1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/MemorySSA.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include "llvm/Transforms/Utils/LoopUtils.h" 52 #include "llvm/Transforms/Utils/SSAUpdater.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "lcssa" 56 57 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 58 59 #ifdef EXPENSIVE_CHECKS 60 static bool VerifyLoopLCSSA = true; 61 #else 62 static bool VerifyLoopLCSSA = false; 63 #endif 64 static cl::opt<bool, true> 65 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 66 cl::Hidden, 67 cl::desc("Verify loop lcssa form (time consuming)")); 68 69 /// Return true if the specified block is in the list. 70 static bool isExitBlock(BasicBlock *BB, 71 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 72 return is_contained(ExitBlocks, BB); 73 } 74 75 /// For every instruction from the worklist, check to see if it has any uses 76 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 77 /// rewrite the uses. 78 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 79 const DominatorTree &DT, const LoopInfo &LI, 80 ScalarEvolution *SE) { 81 SmallVector<Use *, 16> UsesToRewrite; 82 SmallSetVector<PHINode *, 16> PHIsToRemove; 83 PredIteratorCache PredCache; 84 bool Changed = false; 85 86 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 87 // instructions within the same loops, computing the exit blocks is 88 // expensive, and we're not mutating the loop structure. 89 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 90 91 while (!Worklist.empty()) { 92 UsesToRewrite.clear(); 93 94 Instruction *I = Worklist.pop_back_val(); 95 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 96 BasicBlock *InstBB = I->getParent(); 97 Loop *L = LI.getLoopFor(InstBB); 98 assert(L && "Instruction belongs to a BB that's not part of a loop"); 99 if (!LoopExitBlocks.count(L)) 100 L->getExitBlocks(LoopExitBlocks[L]); 101 assert(LoopExitBlocks.count(L)); 102 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 103 104 if (ExitBlocks.empty()) 105 continue; 106 107 for (Use &U : I->uses()) { 108 Instruction *User = cast<Instruction>(U.getUser()); 109 BasicBlock *UserBB = User->getParent(); 110 if (auto *PN = dyn_cast<PHINode>(User)) 111 UserBB = PN->getIncomingBlock(U); 112 113 if (InstBB != UserBB && !L->contains(UserBB)) 114 UsesToRewrite.push_back(&U); 115 } 116 117 // If there are no uses outside the loop, exit with no change. 118 if (UsesToRewrite.empty()) 119 continue; 120 121 ++NumLCSSA; // We are applying the transformation 122 123 // Invoke instructions are special in that their result value is not 124 // available along their unwind edge. The code below tests to see whether 125 // DomBB dominates the value, so adjust DomBB to the normal destination 126 // block, which is effectively where the value is first usable. 127 BasicBlock *DomBB = InstBB; 128 if (auto *Inv = dyn_cast<InvokeInst>(I)) 129 DomBB = Inv->getNormalDest(); 130 131 const DomTreeNode *DomNode = DT.getNode(DomBB); 132 133 SmallVector<PHINode *, 16> AddedPHIs; 134 SmallVector<PHINode *, 8> PostProcessPHIs; 135 136 SmallVector<PHINode *, 4> InsertedPHIs; 137 SSAUpdater SSAUpdate(&InsertedPHIs); 138 SSAUpdate.Initialize(I->getType(), I->getName()); 139 140 // Force re-computation of I, as some users now need to use the new PHI 141 // node. 142 if (SE) 143 SE->forgetValue(I); 144 145 // Insert the LCSSA phi's into all of the exit blocks dominated by the 146 // value, and add them to the Phi's map. 147 for (BasicBlock *ExitBB : ExitBlocks) { 148 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 149 continue; 150 151 // If we already inserted something for this BB, don't reprocess it. 152 if (SSAUpdate.HasValueForBlock(ExitBB)) 153 continue; 154 155 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 156 I->getName() + ".lcssa", &ExitBB->front()); 157 // Get the debug location from the original instruction. 158 PN->setDebugLoc(I->getDebugLoc()); 159 // Add inputs from inside the loop for this PHI. 160 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 161 PN->addIncoming(I, Pred); 162 163 // If the exit block has a predecessor not within the loop, arrange for 164 // the incoming value use corresponding to that predecessor to be 165 // rewritten in terms of a different LCSSA PHI. 166 if (!L->contains(Pred)) 167 UsesToRewrite.push_back( 168 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 169 PN->getNumIncomingValues() - 1))); 170 } 171 172 AddedPHIs.push_back(PN); 173 174 // Remember that this phi makes the value alive in this block. 175 SSAUpdate.AddAvailableValue(ExitBB, PN); 176 177 // LoopSimplify might fail to simplify some loops (e.g. when indirect 178 // branches are involved). In such situations, it might happen that an 179 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 180 // create PHIs in such an exit block, we are also inserting PHIs into L2's 181 // header. This could break LCSSA form for L2 because these inserted PHIs 182 // can also have uses outside of L2. Remember all PHIs in such situation 183 // as to revisit than later on. FIXME: Remove this if indirectbr support 184 // into LoopSimplify gets improved. 185 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 186 if (!L->contains(OtherLoop)) 187 PostProcessPHIs.push_back(PN); 188 } 189 190 // Rewrite all uses outside the loop in terms of the new PHIs we just 191 // inserted. 192 for (Use *UseToRewrite : UsesToRewrite) { 193 // If this use is in an exit block, rewrite to use the newly inserted PHI. 194 // This is required for correctness because SSAUpdate doesn't handle uses 195 // in the same block. It assumes the PHI we inserted is at the end of the 196 // block. 197 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 198 BasicBlock *UserBB = User->getParent(); 199 if (auto *PN = dyn_cast<PHINode>(User)) 200 UserBB = PN->getIncomingBlock(*UseToRewrite); 201 202 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 203 UseToRewrite->set(&UserBB->front()); 204 continue; 205 } 206 207 // If we added a single PHI, it must dominate all uses and we can directly 208 // rename it. 209 if (AddedPHIs.size() == 1) { 210 UseToRewrite->set(AddedPHIs[0]); 211 continue; 212 } 213 214 // Otherwise, do full PHI insertion. 215 SSAUpdate.RewriteUse(*UseToRewrite); 216 } 217 218 SmallVector<DbgValueInst *, 4> DbgValues; 219 llvm::findDbgValues(DbgValues, I); 220 221 // Update pre-existing debug value uses that reside outside the loop. 222 auto &Ctx = I->getContext(); 223 for (auto DVI : DbgValues) { 224 BasicBlock *UserBB = DVI->getParent(); 225 if (InstBB == UserBB || L->contains(UserBB)) 226 continue; 227 // We currently only handle debug values residing in blocks that were 228 // traversed while rewriting the uses. If we inserted just a single PHI, 229 // we will handle all relevant debug values. 230 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 231 : SSAUpdate.FindValueForBlock(UserBB); 232 if (V) 233 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 234 } 235 236 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 237 // to post-process them to keep LCSSA form. 238 for (PHINode *InsertedPN : InsertedPHIs) { 239 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 240 if (!L->contains(OtherLoop)) 241 PostProcessPHIs.push_back(InsertedPN); 242 } 243 244 // Post process PHI instructions that were inserted into another disjoint 245 // loop and update their exits properly. 246 for (auto *PostProcessPN : PostProcessPHIs) 247 if (!PostProcessPN->use_empty()) 248 Worklist.push_back(PostProcessPN); 249 250 // Keep track of PHI nodes that we want to remove because they did not have 251 // any uses rewritten. If the new PHI is used, store it so that we can 252 // try to propagate dbg.value intrinsics to it. 253 SmallVector<PHINode *, 2> NeedDbgValues; 254 for (PHINode *PN : AddedPHIs) 255 if (PN->use_empty()) 256 PHIsToRemove.insert(PN); 257 else 258 NeedDbgValues.push_back(PN); 259 insertDebugValuesForPHIs(InstBB, NeedDbgValues); 260 Changed = true; 261 } 262 // Remove PHI nodes that did not have any uses rewritten. We need to redo the 263 // use_empty() check here, because even if the PHI node wasn't used when added 264 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is 265 // not guaranteed to handle trees/cycles of PHI nodes that only are used by 266 // each other. Such situations has only been noticed when the input IR 267 // contains unreachable code, and leaving some extra redundant PHI nodes in 268 // such situations is considered a minor problem. 269 for (PHINode *PN : PHIsToRemove) 270 if (PN->use_empty()) 271 PN->eraseFromParent(); 272 return Changed; 273 } 274 275 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 276 static void computeBlocksDominatingExits( 277 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 278 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 279 SmallVector<BasicBlock *, 8> BBWorklist; 280 281 // We start from the exit blocks, as every block trivially dominates itself 282 // (not strictly). 283 for (BasicBlock *BB : ExitBlocks) 284 BBWorklist.push_back(BB); 285 286 while (!BBWorklist.empty()) { 287 BasicBlock *BB = BBWorklist.pop_back_val(); 288 289 // Check if this is a loop header. If this is the case, we're done. 290 if (L.getHeader() == BB) 291 continue; 292 293 // Otherwise, add its immediate predecessor in the dominator tree to the 294 // worklist, unless we visited it already. 295 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 296 297 // Exit blocks can have an immediate dominator not beloinging to the 298 // loop. For an exit block to be immediately dominated by another block 299 // outside the loop, it implies not all paths from that dominator, to the 300 // exit block, go through the loop. 301 // Example: 302 // 303 // |---- A 304 // | | 305 // | B<-- 306 // | | | 307 // |---> C -- 308 // | 309 // D 310 // 311 // C is the exit block of the loop and it's immediately dominated by A, 312 // which doesn't belong to the loop. 313 if (!L.contains(IDomBB)) 314 continue; 315 316 if (BlocksDominatingExits.insert(IDomBB)) 317 BBWorklist.push_back(IDomBB); 318 } 319 } 320 321 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 322 ScalarEvolution *SE) { 323 bool Changed = false; 324 325 #ifdef EXPENSIVE_CHECKS 326 // Verify all sub-loops are in LCSSA form already. 327 for (Loop *SubLoop: L) 328 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 329 #endif 330 331 SmallVector<BasicBlock *, 8> ExitBlocks; 332 L.getExitBlocks(ExitBlocks); 333 if (ExitBlocks.empty()) 334 return false; 335 336 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 337 338 // We want to avoid use-scanning leveraging dominance informations. 339 // If a block doesn't dominate any of the loop exits, the none of the values 340 // defined in the loop can be used outside. 341 // We compute the set of blocks fullfilling the conditions in advance 342 // walking the dominator tree upwards until we hit a loop header. 343 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 344 345 SmallVector<Instruction *, 8> Worklist; 346 347 // Look at all the instructions in the loop, checking to see if they have uses 348 // outside the loop. If so, put them into the worklist to rewrite those uses. 349 for (BasicBlock *BB : BlocksDominatingExits) { 350 // Skip blocks that are part of any sub-loops, they must be in LCSSA 351 // already. 352 if (LI->getLoopFor(BB) != &L) 353 continue; 354 for (Instruction &I : *BB) { 355 // Reject two common cases fast: instructions with no uses (like stores) 356 // and instructions with one use that is in the same block as this. 357 if (I.use_empty() || 358 (I.hasOneUse() && I.user_back()->getParent() == BB && 359 !isa<PHINode>(I.user_back()))) 360 continue; 361 362 // Tokens cannot be used in PHI nodes, so we skip over them. 363 // We can run into tokens which are live out of a loop with catchswitch 364 // instructions in Windows EH if the catchswitch has one catchpad which 365 // is inside the loop and another which is not. 366 if (I.getType()->isTokenTy()) 367 continue; 368 369 Worklist.push_back(&I); 370 } 371 } 372 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE); 373 374 // If we modified the code, remove any caches about the loop from SCEV to 375 // avoid dangling entries. 376 // FIXME: This is a big hammer, can we clear the cache more selectively? 377 if (SE && Changed) 378 SE->forgetLoop(&L); 379 380 assert(L.isLCSSAForm(DT)); 381 382 return Changed; 383 } 384 385 /// Process a loop nest depth first. 386 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, 387 const LoopInfo *LI, ScalarEvolution *SE) { 388 bool Changed = false; 389 390 // Recurse depth-first through inner loops. 391 for (Loop *SubLoop : L.getSubLoops()) 392 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 393 394 Changed |= formLCSSA(L, DT, LI, SE); 395 return Changed; 396 } 397 398 /// Process all loops in the function, inner-most out. 399 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, 400 ScalarEvolution *SE) { 401 bool Changed = false; 402 for (auto &L : *LI) 403 Changed |= formLCSSARecursively(*L, DT, LI, SE); 404 return Changed; 405 } 406 407 namespace { 408 struct LCSSAWrapperPass : public FunctionPass { 409 static char ID; // Pass identification, replacement for typeid 410 LCSSAWrapperPass() : FunctionPass(ID) { 411 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 412 } 413 414 // Cached analysis information for the current function. 415 DominatorTree *DT; 416 LoopInfo *LI; 417 ScalarEvolution *SE; 418 419 bool runOnFunction(Function &F) override; 420 void verifyAnalysis() const override { 421 // This check is very expensive. On the loop intensive compiles it may cause 422 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 423 // always does limited form of the LCSSA verification. Similar reasoning 424 // was used for the LoopInfo verifier. 425 if (VerifyLoopLCSSA) { 426 assert(all_of(*LI, 427 [&](Loop *L) { 428 return L->isRecursivelyLCSSAForm(*DT, *LI); 429 }) && 430 "LCSSA form is broken!"); 431 } 432 }; 433 434 /// This transformation requires natural loop information & requires that 435 /// loop preheaders be inserted into the CFG. It maintains both of these, 436 /// as well as the CFG. It also requires dominator information. 437 void getAnalysisUsage(AnalysisUsage &AU) const override { 438 AU.setPreservesCFG(); 439 440 AU.addRequired<DominatorTreeWrapperPass>(); 441 AU.addRequired<LoopInfoWrapperPass>(); 442 AU.addPreservedID(LoopSimplifyID); 443 AU.addPreserved<AAResultsWrapperPass>(); 444 AU.addPreserved<BasicAAWrapperPass>(); 445 AU.addPreserved<GlobalsAAWrapperPass>(); 446 AU.addPreserved<ScalarEvolutionWrapperPass>(); 447 AU.addPreserved<SCEVAAWrapperPass>(); 448 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 449 AU.addPreserved<MemorySSAWrapperPass>(); 450 451 // This is needed to perform LCSSA verification inside LPPassManager 452 AU.addRequired<LCSSAVerificationPass>(); 453 AU.addPreserved<LCSSAVerificationPass>(); 454 } 455 }; 456 } 457 458 char LCSSAWrapperPass::ID = 0; 459 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 460 false, false) 461 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 462 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 463 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 464 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 465 false, false) 466 467 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 468 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 469 470 /// Transform \p F into loop-closed SSA form. 471 bool LCSSAWrapperPass::runOnFunction(Function &F) { 472 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 473 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 474 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 475 SE = SEWP ? &SEWP->getSE() : nullptr; 476 477 return formLCSSAOnAllLoops(LI, *DT, SE); 478 } 479 480 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 481 auto &LI = AM.getResult<LoopAnalysis>(F); 482 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 483 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 484 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 485 return PreservedAnalyses::all(); 486 487 PreservedAnalyses PA; 488 PA.preserveSet<CFGAnalyses>(); 489 PA.preserve<BasicAA>(); 490 PA.preserve<GlobalsAA>(); 491 PA.preserve<SCEVAA>(); 492 PA.preserve<ScalarEvolutionAnalysis>(); 493 // BPI maps terminators to probabilities, since we don't modify the CFG, no 494 // updates are needed to preserve it. 495 PA.preserve<BranchProbabilityAnalysis>(); 496 PA.preserve<MemorySSAAnalysis>(); 497 return PA; 498 } 499