn't often possible though. If alignment is 1276 /// important, a more reliable approach is to simply align all global variables 1277 /// and allocation instructions to their preferred alignment from the beginning. 1278 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1279 const DataLayout &DL) { 1280 V = V->stripPointerCasts(); 1281 1282 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1283 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1284 // than the current alignment, as the known bits calculation should have 1285 // already taken it into account. However, this is not always the case, 1286 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1287 // doesn't. 1288 Align CurrentAlign = AI->getAlign(); 1289 if (PrefAlign <= CurrentAlign) 1290 return CurrentAlign; 1291 1292 // If the preferred alignment is greater than the natural stack alignment 1293 // then don't round up. This avoids dynamic stack realignment. 1294 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1295 return CurrentAlign; 1296 AI->setAlignment(PrefAlign); 1297 return PrefAlign; 1298 } 1299 1300 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1301 // TODO: as above, this shouldn't be necessary. 1302 Align CurrentAlign = GO->getPointerAlignment(DL); 1303 if (PrefAlign <= CurrentAlign) 1304 return CurrentAlign; 1305 1306 // If there is a large requested alignment and we can, bump up the alignment 1307 // of the global. If the memory we set aside for the global may not be the 1308 // memory used by the final program then it is impossible for us to reliably 1309 // enforce the preferred alignment. 1310 if (!GO->canIncreaseAlignment()) 1311 return CurrentAlign; 1312 1313 GO->setAlignment(PrefAlign); 1314 return PrefAlign; 1315 } 1316 1317 return Align(1); 1318 } 1319 1320 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1321 const DataLayout &DL, 1322 const Instruction *CxtI, 1323 AssumptionCache *AC, 1324 const DominatorTree *DT) { 1325 assert(V->getType()->isPointerTy() && 1326 "getOrEnforceKnownAlignment expects a pointer!"); 1327 1328 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1329 unsigned TrailZ = Known.countMinTrailingZeros(); 1330 1331 // Avoid trouble with ridiculously large TrailZ values, such as 1332 // those computed from a null pointer. 1333 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1334 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1335 1336 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1337 1338 if (PrefAlign && *PrefAlign > Alignment) 1339 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1340 1341 // We don't need to make any adjustment. 1342 return Alignment; 1343 } 1344 1345 ///===---------------------------------------------------------------------===// 1346 /// Dbg Intrinsic utilities 1347 /// 1348 1349 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1350 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1351 DIExpression *DIExpr, 1352 PHINode *APN) { 1353 // Since we can't guarantee that the original dbg.declare instrinsic 1354 // is removed by LowerDbgDeclare(), we need to make sure that we are 1355 // not inserting the same dbg.value intrinsic over and over. 1356 SmallVector<DbgValueInst *, 1> DbgValues; 1357 findDbgValues(DbgValues, APN); 1358 for (auto *DVI : DbgValues) { 1359 assert(DVI->getValue() == APN); 1360 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1361 return true; 1362 } 1363 return false; 1364 } 1365 1366 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1367 /// (or fragment of the variable) described by \p DII. 1368 /// 1369 /// This is primarily intended as a helper for the different 1370 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1371 /// converted describes an alloca'd variable, so we need to use the 1372 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1373 /// identified as covering an n-bit fragment, if the store size of i1 is at 1374 /// least n bits. 1375 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1376 const DataLayout &DL = DII->getModule()->getDataLayout(); 1377 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1378 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1379 assert(!ValueSize.isScalable() && 1380 "Fragments don't work on scalable types."); 1381 return ValueSize.getFixedSize() >= *FragmentSize; 1382 } 1383 // We can't always calculate the size of the DI variable (e.g. if it is a 1384 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1385 // intead. 1386 if (DII->isAddressOfVariable()) 1387 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1388 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1389 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1390 "Both sizes should agree on the scalable flag."); 1391 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1392 } 1393 // Could not determine size of variable. Conservatively return false. 1394 return false; 1395 } 1396 1397 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1398 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1399 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1400 /// case this DebugLoc leaks into any adjacent instructions. 1401 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1402 // Original dbg.declare must have a location. 1403 DebugLoc DeclareLoc = DII->getDebugLoc(); 1404 MDNode *Scope = DeclareLoc.getScope(); 1405 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1406 // Produce an unknown location with the correct scope / inlinedAt fields. 1407 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1408 } 1409 1410 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1411 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1412 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1413 StoreInst *SI, DIBuilder &Builder) { 1414 assert(DII->isAddressOfVariable()); 1415 auto *DIVar = DII->getVariable(); 1416 assert(DIVar && "Missing variable"); 1417 auto *DIExpr = DII->getExpression(); 1418 Value *DV = SI->getValueOperand(); 1419 1420 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1421 1422 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1423 // FIXME: If storing to a part of the variable described by the dbg.declare, 1424 // then we want to insert a dbg.value for the corresponding fragment. 1425 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1426 << *DII << '\n'); 1427 // For now, when there is a store to parts of the variable (but we do not 1428 // know which part) we insert an dbg.value instrinsic to indicate that we 1429 // know nothing about the variable's content. 1430 DV = UndefValue::get(DV->getType()); 1431 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1432 return; 1433 } 1434 1435 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1436 } 1437 1438 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1439 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1440 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1441 LoadInst *LI, DIBuilder &Builder) { 1442 auto *DIVar = DII->getVariable(); 1443 auto *DIExpr = DII->getExpression(); 1444 assert(DIVar && "Missing variable"); 1445 1446 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1447 // FIXME: If only referring to a part of the variable described by the 1448 // dbg.declare, then we want to insert a dbg.value for the corresponding 1449 // fragment. 1450 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1451 << *DII << '\n'); 1452 return; 1453 } 1454 1455 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1456 1457 // We are now tracking the loaded value instead of the address. In the 1458 // future if multi-location support is added to the IR, it might be 1459 // preferable to keep tracking both the loaded value and the original 1460 // address in case the alloca can not be elided. 1461 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1462 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1463 DbgValue->insertAfter(LI); 1464 } 1465 1466 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1467 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1468 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1469 PHINode *APN, DIBuilder &Builder) { 1470 auto *DIVar = DII->getVariable(); 1471 auto *DIExpr = DII->getExpression(); 1472 assert(DIVar && "Missing variable"); 1473 1474 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1475 return; 1476 1477 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1478 // FIXME: If only referring to a part of the variable described by the 1479 // dbg.declare, then we want to insert a dbg.value for the corresponding 1480 // fragment. 1481 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1482 << *DII << '\n'); 1483 return; 1484 } 1485 1486 BasicBlock *BB = APN->getParent(); 1487 auto InsertionPt = BB->getFirstInsertionPt(); 1488 1489 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1490 1491 // The block may be a catchswitch block, which does not have a valid 1492 // insertion point. 1493 // FIXME: Insert dbg.value markers in the successors when appropriate. 1494 if (InsertionPt != BB->end()) 1495 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1496 } 1497 1498 /// Determine whether this alloca is either a VLA or an array. 1499 static bool isArray(AllocaInst *AI) { 1500 return AI->isArrayAllocation() || 1501 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1502 } 1503 1504 /// Determine whether this alloca is a structure. 1505 static bool isStructure(AllocaInst *AI) { 1506 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1507 } 1508 1509 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1510 /// of llvm.dbg.value intrinsics. 1511 bool llvm::LowerDbgDeclare(Function &F) { 1512 bool Changed = false; 1513 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1514 SmallVector<DbgDeclareInst *, 4> Dbgs; 1515 for (auto &FI : F) 1516 for (Instruction &BI : FI) 1517 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1518 Dbgs.push_back(DDI); 1519 1520 if (Dbgs.empty()) 1521 return Changed; 1522 1523 for (auto &I : Dbgs) { 1524 DbgDeclareInst *DDI = I; 1525 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1526 // If this is an alloca for a scalar variable, insert a dbg.value 1527 // at each load and store to the alloca and erase the dbg.declare. 1528 // The dbg.values allow tracking a variable even if it is not 1529 // stored on the stack, while the dbg.declare can only describe 1530 // the stack slot (and at a lexical-scope granularity). Later 1531 // passes will attempt to elide the stack slot. 1532 if (!AI || isArray(AI) || isStructure(AI)) 1533 continue; 1534 1535 // A volatile load/store means that the alloca can't be elided anyway. 1536 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1537 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1538 return LI->isVolatile(); 1539 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1540 return SI->isVolatile(); 1541 return false; 1542 })) 1543 continue; 1544 1545 SmallVector<const Value *, 8> WorkList; 1546 WorkList.push_back(AI); 1547 while (!WorkList.empty()) { 1548 const Value *V = WorkList.pop_back_val(); 1549 for (auto &AIUse : V->uses()) { 1550 User *U = AIUse.getUser(); 1551 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1552 if (AIUse.getOperandNo() == 1) 1553 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1554 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1555 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1556 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1557 // This is a call by-value or some other instruction that takes a 1558 // pointer to the variable. Insert a *value* intrinsic that describes 1559 // the variable by dereferencing the alloca. 1560 if (!CI->isLifetimeStartOrEnd()) { 1561 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1562 auto *DerefExpr = 1563 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1564 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1565 NewLoc, CI); 1566 } 1567 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1568 if (BI->getType()->isPointerTy()) 1569 WorkList.push_back(BI); 1570 } 1571 } 1572 } 1573 DDI->eraseFromParent(); 1574 Changed = true; 1575 } 1576 1577 if (Changed) 1578 for (BasicBlock &BB : F) 1579 RemoveRedundantDbgInstrs(&BB); 1580 1581 return Changed; 1582 } 1583 1584 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1585 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1586 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1587 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1588 if (InsertedPHIs.size() == 0) 1589 return; 1590 1591 // Map existing PHI nodes to their dbg.values. 1592 ValueToValueMapTy DbgValueMap; 1593 for (auto &I : *BB) { 1594 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1595 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1596 DbgValueMap.insert({Loc, DbgII}); 1597 } 1598 } 1599 if (DbgValueMap.size() == 0) 1600 return; 1601 1602 // Then iterate through the new PHIs and look to see if they use one of the 1603 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1604 // propagate the info through the new PHI. 1605 LLVMContext &C = BB->getContext(); 1606 for (auto PHI : InsertedPHIs) { 1607 BasicBlock *Parent = PHI->getParent(); 1608 // Avoid inserting an intrinsic into an EH block. 1609 if (Parent->getFirstNonPHI()->isEHPad()) 1610 continue; 1611 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1612 for (auto VI : PHI->operand_values()) { 1613 auto V = DbgValueMap.find(VI); 1614 if (V != DbgValueMap.end()) { 1615 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1616 Instruction *NewDbgII = DbgII->clone(); 1617 NewDbgII->setOperand(0, PhiMAV); 1618 auto InsertionPt = Parent->getFirstInsertionPt(); 1619 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1620 NewDbgII->insertBefore(&*InsertionPt); 1621 } 1622 } 1623 } 1624 } 1625 1626 /// Finds all intrinsics declaring local variables as living in the memory that 1627 /// 'V' points to. This may include a mix of dbg.declare and 1628 /// dbg.addr intrinsics. 1629 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1630 // This function is hot. Check whether the value has any metadata to avoid a 1631 // DenseMap lookup. 1632 if (!V->isUsedByMetadata()) 1633 return {}; 1634 auto *L = LocalAsMetadata::getIfExists(V); 1635 if (!L) 1636 return {}; 1637 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1638 if (!MDV) 1639 return {}; 1640 1641 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1642 for (User *U : MDV->users()) { 1643 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1644 if (DII->isAddressOfVariable()) 1645 Declares.push_back(DII); 1646 } 1647 1648 return Declares; 1649 } 1650 1651 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1652 TinyPtrVector<DbgDeclareInst *> DDIs; 1653 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1654 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1655 DDIs.push_back(DDI); 1656 return DDIs; 1657 } 1658 1659 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1660 // This function is hot. Check whether the value has any metadata to avoid a 1661 // DenseMap lookup. 1662 if (!V->isUsedByMetadata()) 1663 return; 1664 if (auto *L = LocalAsMetadata::getIfExists(V)) 1665 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1666 for (User *U : MDV->users()) 1667 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1668 DbgValues.push_back(DVI); 1669 } 1670 1671 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1672 Value *V) { 1673 // This function is hot. Check whether the value has any metadata to avoid a 1674 // DenseMap lookup. 1675 if (!V->isUsedByMetadata()) 1676 return; 1677 if (auto *L = LocalAsMetadata::getIfExists(V)) 1678 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1679 for (User *U : MDV->users()) 1680 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1681 DbgUsers.push_back(DII); 1682 } 1683 1684 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1685 DIBuilder &Builder, uint8_t DIExprFlags, 1686 int Offset) { 1687 auto DbgAddrs = FindDbgAddrUses(Address); 1688 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1689 DebugLoc Loc = DII->getDebugLoc(); 1690 auto *DIVar = DII->getVariable(); 1691 auto *DIExpr = DII->getExpression(); 1692 assert(DIVar && "Missing variable"); 1693 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1694 // Insert llvm.dbg.declare immediately before DII, and remove old 1695 // llvm.dbg.declare. 1696 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1697 DII->eraseFromParent(); 1698 } 1699 return !DbgAddrs.empty(); 1700 } 1701 1702 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1703 DIBuilder &Builder, int Offset) { 1704 DebugLoc Loc = DVI->getDebugLoc(); 1705 auto *DIVar = DVI->getVariable(); 1706 auto *DIExpr = DVI->getExpression(); 1707 assert(DIVar && "Missing variable"); 1708 1709 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1710 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1711 // it and give up. 1712 if (!DIExpr || DIExpr->getNumElements() < 1 || 1713 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1714 return; 1715 1716 // Insert the offset before the first deref. 1717 // We could just change the offset argument of dbg.value, but it's unsigned... 1718 if (Offset) 1719 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1720 1721 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1722 DVI->eraseFromParent(); 1723 } 1724 1725 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1726 DIBuilder &Builder, int Offset) { 1727 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1728 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1729 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1730 Use &U = *UI++; 1731 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1732 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1733 } 1734 } 1735 1736 /// Wrap \p V in a ValueAsMetadata instance. 1737 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1738 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1739 } 1740 1741 /// Where possible to salvage debug information for \p I do so 1742 /// and return True. If not possible mark undef and return False. 1743 void llvm::salvageDebugInfo(Instruction &I) { 1744 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1745 findDbgUsers(DbgUsers, &I); 1746 salvageDebugInfoForDbgValues(I, DbgUsers); 1747 } 1748 1749 void llvm::salvageDebugInfoForDbgValues( 1750 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1751 auto &Ctx = I.getContext(); 1752 bool Salvaged = false; 1753 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1754 1755 for (auto *DII : DbgUsers) { 1756 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1757 // are implicitly pointing out the value as a DWARF memory location 1758 // description. 1759 bool StackValue = isa<DbgValueInst>(DII); 1760 1761 DIExpression *DIExpr = 1762 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1763 1764 // salvageDebugInfoImpl should fail on examining the first element of 1765 // DbgUsers, or none of them. 1766 if (!DIExpr) 1767 break; 1768 1769 DII->setOperand(0, wrapMD(I.getOperand(0))); 1770 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1771 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1772 Salvaged = true; 1773 } 1774 1775 if (Salvaged) 1776 return; 1777 1778 for (auto *DII : DbgUsers) { 1779 Value *Undef = UndefValue::get(I.getType()); 1780 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1781 ValueAsMetadata::get(Undef))); 1782 } 1783 } 1784 1785 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1786 DIExpression *SrcDIExpr, 1787 bool WithStackValue) { 1788 auto &M = *I.getModule(); 1789 auto &DL = M.getDataLayout(); 1790 1791 // Apply a vector of opcodes to the source DIExpression. 1792 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1793 DIExpression *DIExpr = SrcDIExpr; 1794 if (!Ops.empty()) { 1795 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1796 } 1797 return DIExpr; 1798 }; 1799 1800 // Apply the given offset to the source DIExpression. 1801 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1802 SmallVector<uint64_t, 8> Ops; 1803 DIExpression::appendOffset(Ops, Offset); 1804 return doSalvage(Ops); 1805 }; 1806 1807 // initializer-list helper for applying operators to the source DIExpression. 1808 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1809 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1810 return doSalvage(Ops); 1811 }; 1812 1813 if (auto *CI = dyn_cast<CastInst>(&I)) { 1814 // No-op casts are irrelevant for debug info. 1815 if (CI->isNoopCast(DL)) 1816 return SrcDIExpr; 1817 1818 Type *Type = CI->getType(); 1819 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1820 if (Type->isVectorTy() || 1821 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1822 return nullptr; 1823 1824 Value *FromValue = CI->getOperand(0); 1825 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1826 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1827 1828 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1829 isa<SExtInst>(&I))); 1830 } 1831 1832 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1833 unsigned BitWidth = 1834 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1835 // Rewrite a constant GEP into a DIExpression. 1836 APInt Offset(BitWidth, 0); 1837 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1838 return applyOffset(Offset.getSExtValue()); 1839 } else { 1840 return nullptr; 1841 } 1842 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1843 // Rewrite binary operations with constant integer operands. 1844 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1845 if (!ConstInt || ConstInt->getBitWidth() > 64) 1846 return nullptr; 1847 1848 uint64_t Val = ConstInt->getSExtValue(); 1849 switch (BI->getOpcode()) { 1850 case Instruction::Add: 1851 return applyOffset(Val); 1852 case Instruction::Sub: 1853 return applyOffset(-int64_t(Val)); 1854 case Instruction::Mul: 1855 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1856 case Instruction::SDiv: 1857 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1858 case Instruction::SRem: 1859 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1860 case Instruction::Or: 1861 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1862 case Instruction::And: 1863 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1864 case Instruction::Xor: 1865 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1866 case Instruction::Shl: 1867 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1868 case Instruction::LShr: 1869 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1870 case Instruction::AShr: 1871 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1872 default: 1873 // TODO: Salvage constants from each kind of binop we know about. 1874 return nullptr; 1875 } 1876 // *Not* to do: we should not attempt to salvage load instructions, 1877 // because the validity and lifetime of a dbg.value containing 1878 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1879 } 1880 return nullptr; 1881 } 1882 1883 /// A replacement for a dbg.value expression. 1884 using DbgValReplacement = Optional<DIExpression *>; 1885 1886 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1887 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1888 /// changes are made. 1889 static bool rewriteDebugUsers( 1890 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1891 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1892 // Find debug users of From. 1893 SmallVector<DbgVariableIntrinsic *, 1> Users; 1894 findDbgUsers(Users, &From); 1895 if (Users.empty()) 1896 return false; 1897 1898 // Prevent use-before-def of To. 1899 bool Changed = false; 1900 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1901 if (isa<Instruction>(&To)) { 1902 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1903 1904 for (auto *DII : Users) { 1905 // It's common to see a debug user between From and DomPoint. Move it 1906 // after DomPoint to preserve the variable update without any reordering. 1907 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1908 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1909 DII->moveAfter(&DomPoint); 1910 Changed = true; 1911 1912 // Users which otherwise aren't dominated by the replacement value must 1913 // be salvaged or deleted. 1914 } else if (!DT.dominates(&DomPoint, DII)) { 1915 UndefOrSalvage.insert(DII); 1916 } 1917 } 1918 } 1919 1920 // Update debug users without use-before-def risk. 1921 for (auto *DII : Users) { 1922 if (UndefOrSalvage.count(DII)) 1923 continue; 1924 1925 LLVMContext &Ctx = DII->getContext(); 1926 DbgValReplacement DVR = RewriteExpr(*DII); 1927 if (!DVR) 1928 continue; 1929 1930 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1931 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1932 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1933 Changed = true; 1934 } 1935 1936 if (!UndefOrSalvage.empty()) { 1937 // Try to salvage the remaining debug users. 1938 salvageDebugInfo(From); 1939 Changed = true; 1940 } 1941 1942 return Changed; 1943 } 1944 1945 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1946 /// losslessly preserve the bits and semantics of the value. This predicate is 1947 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1948 /// 1949 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1950 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1951 /// and also does not allow lossless pointer <-> integer conversions. 1952 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1953 Type *ToTy) { 1954 // Trivially compatible types. 1955 if (FromTy == ToTy) 1956 return true; 1957 1958 // Handle compatible pointer <-> integer conversions. 1959 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1960 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1961 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1962 !DL.isNonIntegralPointerType(ToTy); 1963 return SameSize && LosslessConversion; 1964 } 1965 1966 // TODO: This is not exhaustive. 1967 return false; 1968 } 1969 1970 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1971 Instruction &DomPoint, DominatorTree &DT) { 1972 // Exit early if From has no debug users. 1973 if (!From.isUsedByMetadata()) 1974 return false; 1975 1976 assert(&From != &To && "Can't replace something with itself"); 1977 1978 Type *FromTy = From.getType(); 1979 Type *ToTy = To.getType(); 1980 1981 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1982 return DII.getExpression(); 1983 }; 1984 1985 // Handle no-op conversions. 1986 Module &M = *From.getModule(); 1987 const DataLayout &DL = M.getDataLayout(); 1988 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1989 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1990 1991 // Handle integer-to-integer widening and narrowing. 1992 // FIXME: Use DW_OP_convert when it's available everywhere. 1993 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1994 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1995 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1996 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1997 1998 // When the width of the result grows, assume that a debugger will only 1999 // access the low `FromBits` bits when inspecting the source variable. 2000 if (FromBits < ToBits) 2001 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2002 2003 // The width of the result has shrunk. Use sign/zero extension to describe 2004 // the source variable's high bits. 2005 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2006 DILocalVariable *Var = DII.getVariable(); 2007 2008 // Without knowing signedness, sign/zero extension isn't possible. 2009 auto Signedness = Var->getSignedness(); 2010 if (!Signedness) 2011 return None; 2012 2013 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2014 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2015 Signed); 2016 }; 2017 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2018 } 2019 2020 // TODO: Floating-point conversions, vectors. 2021 return false; 2022 } 2023 2024 std::pair<unsigned, unsigned> 2025 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2026 unsigned NumDeadInst = 0; 2027 unsigned NumDeadDbgInst = 0; 2028 // Delete the instructions backwards, as it has a reduced likelihood of 2029 // having to update as many def-use and use-def chains. 2030 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2031 while (EndInst != &BB->front()) { 2032 // Delete the next to last instruction. 2033 Instruction *Inst = &*--EndInst->getIterator(); 2034 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2035 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2036 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2037 EndInst = Inst; 2038 continue; 2039 } 2040 if (isa<DbgInfoIntrinsic>(Inst)) 2041 ++NumDeadDbgInst; 2042 else 2043 ++NumDeadInst; 2044 Inst->eraseFromParent(); 2045 } 2046 return {NumDeadInst, NumDeadDbgInst}; 2047 } 2048 2049 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2050 bool PreserveLCSSA, DomTreeUpdater *DTU, 2051 MemorySSAUpdater *MSSAU) { 2052 BasicBlock *BB = I->getParent(); 2053 2054 if (MSSAU) 2055 MSSAU->changeToUnreachable(I); 2056 2057 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2058 2059 // Loop over all of the successors, removing BB's entry from any PHI 2060 // nodes. 2061 for (BasicBlock *Successor : successors(BB)) { 2062 Successor->removePredecessor(BB, PreserveLCSSA); 2063 if (DTU) 2064 UniqueSuccessors.insert(Successor); 2065 } 2066 // Insert a call to llvm.trap right before this. This turns the undefined 2067 // behavior into a hard fail instead of falling through into random code. 2068 if (UseLLVMTrap) { 2069 Function *TrapFn = 2070 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2071 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2072 CallTrap->setDebugLoc(I->getDebugLoc()); 2073 } 2074 auto *UI = new UnreachableInst(I->getContext(), I); 2075 UI->setDebugLoc(I->getDebugLoc()); 2076 2077 // All instructions after this are dead. 2078 unsigned NumInstrsRemoved = 0; 2079 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2080 while (BBI != BBE) { 2081 if (!BBI->use_empty()) 2082 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2083 BB->getInstList().erase(BBI++); 2084 ++NumInstrsRemoved; 2085 } 2086 if (DTU) { 2087 SmallVector<DominatorTree::UpdateType, 8> Updates; 2088 Updates.reserve(UniqueSuccessors.size()); 2089 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2090 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2091 DTU->applyUpdates(Updates); 2092 } 2093 return NumInstrsRemoved; 2094 } 2095 2096 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2097 SmallVector<Value *, 8> Args(II->args()); 2098 SmallVector<OperandBundleDef, 1> OpBundles; 2099 II->getOperandBundlesAsDefs(OpBundles); 2100 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2101 II->getCalledOperand(), Args, OpBundles); 2102 NewCall->setCallingConv(II->getCallingConv()); 2103 NewCall->setAttributes(II->getAttributes()); 2104 NewCall->setDebugLoc(II->getDebugLoc()); 2105 NewCall->copyMetadata(*II); 2106 2107 // If the invoke had profile metadata, try converting them for CallInst. 2108 uint64_t TotalWeight; 2109 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2110 // Set the total weight if it fits into i32, otherwise reset. 2111 MDBuilder MDB(NewCall->getContext()); 2112 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2113 ? nullptr 2114 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2115 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2116 } 2117 2118 return NewCall; 2119 } 2120 2121 /// changeToCall - Convert the specified invoke into a normal call. 2122 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2123 CallInst *NewCall = createCallMatchingInvoke(II); 2124 NewCall->takeName(II); 2125 NewCall->insertBefore(II); 2126 II->replaceAllUsesWith(NewCall); 2127 2128 // Follow the call by a branch to the normal destination. 2129 BasicBlock *NormalDestBB = II->getNormalDest(); 2130 BranchInst::Create(NormalDestBB, II); 2131 2132 // Update PHI nodes in the unwind destination 2133 BasicBlock *BB = II->getParent(); 2134 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2135 UnwindDestBB->removePredecessor(BB); 2136 II->eraseFromParent(); 2137 if (DTU) 2138 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2139 } 2140 2141 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2142 BasicBlock *UnwindEdge) { 2143 BasicBlock *BB = CI->getParent(); 2144 2145 // Convert this function call into an invoke instruction. First, split the 2146 // basic block. 2147 BasicBlock *Split = 2148 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2149 2150 // Delete the unconditional branch inserted by splitBasicBlock 2151 BB->getInstList().pop_back(); 2152 2153 // Create the new invoke instruction. 2154 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2155 SmallVector<OperandBundleDef, 1> OpBundles; 2156 2157 CI->getOperandBundlesAsDefs(OpBundles); 2158 2159 // Note: we're round tripping operand bundles through memory here, and that 2160 // can potentially be avoided with a cleverer API design that we do not have 2161 // as of this time. 2162 2163 InvokeInst *II = 2164 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2165 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2166 II->setDebugLoc(CI->getDebugLoc()); 2167 II->setCallingConv(CI->getCallingConv()); 2168 II->setAttributes(CI->getAttributes()); 2169 2170 // Make sure that anything using the call now uses the invoke! This also 2171 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2172 CI->replaceAllUsesWith(II); 2173 2174 // Delete the original call 2175 Split->getInstList().pop_front(); 2176 return Split; 2177 } 2178 2179 static bool markAliveBlocks(Function &F, 2180 SmallPtrSetImpl<BasicBlock *> &Reachable, 2181 DomTreeUpdater *DTU = nullptr) { 2182 SmallVector<BasicBlock*, 128> Worklist; 2183 BasicBlock *BB = &F.front(); 2184 Worklist.push_back(BB); 2185 Reachable.insert(BB); 2186 bool Changed = false; 2187 do { 2188 BB = Worklist.pop_back_val(); 2189 2190 // Do a quick scan of the basic block, turning any obviously unreachable 2191 // instructions into LLVM unreachable insts. The instruction combining pass 2192 // canonicalizes unreachable insts into stores to null or undef. 2193 for (Instruction &I : *BB) { 2194 if (auto *CI = dyn_cast<CallInst>(&I)) { 2195 Value *Callee = CI->getCalledOperand(); 2196 // Handle intrinsic calls. 2197 if (Function *F = dyn_cast<Function>(Callee)) { 2198 auto IntrinsicID = F->getIntrinsicID(); 2199 // Assumptions that are known to be false are equivalent to 2200 // unreachable. Also, if the condition is undefined, then we make the 2201 // choice most beneficial to the optimizer, and choose that to also be 2202 // unreachable. 2203 if (IntrinsicID == Intrinsic::assume) { 2204 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2205 // Don't insert a call to llvm.trap right before the unreachable. 2206 changeToUnreachable(CI, false, false, DTU); 2207 Changed = true; 2208 break; 2209 } 2210 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2211 // A call to the guard intrinsic bails out of the current 2212 // compilation unit if the predicate passed to it is false. If the 2213 // predicate is a constant false, then we know the guard will bail 2214 // out of the current compile unconditionally, so all code following 2215 // it is dead. 2216 // 2217 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2218 // guards to treat `undef` as `false` since a guard on `undef` can 2219 // still be useful for widening. 2220 if (match(CI->getArgOperand(0), m_Zero())) 2221 if (!isa<UnreachableInst>(CI->getNextNode())) { 2222 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2223 false, DTU); 2224 Changed = true; 2225 break; 2226 } 2227 } 2228 } else if ((isa<ConstantPointerNull>(Callee) && 2229 !NullPointerIsDefined(CI->getFunction())) || 2230 isa<UndefValue>(Callee)) { 2231 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2232 Changed = true; 2233 break; 2234 } 2235 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2236 // If we found a call to a no-return function, insert an unreachable 2237 // instruction after it. Make sure there isn't *already* one there 2238 // though. 2239 if (!isa<UnreachableInst>(CI->getNextNode())) { 2240 // Don't insert a call to llvm.trap right before the unreachable. 2241 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2242 Changed = true; 2243 } 2244 break; 2245 } 2246 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2247 // Store to undef and store to null are undefined and used to signal 2248 // that they should be changed to unreachable by passes that can't 2249 // modify the CFG. 2250 2251 // Don't touch volatile stores. 2252 if (SI->isVolatile()) continue; 2253 2254 Value *Ptr = SI->getOperand(1); 2255 2256 if (isa<UndefValue>(Ptr) || 2257 (isa<ConstantPointerNull>(Ptr) && 2258 !NullPointerIsDefined(SI->getFunction(), 2259 SI->getPointerAddressSpace()))) { 2260 changeToUnreachable(SI, true, false, DTU); 2261 Changed = true; 2262 break; 2263 } 2264 } 2265 } 2266 2267 Instruction *Terminator = BB->getTerminator(); 2268 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2269 // Turn invokes that call 'nounwind' functions into ordinary calls. 2270 Value *Callee = II->getCalledOperand(); 2271 if ((isa<ConstantPointerNull>(Callee) && 2272 !NullPointerIsDefined(BB->getParent())) || 2273 isa<UndefValue>(Callee)) { 2274 changeToUnreachable(II, true, false, DTU); 2275 Changed = true; 2276 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2277 if (II->use_empty() && II->onlyReadsMemory()) { 2278 // jump to the normal destination branch. 2279 BasicBlock *NormalDestBB = II->getNormalDest(); 2280 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2281 BranchInst::Create(NormalDestBB, II); 2282 UnwindDestBB->removePredecessor(II->getParent()); 2283 II->eraseFromParent(); 2284 if (DTU) 2285 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2286 } else 2287 changeToCall(II, DTU); 2288 Changed = true; 2289 } 2290 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2291 // Remove catchpads which cannot be reached. 2292 struct CatchPadDenseMapInfo { 2293 static CatchPadInst *getEmptyKey() { 2294 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2295 } 2296 2297 static CatchPadInst *getTombstoneKey() { 2298 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2299 } 2300 2301 static unsigned getHashValue(CatchPadInst *CatchPad) { 2302 return static_cast<unsigned>(hash_combine_range( 2303 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2304 } 2305 2306 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2307 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2308 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2309 return LHS == RHS; 2310 return LHS->isIdenticalTo(RHS); 2311 } 2312 }; 2313 2314 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 2315 // Set of unique CatchPads. 2316 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2317 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2318 HandlerSet; 2319 detail::DenseSetEmpty Empty; 2320 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2321 E = CatchSwitch->handler_end(); 2322 I != E; ++I) { 2323 BasicBlock *HandlerBB = *I; 2324 ++NumPerSuccessorCases[HandlerBB]; 2325 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2326 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2327 --NumPerSuccessorCases[HandlerBB]; 2328 CatchSwitch->removeHandler(I); 2329 --I; 2330 --E; 2331 Changed = true; 2332 } 2333 } 2334 std::vector<DominatorTree::UpdateType> Updates; 2335 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2336 if (I.second == 0) 2337 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2338 if (DTU) 2339 DTU->applyUpdates(Updates); 2340 } 2341 2342 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2343 for (BasicBlock *Successor : successors(BB)) 2344 if (Reachable.insert(Successor).second) 2345 Worklist.push_back(Successor); 2346 } while (!Worklist.empty()); 2347 return Changed; 2348 } 2349 2350 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2351 Instruction *TI = BB->getTerminator(); 2352 2353 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2354 changeToCall(II, DTU); 2355 return; 2356 } 2357 2358 Instruction *NewTI; 2359 BasicBlock *UnwindDest; 2360 2361 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2362 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2363 UnwindDest = CRI->getUnwindDest(); 2364 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2365 auto *NewCatchSwitch = CatchSwitchInst::Create( 2366 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2367 CatchSwitch->getName(), CatchSwitch); 2368 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2369 NewCatchSwitch->addHandler(PadBB); 2370 2371 NewTI = NewCatchSwitch; 2372 UnwindDest = CatchSwitch->getUnwindDest(); 2373 } else { 2374 llvm_unreachable("Could not find unwind successor"); 2375 } 2376 2377 NewTI->takeName(TI); 2378 NewTI->setDebugLoc(TI->getDebugLoc()); 2379 UnwindDest->removePredecessor(BB); 2380 TI->replaceAllUsesWith(NewTI); 2381 TI->eraseFromParent(); 2382 if (DTU) 2383 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2384 } 2385 2386 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2387 /// if they are in a dead cycle. Return true if a change was made, false 2388 /// otherwise. 2389 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2390 MemorySSAUpdater *MSSAU) { 2391 SmallPtrSet<BasicBlock *, 16> Reachable; 2392 bool Changed = markAliveBlocks(F, Reachable, DTU); 2393 2394 // If there are unreachable blocks in the CFG... 2395 if (Reachable.size() == F.size()) 2396 return Changed; 2397 2398 assert(Reachable.size() < F.size()); 2399 2400 // Are there any blocks left to actually delete? 2401 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2402 for (BasicBlock &BB : F) { 2403 // Skip reachable basic blocks 2404 if (Reachable.count(&BB)) 2405 continue; 2406 // Skip already-deleted blocks 2407 if (DTU && DTU->isBBPendingDeletion(&BB)) 2408 continue; 2409 BlocksToRemove.insert(&BB); 2410 } 2411 2412 if (BlocksToRemove.empty()) 2413 return Changed; 2414 2415 Changed = true; 2416 NumRemoved += BlocksToRemove.size(); 2417 2418 if (MSSAU) 2419 MSSAU->removeBlocks(BlocksToRemove); 2420 2421 // Loop over all of the basic blocks that are up for removal, dropping all of 2422 // their internal references. Update DTU if available. 2423 std::vector<DominatorTree::UpdateType> Updates; 2424 for (auto *BB : BlocksToRemove) { 2425 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2426 for (BasicBlock *Successor : successors(BB)) { 2427 // Only remove references to BB in reachable successors of BB. 2428 if (Reachable.count(Successor)) 2429 Successor->removePredecessor(BB); 2430 if (DTU) 2431 UniqueSuccessors.insert(Successor); 2432 } 2433 BB->dropAllReferences(); 2434 if (DTU) { 2435 Instruction *TI = BB->getTerminator(); 2436 assert(TI && "Basic block should have a terminator"); 2437 // Terminators like invoke can have users. We have to replace their users, 2438 // before removing them. 2439 if (!TI->use_empty()) 2440 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2441 TI->eraseFromParent(); 2442 new UnreachableInst(BB->getContext(), BB); 2443 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2444 "applying corresponding DTU updates."); 2445 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2446 for (auto *UniqueSuccessor : UniqueSuccessors) 2447 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2448 } 2449 } 2450 2451 if (DTU) { 2452 DTU->applyUpdates(Updates); 2453 for (auto *BB : BlocksToRemove) 2454 DTU->deleteBB(BB); 2455 } else { 2456 for (auto *BB : BlocksToRemove) 2457 BB->eraseFromParent(); 2458 } 2459 2460 return Changed; 2461 } 2462 2463 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2464 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2465 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2466 K->dropUnknownNonDebugMetadata(KnownIDs); 2467 K->getAllMetadataOtherThanDebugLoc(Metadata); 2468 for (const auto &MD : Metadata) { 2469 unsigned Kind = MD.first; 2470 MDNode *JMD = J->getMetadata(Kind); 2471 MDNode *KMD = MD.second; 2472 2473 switch (Kind) { 2474 default: 2475 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2476 break; 2477 case LLVMContext::MD_dbg: 2478 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2479 case LLVMContext::MD_tbaa: 2480 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2481 break; 2482 case LLVMContext::MD_alias_scope: 2483 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2484 break; 2485 case LLVMContext::MD_noalias: 2486 case LLVMContext::MD_mem_parallel_loop_access: 2487 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2488 break; 2489 case LLVMContext::MD_access_group: 2490 K->setMetadata(LLVMContext::MD_access_group, 2491 intersectAccessGroups(K, J)); 2492 break; 2493 case LLVMContext::MD_range: 2494 2495 // If K does move, use most generic range. Otherwise keep the range of 2496 // K. 2497 if (DoesKMove) 2498 // FIXME: If K does move, we should drop the range info and nonnull. 2499 // Currently this function is used with DoesKMove in passes 2500 // doing hoisting/sinking and the current behavior of using the 2501 // most generic range is correct in those cases. 2502 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2503 break; 2504 case LLVMContext::MD_fpmath: 2505 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2506 break; 2507 case LLVMContext::MD_invariant_load: 2508 // Only set the !invariant.load if it is present in both instructions. 2509 K->setMetadata(Kind, JMD); 2510 break; 2511 case LLVMContext::MD_nonnull: 2512 // If K does move, keep nonull if it is present in both instructions. 2513 if (DoesKMove) 2514 K->setMetadata(Kind, JMD); 2515 break; 2516 case LLVMContext::MD_invariant_group: 2517 // Preserve !invariant.group in K. 2518 break; 2519 case LLVMContext::MD_align: 2520 K->setMetadata(Kind, 2521 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2522 break; 2523 case LLVMContext::MD_dereferenceable: 2524 case LLVMContext::MD_dereferenceable_or_null: 2525 K->setMetadata(Kind, 2526 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2527 break; 2528 case LLVMContext::MD_preserve_access_index: 2529 // Preserve !preserve.access.index in K. 2530 break; 2531 } 2532 } 2533 // Set !invariant.group from J if J has it. If both instructions have it 2534 // then we will just pick it from J - even when they are different. 2535 // Also make sure that K is load or store - f.e. combining bitcast with load 2536 // could produce bitcast with invariant.group metadata, which is invalid. 2537 // FIXME: we should try to preserve both invariant.group md if they are 2538 // different, but right now instruction can only have one invariant.group. 2539 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2540 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2541 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2542 } 2543 2544 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2545 bool KDominatesJ) { 2546 unsigned KnownIDs[] = { 2547 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2548 LLVMContext::MD_noalias, LLVMContext::MD_range, 2549 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2550 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2551 LLVMContext::MD_dereferenceable, 2552 LLVMContext::MD_dereferenceable_or_null, 2553 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2554 combineMetadata(K, J, KnownIDs, KDominatesJ); 2555 } 2556 2557 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2558 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2559 Source.getAllMetadata(MD); 2560 MDBuilder MDB(Dest.getContext()); 2561 Type *NewType = Dest.getType(); 2562 const DataLayout &DL = Source.getModule()->getDataLayout(); 2563 for (const auto &MDPair : MD) { 2564 unsigned ID = MDPair.first; 2565 MDNode *N = MDPair.second; 2566 // Note, essentially every kind of metadata should be preserved here! This 2567 // routine is supposed to clone a load instruction changing *only its type*. 2568 // The only metadata it makes sense to drop is metadata which is invalidated 2569 // when the pointer type changes. This should essentially never be the case 2570 // in LLVM, but we explicitly switch over only known metadata to be 2571 // conservatively correct. If you are adding metadata to LLVM which pertains 2572 // to loads, you almost certainly want to add it here. 2573 switch (ID) { 2574 case LLVMContext::MD_dbg: 2575 case LLVMContext::MD_tbaa: 2576 case LLVMContext::MD_prof: 2577 case LLVMContext::MD_fpmath: 2578 case LLVMContext::MD_tbaa_struct: 2579 case LLVMContext::MD_invariant_load: 2580 case LLVMContext::MD_alias_scope: 2581 case LLVMContext::MD_noalias: 2582 case LLVMContext::MD_nontemporal: 2583 case LLVMContext::MD_mem_parallel_loop_access: 2584 case LLVMContext::MD_access_group: 2585 // All of these directly apply. 2586 Dest.setMetadata(ID, N); 2587 break; 2588 2589 case LLVMContext::MD_nonnull: 2590 copyNonnullMetadata(Source, N, Dest); 2591 break; 2592 2593 case LLVMContext::MD_align: 2594 case LLVMContext::MD_dereferenceable: 2595 case LLVMContext::MD_dereferenceable_or_null: 2596 // These only directly apply if the new type is also a pointer. 2597 if (NewType->isPointerTy()) 2598 Dest.setMetadata(ID, N); 2599 break; 2600 2601 case LLVMContext::MD_range: 2602 copyRangeMetadata(DL, Source, N, Dest); 2603 break; 2604 } 2605 } 2606 } 2607 2608 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2609 auto *ReplInst = dyn_cast<Instruction>(Repl); 2610 if (!ReplInst) 2611 return; 2612 2613 // Patch the replacement so that it is not more restrictive than the value 2614 // being replaced. 2615 // Note that if 'I' is a load being replaced by some operation, 2616 // for example, by an arithmetic operation, then andIRFlags() 2617 // would just erase all math flags from the original arithmetic 2618 // operation, which is clearly not wanted and not needed. 2619 if (!isa<LoadInst>(I)) 2620 ReplInst->andIRFlags(I); 2621 2622 // FIXME: If both the original and replacement value are part of the 2623 // same control-flow region (meaning that the execution of one 2624 // guarantees the execution of the other), then we can combine the 2625 // noalias scopes here and do better than the general conservative 2626 // answer used in combineMetadata(). 2627 2628 // In general, GVN unifies expressions over different control-flow 2629 // regions, and so we need a conservative combination of the noalias 2630 // scopes. 2631 static const unsigned KnownIDs[] = { 2632 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2633 LLVMContext::MD_noalias, LLVMContext::MD_range, 2634 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2635 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2636 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2637 combineMetadata(ReplInst, I, KnownIDs, false); 2638 } 2639 2640 template <typename RootType, typename DominatesFn> 2641 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2642 const RootType &Root, 2643 const DominatesFn &Dominates) { 2644 assert(From->getType() == To->getType()); 2645 2646 unsigned Count = 0; 2647 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2648 UI != UE;) { 2649 Use &U = *UI++; 2650 if (!Dominates(Root, U)) 2651 continue; 2652 U.set(To); 2653 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2654 << "' as " << *To << " in " << *U << "\n"); 2655 ++Count; 2656 } 2657 return Count; 2658 } 2659 2660 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2661 assert(From->getType() == To->getType()); 2662 auto *BB = From->getParent(); 2663 unsigned Count = 0; 2664 2665 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2666 UI != UE;) { 2667 Use &U = *UI++; 2668 auto *I = cast<Instruction>(U.getUser()); 2669 if (I->getParent() == BB) 2670 continue; 2671 U.set(To); 2672 ++Count; 2673 } 2674 return Count; 2675 } 2676 2677 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2678 DominatorTree &DT, 2679 const BasicBlockEdge &Root) { 2680 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2681 return DT.dominates(Root, U); 2682 }; 2683 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2684 } 2685 2686 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2687 DominatorTree &DT, 2688 const BasicBlock *BB) { 2689 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2690 auto *I = cast<Instruction>(U.getUser())->getParent(); 2691 return DT.properlyDominates(BB, I); 2692 }; 2693 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2694 } 2695 2696 bool llvm::callsGCLeafFunction(const CallBase *Call, 2697 const TargetLibraryInfo &TLI) { 2698 // Check if the function is specifically marked as a gc leaf function. 2699 if (Call->hasFnAttr("gc-leaf-function")) 2700 return true; 2701 if (const Function *F = Call->getCalledFunction()) { 2702 if (F->hasFnAttribute("gc-leaf-function")) 2703 return true; 2704 2705 if (auto IID = F->getIntrinsicID()) { 2706 // Most LLVM intrinsics do not take safepoints. 2707 return IID != Intrinsic::experimental_gc_statepoint && 2708 IID != Intrinsic::experimental_deoptimize && 2709 IID != Intrinsic::memcpy_element_unordered_atomic && 2710 IID != Intrinsic::memmove_element_unordered_atomic; 2711 } 2712 } 2713 2714 // Lib calls can be materialized by some passes, and won't be 2715 // marked as 'gc-leaf-function.' All available Libcalls are 2716 // GC-leaf. 2717 LibFunc LF; 2718 if (TLI.getLibFunc(*Call, LF)) { 2719 return TLI.has(LF); 2720 } 2721 2722 return false; 2723 } 2724 2725 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2726 LoadInst &NewLI) { 2727 auto *NewTy = NewLI.getType(); 2728 2729 // This only directly applies if the new type is also a pointer. 2730 if (NewTy->isPointerTy()) { 2731 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2732 return; 2733 } 2734 2735 // The only other translation we can do is to integral loads with !range 2736 // metadata. 2737 if (!NewTy->isIntegerTy()) 2738 return; 2739 2740 MDBuilder MDB(NewLI.getContext()); 2741 const Value *Ptr = OldLI.getPointerOperand(); 2742 auto *ITy = cast<IntegerType>(NewTy); 2743 auto *NullInt = ConstantExpr::getPtrToInt( 2744 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2745 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2746 NewLI.setMetadata(LLVMContext::MD_range, 2747 MDB.createRange(NonNullInt, NullInt)); 2748 } 2749 2750 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2751 MDNode *N, LoadInst &NewLI) { 2752 auto *NewTy = NewLI.getType(); 2753 2754 // Give up unless it is converted to a pointer where there is a single very 2755 // valuable mapping we can do reliably. 2756 // FIXME: It would be nice to propagate this in more ways, but the type 2757 // conversions make it hard. 2758 if (!NewTy->isPointerTy()) 2759 return; 2760 2761 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2762 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2763 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2764 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2765 } 2766 } 2767 2768 void llvm::dropDebugUsers(Instruction &I) { 2769 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2770 findDbgUsers(DbgUsers, &I); 2771 for (auto *DII : DbgUsers) 2772 DII->eraseFromParent(); 2773 } 2774 2775 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2776 BasicBlock *BB) { 2777 // Since we are moving the instructions out of its basic block, we do not 2778 // retain their original debug locations (DILocations) and debug intrinsic 2779 // instructions. 2780 // 2781 // Doing so would degrade the debugging experience and adversely affect the 2782 // accuracy of profiling information. 2783 // 2784 // Currently, when hoisting the instructions, we take the following actions: 2785 // - Remove their debug intrinsic instructions. 2786 // - Set their debug locations to the values from the insertion point. 2787 // 2788 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2789 // need to be deleted, is because there will not be any instructions with a 2790 // DILocation in either branch left after performing the transformation. We 2791 // can only insert a dbg.value after the two branches are joined again. 2792 // 2793 // See PR38762, PR39243 for more details. 2794 // 2795 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2796 // encode predicated DIExpressions that yield different results on different 2797 // code paths. 2798 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2799 Instruction *I = &*II; 2800 I->dropUnknownNonDebugMetadata(); 2801 if (I->isUsedByMetadata()) 2802 dropDebugUsers(*I); 2803 if (isa<DbgInfoIntrinsic>(I)) { 2804 // Remove DbgInfo Intrinsics. 2805 II = I->eraseFromParent(); 2806 continue; 2807 } 2808 I->setDebugLoc(InsertPt->getDebugLoc()); 2809 ++II; 2810 } 2811 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2812 BB->begin(), 2813 BB->getTerminator()->getIterator()); 2814 } 2815 2816 namespace { 2817 2818 /// A potential constituent of a bitreverse or bswap expression. See 2819 /// collectBitParts for a fuller explanation. 2820 struct BitPart { 2821 BitPart(Value *P, unsigned BW) : Provider(P) { 2822 Provenance.resize(BW); 2823 } 2824 2825 /// The Value that this is a bitreverse/bswap of. 2826 Value *Provider; 2827 2828 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2829 /// in Provider becomes bit B in the result of this expression. 2830 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2831 2832 enum { Unset = -1 }; 2833 }; 2834 2835 } // end anonymous namespace 2836 2837 /// Analyze the specified subexpression and see if it is capable of providing 2838 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2839 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2840 /// the output of the expression came from a corresponding bit in some other 2841 /// value. This function is recursive, and the end result is a mapping of 2842 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2843 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2844 /// 2845 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2846 /// that the expression deposits the low byte of %X into the high byte of the 2847 /// result and that all other bits are zero. This expression is accepted and a 2848 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2849 /// [0-7]. 2850 /// 2851 /// For vector types, all analysis is performed at the per-element level. No 2852 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2853 /// constant masks must be splatted across all elements. 2854 /// 2855 /// To avoid revisiting values, the BitPart results are memoized into the 2856 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2857 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2858 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2859 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2860 /// type instead to provide the same functionality. 2861 /// 2862 /// Because we pass around references into \c BPS, we must use a container that 2863 /// does not invalidate internal references (std::map instead of DenseMap). 2864 static const Optional<BitPart> & 2865 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2866 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2867 auto I = BPS.find(V); 2868 if (I != BPS.end()) 2869 return I->second; 2870 2871 auto &Result = BPS[V] = None; 2872 auto BitWidth = V->getType()->getScalarSizeInBits(); 2873 2874 // Prevent stack overflow by limiting the recursion depth 2875 if (Depth == BitPartRecursionMaxDepth) { 2876 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2877 return Result; 2878 } 2879 2880 if (auto *I = dyn_cast<Instruction>(V)) { 2881 Value *X, *Y; 2882 const APInt *C; 2883 2884 // If this is an or instruction, it may be an inner node of the bswap. 2885 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2886 const auto &A = 2887 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2888 const auto &B = 2889 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2890 if (!A || !B) 2891 return Result; 2892 2893 // Try and merge the two together. 2894 if (!A->Provider || A->Provider != B->Provider) 2895 return Result; 2896 2897 Result = BitPart(A->Provider, BitWidth); 2898 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2899 if (A->Provenance[BitIdx] != BitPart::Unset && 2900 B->Provenance[BitIdx] != BitPart::Unset && 2901 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2902 return Result = None; 2903 2904 if (A->Provenance[BitIdx] == BitPart::Unset) 2905 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2906 else 2907 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2908 } 2909 2910 return Result; 2911 } 2912 2913 // If this is a logical shift by a constant, recurse then shift the result. 2914 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2915 const APInt &BitShift = *C; 2916 2917 // Ensure the shift amount is defined. 2918 if (BitShift.uge(BitWidth)) 2919 return Result; 2920 2921 const auto &Res = 2922 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2923 if (!Res) 2924 return Result; 2925 Result = Res; 2926 2927 // Perform the "shift" on BitProvenance. 2928 auto &P = Result->Provenance; 2929 if (I->getOpcode() == Instruction::Shl) { 2930 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2931 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2932 } else { 2933 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2934 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2935 } 2936 2937 return Result; 2938 } 2939 2940 // If this is a logical 'and' with a mask that clears bits, recurse then 2941 // unset the appropriate bits. 2942 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2943 const APInt &AndMask = *C; 2944 2945 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2946 // early exit. 2947 unsigned NumMaskedBits = AndMask.countPopulation(); 2948 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2949 return Result; 2950 2951 const auto &Res = 2952 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2953 if (!Res) 2954 return Result; 2955 Result = Res; 2956 2957 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2958 // If the AndMask is zero for this bit, clear the bit. 2959 if (AndMask[BitIdx] == 0) 2960 Result->Provenance[BitIdx] = BitPart::Unset; 2961 return Result; 2962 } 2963 2964 // If this is a zext instruction zero extend the result. 2965 if (match(V, m_ZExt(m_Value(X)))) { 2966 const auto &Res = 2967 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2968 if (!Res) 2969 return Result; 2970 2971 Result = BitPart(Res->Provider, BitWidth); 2972 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2973 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2974 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2975 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2976 Result->Provenance[BitIdx] = BitPart::Unset; 2977 return Result; 2978 } 2979 2980 // BITREVERSE - most likely due to us previous matching a partial 2981 // bitreverse. 2982 if (match(V, m_BitReverse(m_Value(X)))) { 2983 const auto &Res = 2984 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2985 if (!Res) 2986 return Result; 2987 2988 Result = BitPart(Res->Provider, BitWidth); 2989 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2990 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 2991 return Result; 2992 } 2993 2994 // BSWAP - most likely due to us previous matching a partial bswap. 2995 if (match(V, m_BSwap(m_Value(X)))) { 2996 const auto &Res = 2997 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2998 if (!Res) 2999 return Result; 3000 3001 unsigned ByteWidth = BitWidth / 8; 3002 Result = BitPart(Res->Provider, BitWidth); 3003 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3004 unsigned ByteBitOfs = ByteIdx * 8; 3005 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3006 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3007 Res->Provenance[ByteBitOfs + BitIdx]; 3008 } 3009 return Result; 3010 } 3011 3012 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3013 // amount (modulo). 3014 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3015 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3016 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3017 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3018 // We can treat fshr as a fshl by flipping the modulo amount. 3019 unsigned ModAmt = C->urem(BitWidth); 3020 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3021 ModAmt = BitWidth - ModAmt; 3022 3023 const auto &LHS = 3024 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3025 const auto &RHS = 3026 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3027 3028 // Check we have both sources and they are from the same provider. 3029 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3030 return Result; 3031 3032 unsigned StartBitRHS = BitWidth - ModAmt; 3033 Result = BitPart(LHS->Provider, BitWidth); 3034 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3035 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3036 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3037 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3038 return Result; 3039 } 3040 } 3041 3042 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3043 // the input value to the bswap/bitreverse. 3044 Result = BitPart(V, BitWidth); 3045 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3046 Result->Provenance[BitIdx] = BitIdx; 3047 return Result; 3048 } 3049 3050 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3051 unsigned BitWidth) { 3052 if (From % 8 != To % 8) 3053 return false; 3054 // Convert from bit indices to byte indices and check for a byte reversal. 3055 From >>= 3; 3056 To >>= 3; 3057 BitWidth >>= 3; 3058 return From == BitWidth - To - 1; 3059 } 3060 3061 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3062 unsigned BitWidth) { 3063 return From == BitWidth - To - 1; 3064 } 3065 3066 bool llvm::recognizeBSwapOrBitReverseIdiom( 3067 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3068 SmallVectorImpl<Instruction *> &InsertedInsts) { 3069 if (Operator::getOpcode(I) != Instruction::Or) 3070 return false; 3071 if (!MatchBSwaps && !MatchBitReversals) 3072 return false; 3073 Type *ITy = I->getType(); 3074 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3075 return false; // Can't do integer/elements > 128 bits. 3076 3077 Type *DemandedTy = ITy; 3078 if (I->hasOneUse()) 3079 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3080 DemandedTy = Trunc->getType(); 3081 3082 // Try to find all the pieces corresponding to the bswap. 3083 std::map<Value *, Optional<BitPart>> BPS; 3084 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3085 if (!Res) 3086 return false; 3087 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3088 assert(all_of(BitProvenance, 3089 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3090 "Illegal bit provenance index"); 3091 3092 // If the upper bits are zero, then attempt to perform as a truncated op. 3093 if (BitProvenance.back() == BitPart::Unset) { 3094 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3095 BitProvenance = BitProvenance.drop_back(); 3096 if (BitProvenance.empty()) 3097 return false; // TODO - handle null value? 3098 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3099 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3100 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3101 } 3102 3103 // Check BitProvenance hasn't found a source larger than the result type. 3104 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3105 if (DemandedBW > ITy->getScalarSizeInBits()) 3106 return false; 3107 3108 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3109 // only byteswap values with an even number of bytes. 3110 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3111 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3112 bool OKForBitReverse = MatchBitReversals; 3113 for (unsigned BitIdx = 0; 3114 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3115 if (BitProvenance[BitIdx] == BitPart::Unset) { 3116 DemandedMask.clearBit(BitIdx); 3117 continue; 3118 } 3119 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3120 DemandedBW); 3121 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3122 BitIdx, DemandedBW); 3123 } 3124 3125 Intrinsic::ID Intrin; 3126 if (OKForBSwap) 3127 Intrin = Intrinsic::bswap; 3128 else if (OKForBitReverse) 3129 Intrin = Intrinsic::bitreverse; 3130 else 3131 return false; 3132 3133 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3134 Value *Provider = Res->Provider; 3135 3136 // We may need to truncate the provider. 3137 if (DemandedTy != Provider->getType()) { 3138 auto *Trunc = 3139 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3140 InsertedInsts.push_back(Trunc); 3141 Provider = Trunc; 3142 } 3143 3144 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3145 InsertedInsts.push_back(Result); 3146 3147 if (!DemandedMask.isAllOnesValue()) { 3148 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3149 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3150 InsertedInsts.push_back(Result); 3151 } 3152 3153 // We may need to zeroextend back to the result type. 3154 if (ITy != Result->getType()) { 3155 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3156 InsertedInsts.push_back(ExtInst); 3157 } 3158 3159 return true; 3160 } 3161 3162 // CodeGen has special handling for some string functions that may replace 3163 // them with target-specific intrinsics. Since that'd skip our interceptors 3164 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3165 // we mark affected calls as NoBuiltin, which will disable optimization 3166 // in CodeGen. 3167 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3168 CallInst *CI, const TargetLibraryInfo *TLI) { 3169 Function *F = CI->getCalledFunction(); 3170 LibFunc Func; 3171 if (F && !F->hasLocalLinkage() && F->hasName() && 3172 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3173 !F->doesNotAccessMemory()) 3174 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3175 } 3176 3177 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3178 // We can't have a PHI with a metadata type. 3179 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3180 return false; 3181 3182 // Early exit. 3183 if (!isa<Constant>(I->getOperand(OpIdx))) 3184 return true; 3185 3186 switch (I->getOpcode()) { 3187 default: 3188 return true; 3189 case Instruction::Call: 3190 case Instruction::Invoke: { 3191 const auto &CB = cast<CallBase>(*I); 3192 3193 // Can't handle inline asm. Skip it. 3194 if (CB.isInlineAsm()) 3195 return false; 3196 3197 // Constant bundle operands may need to retain their constant-ness for 3198 // correctness. 3199 if (CB.isBundleOperand(OpIdx)) 3200 return false; 3201 3202 if (OpIdx < CB.getNumArgOperands()) { 3203 // Some variadic intrinsics require constants in the variadic arguments, 3204 // which currently aren't markable as immarg. 3205 if (isa<IntrinsicInst>(CB) && 3206 OpIdx >= CB.getFunctionType()->getNumParams()) { 3207 // This is known to be OK for stackmap. 3208 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3209 } 3210 3211 // gcroot is a special case, since it requires a constant argument which 3212 // isn't also required to be a simple ConstantInt. 3213 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3214 return false; 3215 3216 // Some intrinsic operands are required to be immediates. 3217 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3218 } 3219 3220 // It is never allowed to replace the call argument to an intrinsic, but it 3221 // may be possible for a call. 3222 return !isa<IntrinsicInst>(CB); 3223 } 3224 case Instruction::ShuffleVector: 3225 // Shufflevector masks are constant. 3226 return OpIdx != 2; 3227 case Instruction::Switch: 3228 case Instruction::ExtractValue: 3229 // All operands apart from the first are constant. 3230 return OpIdx == 0; 3231 case Instruction::InsertValue: 3232 // All operands apart from the first and the second are constant. 3233 return OpIdx < 2; 3234 case Instruction::Alloca: 3235 // Static allocas (constant size in the entry block) are handled by 3236 // prologue/epilogue insertion so they're free anyway. We definitely don't 3237 // want to make them non-constant. 3238 return !cast<AllocaInst>(I)->isStaticAlloca(); 3239 case Instruction::GetElementPtr: 3240 if (OpIdx == 0) 3241 return true; 3242 gep_type_iterator It = gep_type_begin(I); 3243 for (auto E = std::next(It, OpIdx); It != E; ++It) 3244 if (It.isStruct()) 3245 return false; 3246 return true; 3247 } 3248 } 3249 3250 Value *llvm::invertCondition(Value *Condition) { 3251 // First: Check if it's a constant 3252 if (Constant *C = dyn_cast<Constant>(Condition)) 3253 return ConstantExpr::getNot(C); 3254 3255 // Second: If the condition is already inverted, return the original value 3256 Value *NotCondition; 3257 if (match(Condition, m_Not(m_Value(NotCondition)))) 3258 return NotCondition; 3259 3260 BasicBlock *Parent = nullptr; 3261 Instruction *Inst = dyn_cast<Instruction>(Condition); 3262 if (Inst) 3263 Parent = Inst->getParent(); 3264 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3265 Parent = &Arg->getParent()->getEntryBlock(); 3266 assert(Parent && "Unsupported condition to invert"); 3267 3268 // Third: Check all the users for an invert 3269 for (User *U : Condition->users()) 3270 if (Instruction *I = dyn_cast<Instruction>(U)) 3271 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3272 return I; 3273 3274 // Last option: Create a new instruction 3275 auto *Inverted = 3276 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3277 if (Inst && !isa<PHINode>(Inst)) 3278 Inverted->insertAfter(Inst); 3279 else 3280 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3281 return Inverted; 3282 } 3283