xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision da477bcdc0c335171bb0ed3813f570026de6df85)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "lcssa"
56 
57 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
58 
59 #ifdef EXPENSIVE_CHECKS
60 static bool VerifyLoopLCSSA = true;
61 #else
62 static bool VerifyLoopLCSSA = false;
63 #endif
64 static cl::opt<bool, true>
65     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
66                         cl::Hidden,
67                         cl::desc("Verify loop lcssa form (time consuming)"));
68 
69 /// Return true if the specified block is in the list.
70 static bool isExitBlock(BasicBlock *BB,
71                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
72   return is_contained(ExitBlocks, BB);
73 }
74 
75 /// For every instruction from the worklist, check to see if it has any uses
76 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
77 /// rewrite the uses.
78 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
79                                     const DominatorTree &DT, const LoopInfo &LI,
80                                     ScalarEvolution *SE) {
81   SmallVector<Use *, 16> UsesToRewrite;
82   SmallSetVector<PHINode *, 16> PHIsToRemove;
83   PredIteratorCache PredCache;
84   bool Changed = false;
85 
86   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
87   // instructions within the same loops, computing the exit blocks is
88   // expensive, and we're not mutating the loop structure.
89   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
90 
91   while (!Worklist.empty()) {
92     UsesToRewrite.clear();
93 
94     Instruction *I = Worklist.pop_back_val();
95     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
96     BasicBlock *InstBB = I->getParent();
97     Loop *L = LI.getLoopFor(InstBB);
98     assert(L && "Instruction belongs to a BB that's not part of a loop");
99     if (!LoopExitBlocks.count(L))
100       L->getExitBlocks(LoopExitBlocks[L]);
101     assert(LoopExitBlocks.count(L));
102     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
103 
104     if (ExitBlocks.empty())
105       continue;
106 
107     for (Use &U : I->uses()) {
108       Instruction *User = cast<Instruction>(U.getUser());
109       BasicBlock *UserBB = User->getParent();
110       if (auto *PN = dyn_cast<PHINode>(User))
111         UserBB = PN->getIncomingBlock(U);
112 
113       if (InstBB != UserBB && !L->contains(UserBB))
114         UsesToRewrite.push_back(&U);
115     }
116 
117     // If there are no uses outside the loop, exit with no change.
118     if (UsesToRewrite.empty())
119       continue;
120 
121     ++NumLCSSA; // We are applying the transformation
122 
123     // Invoke instructions are special in that their result value is not
124     // available along their unwind edge. The code below tests to see whether
125     // DomBB dominates the value, so adjust DomBB to the normal destination
126     // block, which is effectively where the value is first usable.
127     BasicBlock *DomBB = InstBB;
128     if (auto *Inv = dyn_cast<InvokeInst>(I))
129       DomBB = Inv->getNormalDest();
130 
131     const DomTreeNode *DomNode = DT.getNode(DomBB);
132 
133     SmallVector<PHINode *, 16> AddedPHIs;
134     SmallVector<PHINode *, 8> PostProcessPHIs;
135 
136     SmallVector<PHINode *, 4> InsertedPHIs;
137     SSAUpdater SSAUpdate(&InsertedPHIs);
138     SSAUpdate.Initialize(I->getType(), I->getName());
139 
140     // Force re-computation of I, as some users now need to use the new PHI
141     // node.
142     if (SE)
143       SE->forgetValue(I);
144 
145     // Insert the LCSSA phi's into all of the exit blocks dominated by the
146     // value, and add them to the Phi's map.
147     for (BasicBlock *ExitBB : ExitBlocks) {
148       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
149         continue;
150 
151       // If we already inserted something for this BB, don't reprocess it.
152       if (SSAUpdate.HasValueForBlock(ExitBB))
153         continue;
154 
155       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
156                                     I->getName() + ".lcssa", &ExitBB->front());
157       // Get the debug location from the original instruction.
158       PN->setDebugLoc(I->getDebugLoc());
159       // Add inputs from inside the loop for this PHI.
160       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
161         PN->addIncoming(I, Pred);
162 
163         // If the exit block has a predecessor not within the loop, arrange for
164         // the incoming value use corresponding to that predecessor to be
165         // rewritten in terms of a different LCSSA PHI.
166         if (!L->contains(Pred))
167           UsesToRewrite.push_back(
168               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
169                   PN->getNumIncomingValues() - 1)));
170       }
171 
172       AddedPHIs.push_back(PN);
173 
174       // Remember that this phi makes the value alive in this block.
175       SSAUpdate.AddAvailableValue(ExitBB, PN);
176 
177       // LoopSimplify might fail to simplify some loops (e.g. when indirect
178       // branches are involved). In such situations, it might happen that an
179       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
180       // create PHIs in such an exit block, we are also inserting PHIs into L2's
181       // header. This could break LCSSA form for L2 because these inserted PHIs
182       // can also have uses outside of L2. Remember all PHIs in such situation
183       // as to revisit than later on. FIXME: Remove this if indirectbr support
184       // into LoopSimplify gets improved.
185       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
186         if (!L->contains(OtherLoop))
187           PostProcessPHIs.push_back(PN);
188     }
189 
190     // Rewrite all uses outside the loop in terms of the new PHIs we just
191     // inserted.
192     for (Use *UseToRewrite : UsesToRewrite) {
193       // If this use is in an exit block, rewrite to use the newly inserted PHI.
194       // This is required for correctness because SSAUpdate doesn't handle uses
195       // in the same block.  It assumes the PHI we inserted is at the end of the
196       // block.
197       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
198       BasicBlock *UserBB = User->getParent();
199       if (auto *PN = dyn_cast<PHINode>(User))
200         UserBB = PN->getIncomingBlock(*UseToRewrite);
201 
202       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
203         UseToRewrite->set(&UserBB->front());
204         continue;
205       }
206 
207       // If we added a single PHI, it must dominate all uses and we can directly
208       // rename it.
209       if (AddedPHIs.size() == 1) {
210         UseToRewrite->set(AddedPHIs[0]);
211         continue;
212       }
213 
214       // Otherwise, do full PHI insertion.
215       SSAUpdate.RewriteUse(*UseToRewrite);
216     }
217 
218     SmallVector<DbgValueInst *, 4> DbgValues;
219     llvm::findDbgValues(DbgValues, I);
220 
221     // Update pre-existing debug value uses that reside outside the loop.
222     auto &Ctx = I->getContext();
223     for (auto DVI : DbgValues) {
224       BasicBlock *UserBB = DVI->getParent();
225       if (InstBB == UserBB || L->contains(UserBB))
226         continue;
227       // We currently only handle debug values residing in blocks that were
228       // traversed while rewriting the uses. If we inserted just a single PHI,
229       // we will handle all relevant debug values.
230       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
231                                        : SSAUpdate.FindValueForBlock(UserBB);
232       if (V)
233         DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
234     }
235 
236     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
237     // to post-process them to keep LCSSA form.
238     for (PHINode *InsertedPN : InsertedPHIs) {
239       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
240         if (!L->contains(OtherLoop))
241           PostProcessPHIs.push_back(InsertedPN);
242     }
243 
244     // Post process PHI instructions that were inserted into another disjoint
245     // loop and update their exits properly.
246     for (auto *PostProcessPN : PostProcessPHIs)
247       if (!PostProcessPN->use_empty())
248         Worklist.push_back(PostProcessPN);
249 
250     // Keep track of PHI nodes that we want to remove because they did not have
251     // any uses rewritten. If the new PHI is used, store it so that we can
252     // try to propagate dbg.value intrinsics to it.
253     SmallVector<PHINode *, 2> NeedDbgValues;
254     for (PHINode *PN : AddedPHIs)
255       if (PN->use_empty())
256         PHIsToRemove.insert(PN);
257       else
258         NeedDbgValues.push_back(PN);
259     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
260     Changed = true;
261   }
262   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
263   // use_empty() check here, because even if the PHI node wasn't used when added
264   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
265   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
266   // each other. Such situations has only been noticed when the input IR
267   // contains unreachable code, and leaving some extra redundant PHI nodes in
268   // such situations is considered a minor problem.
269   for (PHINode *PN : PHIsToRemove)
270     if (PN->use_empty())
271       PN->eraseFromParent();
272   return Changed;
273 }
274 
275 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
276 static void computeBlocksDominatingExits(
277     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
278     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
279   SmallVector<BasicBlock *, 8> BBWorklist;
280 
281   // We start from the exit blocks, as every block trivially dominates itself
282   // (not strictly).
283   for (BasicBlock *BB : ExitBlocks)
284     BBWorklist.push_back(BB);
285 
286   while (!BBWorklist.empty()) {
287     BasicBlock *BB = BBWorklist.pop_back_val();
288 
289     // Check if this is a loop header. If this is the case, we're done.
290     if (L.getHeader() == BB)
291       continue;
292 
293     // Otherwise, add its immediate predecessor in the dominator tree to the
294     // worklist, unless we visited it already.
295     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
296 
297     // Exit blocks can have an immediate dominator not beloinging to the
298     // loop. For an exit block to be immediately dominated by another block
299     // outside the loop, it implies not all paths from that dominator, to the
300     // exit block, go through the loop.
301     // Example:
302     //
303     // |---- A
304     // |     |
305     // |     B<--
306     // |     |  |
307     // |---> C --
308     //       |
309     //       D
310     //
311     // C is the exit block of the loop and it's immediately dominated by A,
312     // which doesn't belong to the loop.
313     if (!L.contains(IDomBB))
314       continue;
315 
316     if (BlocksDominatingExits.insert(IDomBB))
317       BBWorklist.push_back(IDomBB);
318   }
319 }
320 
321 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
322                      ScalarEvolution *SE) {
323   bool Changed = false;
324 
325 #ifdef EXPENSIVE_CHECKS
326   // Verify all sub-loops are in LCSSA form already.
327   for (Loop *SubLoop: L)
328     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
329 #endif
330 
331   SmallVector<BasicBlock *, 8> ExitBlocks;
332   L.getExitBlocks(ExitBlocks);
333   if (ExitBlocks.empty())
334     return false;
335 
336   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
337 
338   // We want to avoid use-scanning leveraging dominance informations.
339   // If a block doesn't dominate any of the loop exits, the none of the values
340   // defined in the loop can be used outside.
341   // We compute the set of blocks fullfilling the conditions in advance
342   // walking the dominator tree upwards until we hit a loop header.
343   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
344 
345   SmallVector<Instruction *, 8> Worklist;
346 
347   // Look at all the instructions in the loop, checking to see if they have uses
348   // outside the loop.  If so, put them into the worklist to rewrite those uses.
349   for (BasicBlock *BB : BlocksDominatingExits) {
350     // Skip blocks that are part of any sub-loops, they must be in LCSSA
351     // already.
352     if (LI->getLoopFor(BB) != &L)
353       continue;
354     for (Instruction &I : *BB) {
355       // Reject two common cases fast: instructions with no uses (like stores)
356       // and instructions with one use that is in the same block as this.
357       if (I.use_empty() ||
358           (I.hasOneUse() && I.user_back()->getParent() == BB &&
359            !isa<PHINode>(I.user_back())))
360         continue;
361 
362       // Tokens cannot be used in PHI nodes, so we skip over them.
363       // We can run into tokens which are live out of a loop with catchswitch
364       // instructions in Windows EH if the catchswitch has one catchpad which
365       // is inside the loop and another which is not.
366       if (I.getType()->isTokenTy())
367         continue;
368 
369       Worklist.push_back(&I);
370     }
371   }
372   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE);
373 
374   // If we modified the code, remove any caches about the loop from SCEV to
375   // avoid dangling entries.
376   // FIXME: This is a big hammer, can we clear the cache more selectively?
377   if (SE && Changed)
378     SE->forgetLoop(&L);
379 
380   assert(L.isLCSSAForm(DT));
381 
382   return Changed;
383 }
384 
385 /// Process a loop nest depth first.
386 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
387                                 const LoopInfo *LI, ScalarEvolution *SE) {
388   bool Changed = false;
389 
390   // Recurse depth-first through inner loops.
391   for (Loop *SubLoop : L.getSubLoops())
392     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
393 
394   Changed |= formLCSSA(L, DT, LI, SE);
395   return Changed;
396 }
397 
398 /// Process all loops in the function, inner-most out.
399 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
400                                 ScalarEvolution *SE) {
401   bool Changed = false;
402   for (auto &L : *LI)
403     Changed |= formLCSSARecursively(*L, DT, LI, SE);
404   return Changed;
405 }
406 
407 namespace {
408 struct LCSSAWrapperPass : public FunctionPass {
409   static char ID; // Pass identification, replacement for typeid
410   LCSSAWrapperPass() : FunctionPass(ID) {
411     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
412   }
413 
414   // Cached analysis information for the current function.
415   DominatorTree *DT;
416   LoopInfo *LI;
417   ScalarEvolution *SE;
418 
419   bool runOnFunction(Function &F) override;
420   void verifyAnalysis() const override {
421     // This check is very expensive. On the loop intensive compiles it may cause
422     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
423     // always does limited form of the LCSSA verification. Similar reasoning
424     // was used for the LoopInfo verifier.
425     if (VerifyLoopLCSSA) {
426       assert(all_of(*LI,
427                     [&](Loop *L) {
428                       return L->isRecursivelyLCSSAForm(*DT, *LI);
429                     }) &&
430              "LCSSA form is broken!");
431     }
432   };
433 
434   /// This transformation requires natural loop information & requires that
435   /// loop preheaders be inserted into the CFG.  It maintains both of these,
436   /// as well as the CFG.  It also requires dominator information.
437   void getAnalysisUsage(AnalysisUsage &AU) const override {
438     AU.setPreservesCFG();
439 
440     AU.addRequired<DominatorTreeWrapperPass>();
441     AU.addRequired<LoopInfoWrapperPass>();
442     AU.addPreservedID(LoopSimplifyID);
443     AU.addPreserved<AAResultsWrapperPass>();
444     AU.addPreserved<BasicAAWrapperPass>();
445     AU.addPreserved<GlobalsAAWrapperPass>();
446     AU.addPreserved<ScalarEvolutionWrapperPass>();
447     AU.addPreserved<SCEVAAWrapperPass>();
448     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
449     AU.addPreserved<MemorySSAWrapperPass>();
450 
451     // This is needed to perform LCSSA verification inside LPPassManager
452     AU.addRequired<LCSSAVerificationPass>();
453     AU.addPreserved<LCSSAVerificationPass>();
454   }
455 };
456 }
457 
458 char LCSSAWrapperPass::ID = 0;
459 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
460                       false, false)
461 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
462 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
463 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
464 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
465                     false, false)
466 
467 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
468 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
469 
470 /// Transform \p F into loop-closed SSA form.
471 bool LCSSAWrapperPass::runOnFunction(Function &F) {
472   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
473   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
474   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
475   SE = SEWP ? &SEWP->getSE() : nullptr;
476 
477   return formLCSSAOnAllLoops(LI, *DT, SE);
478 }
479 
480 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
481   auto &LI = AM.getResult<LoopAnalysis>(F);
482   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
483   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
484   if (!formLCSSAOnAllLoops(&LI, DT, SE))
485     return PreservedAnalyses::all();
486 
487   PreservedAnalyses PA;
488   PA.preserveSet<CFGAnalyses>();
489   PA.preserve<BasicAA>();
490   PA.preserve<GlobalsAA>();
491   PA.preserve<SCEVAA>();
492   PA.preserve<ScalarEvolutionAnalysis>();
493   // BPI maps terminators to probabilities, since we don't modify the CFG, no
494   // updates are needed to preserve it.
495   PA.preserve<BranchProbabilityAnalysis>();
496   PA.preserve<MemorySSAAnalysis>();
497   return PA;
498 }
499