1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/MemorySSA.h" 39 #include "llvm/Analysis/ScalarEvolution.h" 40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/PredIteratorCache.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Transforms/Utils.h" 51 #include "llvm/Transforms/Utils/LoopUtils.h" 52 #include "llvm/Transforms/Utils/SSAUpdater.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "lcssa" 56 57 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 58 59 #ifdef EXPENSIVE_CHECKS 60 static bool VerifyLoopLCSSA = true; 61 #else 62 static bool VerifyLoopLCSSA = false; 63 #endif 64 static cl::opt<bool, true> 65 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 66 cl::Hidden, 67 cl::desc("Verify loop lcssa form (time consuming)")); 68 69 /// Return true if the specified block is in the list. 70 static bool isExitBlock(BasicBlock *BB, 71 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 72 return is_contained(ExitBlocks, BB); 73 } 74 75 /// For every instruction from the worklist, check to see if it has any uses 76 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 77 /// rewrite the uses. 78 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 79 const DominatorTree &DT, const LoopInfo &LI, 80 ScalarEvolution *SE, IRBuilderBase &Builder, 81 SmallVectorImpl<PHINode *> *PHIsToRemove) { 82 SmallVector<Use *, 16> UsesToRewrite; 83 SmallSetVector<PHINode *, 16> LocalPHIsToRemove; 84 PredIteratorCache PredCache; 85 bool Changed = false; 86 87 IRBuilderBase::InsertPointGuard InsertPtGuard(Builder); 88 89 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 90 // instructions within the same loops, computing the exit blocks is 91 // expensive, and we're not mutating the loop structure. 92 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 93 94 while (!Worklist.empty()) { 95 UsesToRewrite.clear(); 96 97 Instruction *I = Worklist.pop_back_val(); 98 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 99 BasicBlock *InstBB = I->getParent(); 100 Loop *L = LI.getLoopFor(InstBB); 101 assert(L && "Instruction belongs to a BB that's not part of a loop"); 102 if (!LoopExitBlocks.count(L)) 103 L->getExitBlocks(LoopExitBlocks[L]); 104 assert(LoopExitBlocks.count(L)); 105 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 106 107 if (ExitBlocks.empty()) 108 continue; 109 110 for (Use &U : I->uses()) { 111 Instruction *User = cast<Instruction>(U.getUser()); 112 BasicBlock *UserBB = User->getParent(); 113 114 // For practical purposes, we consider that the use in a PHI 115 // occurs in the respective predecessor block. For more info, 116 // see the `phi` doc in LangRef and the LCSSA doc. 117 if (auto *PN = dyn_cast<PHINode>(User)) 118 UserBB = PN->getIncomingBlock(U); 119 120 if (InstBB != UserBB && !L->contains(UserBB)) 121 UsesToRewrite.push_back(&U); 122 } 123 124 // If there are no uses outside the loop, exit with no change. 125 if (UsesToRewrite.empty()) 126 continue; 127 128 ++NumLCSSA; // We are applying the transformation 129 130 // Invoke instructions are special in that their result value is not 131 // available along their unwind edge. The code below tests to see whether 132 // DomBB dominates the value, so adjust DomBB to the normal destination 133 // block, which is effectively where the value is first usable. 134 BasicBlock *DomBB = InstBB; 135 if (auto *Inv = dyn_cast<InvokeInst>(I)) 136 DomBB = Inv->getNormalDest(); 137 138 const DomTreeNode *DomNode = DT.getNode(DomBB); 139 140 SmallVector<PHINode *, 16> AddedPHIs; 141 SmallVector<PHINode *, 8> PostProcessPHIs; 142 143 SmallVector<PHINode *, 4> InsertedPHIs; 144 SSAUpdater SSAUpdate(&InsertedPHIs); 145 SSAUpdate.Initialize(I->getType(), I->getName()); 146 147 // Force re-computation of I, as some users now need to use the new PHI 148 // node. 149 if (SE) 150 SE->forgetValue(I); 151 152 // Insert the LCSSA phi's into all of the exit blocks dominated by the 153 // value, and add them to the Phi's map. 154 for (BasicBlock *ExitBB : ExitBlocks) { 155 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 156 continue; 157 158 // If we already inserted something for this BB, don't reprocess it. 159 if (SSAUpdate.HasValueForBlock(ExitBB)) 160 continue; 161 Builder.SetInsertPoint(&ExitBB->front()); 162 PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB), 163 I->getName() + ".lcssa"); 164 // Get the debug location from the original instruction. 165 PN->setDebugLoc(I->getDebugLoc()); 166 167 // Add inputs from inside the loop for this PHI. This is valid 168 // because `I` dominates `ExitBB` (checked above). This implies 169 // that every incoming block/edge is dominated by `I` as well, 170 // i.e. we can add uses of `I` to those incoming edges/append to the incoming 171 // blocks without violating the SSA dominance property. 172 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 173 PN->addIncoming(I, Pred); 174 175 // If the exit block has a predecessor not within the loop, arrange for 176 // the incoming value use corresponding to that predecessor to be 177 // rewritten in terms of a different LCSSA PHI. 178 if (!L->contains(Pred)) 179 UsesToRewrite.push_back( 180 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 181 PN->getNumIncomingValues() - 1))); 182 } 183 184 AddedPHIs.push_back(PN); 185 186 // Remember that this phi makes the value alive in this block. 187 SSAUpdate.AddAvailableValue(ExitBB, PN); 188 189 // LoopSimplify might fail to simplify some loops (e.g. when indirect 190 // branches are involved). In such situations, it might happen that an 191 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 192 // create PHIs in such an exit block, we are also inserting PHIs into L2's 193 // header. This could break LCSSA form for L2 because these inserted PHIs 194 // can also have uses outside of L2. Remember all PHIs in such situation 195 // as to revisit than later on. FIXME: Remove this if indirectbr support 196 // into LoopSimplify gets improved. 197 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 198 if (!L->contains(OtherLoop)) 199 PostProcessPHIs.push_back(PN); 200 } 201 202 // Rewrite all uses outside the loop in terms of the new PHIs we just 203 // inserted. 204 for (Use *UseToRewrite : UsesToRewrite) { 205 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 206 BasicBlock *UserBB = User->getParent(); 207 208 // For practical purposes, we consider that the use in a PHI 209 // occurs in the respective predecessor block. For more info, 210 // see the `phi` doc in LangRef and the LCSSA doc. 211 if (auto *PN = dyn_cast<PHINode>(User)) 212 UserBB = PN->getIncomingBlock(*UseToRewrite); 213 214 // If this use is in an exit block, rewrite to use the newly inserted PHI. 215 // This is required for correctness because SSAUpdate doesn't handle uses 216 // in the same block. It assumes the PHI we inserted is at the end of the 217 // block. 218 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 219 UseToRewrite->set(&UserBB->front()); 220 continue; 221 } 222 223 // If we added a single PHI, it must dominate all uses and we can directly 224 // rename it. 225 if (AddedPHIs.size() == 1) { 226 UseToRewrite->set(AddedPHIs[0]); 227 continue; 228 } 229 230 // Otherwise, do full PHI insertion. 231 SSAUpdate.RewriteUse(*UseToRewrite); 232 } 233 234 SmallVector<DbgValueInst *, 4> DbgValues; 235 llvm::findDbgValues(DbgValues, I); 236 237 // Update pre-existing debug value uses that reside outside the loop. 238 for (auto DVI : DbgValues) { 239 BasicBlock *UserBB = DVI->getParent(); 240 if (InstBB == UserBB || L->contains(UserBB)) 241 continue; 242 // We currently only handle debug values residing in blocks that were 243 // traversed while rewriting the uses. If we inserted just a single PHI, 244 // we will handle all relevant debug values. 245 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 246 : SSAUpdate.FindValueForBlock(UserBB); 247 if (V) 248 DVI->replaceVariableLocationOp(I, V); 249 } 250 251 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 252 // to post-process them to keep LCSSA form. 253 for (PHINode *InsertedPN : InsertedPHIs) { 254 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 255 if (!L->contains(OtherLoop)) 256 PostProcessPHIs.push_back(InsertedPN); 257 } 258 259 // Post process PHI instructions that were inserted into another disjoint 260 // loop and update their exits properly. 261 for (auto *PostProcessPN : PostProcessPHIs) 262 if (!PostProcessPN->use_empty()) 263 Worklist.push_back(PostProcessPN); 264 265 // Keep track of PHI nodes that we want to remove because they did not have 266 // any uses rewritten. 267 for (PHINode *PN : AddedPHIs) 268 if (PN->use_empty()) 269 LocalPHIsToRemove.insert(PN); 270 271 Changed = true; 272 } 273 274 // Remove PHI nodes that did not have any uses rewritten or add them to 275 // PHIsToRemove, so the caller can remove them after some additional cleanup. 276 // We need to redo the use_empty() check here, because even if the PHI node 277 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be 278 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI 279 // nodes that only are used by each other. Such situations has only been 280 // noticed when the input IR contains unreachable code, and leaving some extra 281 // redundant PHI nodes in such situations is considered a minor problem. 282 if (PHIsToRemove) { 283 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end()); 284 } else { 285 for (PHINode *PN : LocalPHIsToRemove) 286 if (PN->use_empty()) 287 PN->eraseFromParent(); 288 } 289 return Changed; 290 } 291 292 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 293 static void computeBlocksDominatingExits( 294 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 295 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 296 // We start from the exit blocks, as every block trivially dominates itself 297 // (not strictly). 298 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks); 299 300 while (!BBWorklist.empty()) { 301 BasicBlock *BB = BBWorklist.pop_back_val(); 302 303 // Check if this is a loop header. If this is the case, we're done. 304 if (L.getHeader() == BB) 305 continue; 306 307 // Otherwise, add its immediate predecessor in the dominator tree to the 308 // worklist, unless we visited it already. 309 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 310 311 // Exit blocks can have an immediate dominator not belonging to the 312 // loop. For an exit block to be immediately dominated by another block 313 // outside the loop, it implies not all paths from that dominator, to the 314 // exit block, go through the loop. 315 // Example: 316 // 317 // |---- A 318 // | | 319 // | B<-- 320 // | | | 321 // |---> C -- 322 // | 323 // D 324 // 325 // C is the exit block of the loop and it's immediately dominated by A, 326 // which doesn't belong to the loop. 327 if (!L.contains(IDomBB)) 328 continue; 329 330 if (BlocksDominatingExits.insert(IDomBB)) 331 BBWorklist.push_back(IDomBB); 332 } 333 } 334 335 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 336 ScalarEvolution *SE) { 337 bool Changed = false; 338 339 #ifdef EXPENSIVE_CHECKS 340 // Verify all sub-loops are in LCSSA form already. 341 for (Loop *SubLoop: L) { 342 (void)SubLoop; // Silence unused variable warning. 343 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 344 } 345 #endif 346 347 SmallVector<BasicBlock *, 8> ExitBlocks; 348 L.getExitBlocks(ExitBlocks); 349 if (ExitBlocks.empty()) 350 return false; 351 352 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 353 354 // We want to avoid use-scanning leveraging dominance informations. 355 // If a block doesn't dominate any of the loop exits, the none of the values 356 // defined in the loop can be used outside. 357 // We compute the set of blocks fullfilling the conditions in advance 358 // walking the dominator tree upwards until we hit a loop header. 359 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 360 361 SmallVector<Instruction *, 8> Worklist; 362 363 // Look at all the instructions in the loop, checking to see if they have uses 364 // outside the loop. If so, put them into the worklist to rewrite those uses. 365 for (BasicBlock *BB : BlocksDominatingExits) { 366 // Skip blocks that are part of any sub-loops, they must be in LCSSA 367 // already. 368 if (LI->getLoopFor(BB) != &L) 369 continue; 370 for (Instruction &I : *BB) { 371 // Reject two common cases fast: instructions with no uses (like stores) 372 // and instructions with one use that is in the same block as this. 373 if (I.use_empty() || 374 (I.hasOneUse() && I.user_back()->getParent() == BB && 375 !isa<PHINode>(I.user_back()))) 376 continue; 377 378 // Tokens cannot be used in PHI nodes, so we skip over them. 379 // We can run into tokens which are live out of a loop with catchswitch 380 // instructions in Windows EH if the catchswitch has one catchpad which 381 // is inside the loop and another which is not. 382 if (I.getType()->isTokenTy()) 383 continue; 384 385 Worklist.push_back(&I); 386 } 387 } 388 389 IRBuilder<> Builder(L.getHeader()->getContext()); 390 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder); 391 392 // If we modified the code, remove any caches about the loop from SCEV to 393 // avoid dangling entries. 394 // FIXME: This is a big hammer, can we clear the cache more selectively? 395 if (SE && Changed) 396 SE->forgetLoop(&L); 397 398 assert(L.isLCSSAForm(DT)); 399 400 return Changed; 401 } 402 403 /// Process a loop nest depth first. 404 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, 405 const LoopInfo *LI, ScalarEvolution *SE) { 406 bool Changed = false; 407 408 // Recurse depth-first through inner loops. 409 for (Loop *SubLoop : L.getSubLoops()) 410 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 411 412 Changed |= formLCSSA(L, DT, LI, SE); 413 return Changed; 414 } 415 416 /// Process all loops in the function, inner-most out. 417 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, 418 ScalarEvolution *SE) { 419 bool Changed = false; 420 for (auto &L : *LI) 421 Changed |= formLCSSARecursively(*L, DT, LI, SE); 422 return Changed; 423 } 424 425 namespace { 426 struct LCSSAWrapperPass : public FunctionPass { 427 static char ID; // Pass identification, replacement for typeid 428 LCSSAWrapperPass() : FunctionPass(ID) { 429 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 430 } 431 432 // Cached analysis information for the current function. 433 DominatorTree *DT; 434 LoopInfo *LI; 435 ScalarEvolution *SE; 436 437 bool runOnFunction(Function &F) override; 438 void verifyAnalysis() const override { 439 // This check is very expensive. On the loop intensive compiles it may cause 440 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 441 // always does limited form of the LCSSA verification. Similar reasoning 442 // was used for the LoopInfo verifier. 443 if (VerifyLoopLCSSA) { 444 assert(all_of(*LI, 445 [&](Loop *L) { 446 return L->isRecursivelyLCSSAForm(*DT, *LI); 447 }) && 448 "LCSSA form is broken!"); 449 } 450 }; 451 452 /// This transformation requires natural loop information & requires that 453 /// loop preheaders be inserted into the CFG. It maintains both of these, 454 /// as well as the CFG. It also requires dominator information. 455 void getAnalysisUsage(AnalysisUsage &AU) const override { 456 AU.setPreservesCFG(); 457 458 AU.addRequired<DominatorTreeWrapperPass>(); 459 AU.addRequired<LoopInfoWrapperPass>(); 460 AU.addPreservedID(LoopSimplifyID); 461 AU.addPreserved<AAResultsWrapperPass>(); 462 AU.addPreserved<BasicAAWrapperPass>(); 463 AU.addPreserved<GlobalsAAWrapperPass>(); 464 AU.addPreserved<ScalarEvolutionWrapperPass>(); 465 AU.addPreserved<SCEVAAWrapperPass>(); 466 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 467 AU.addPreserved<MemorySSAWrapperPass>(); 468 469 // This is needed to perform LCSSA verification inside LPPassManager 470 AU.addRequired<LCSSAVerificationPass>(); 471 AU.addPreserved<LCSSAVerificationPass>(); 472 } 473 }; 474 } 475 476 char LCSSAWrapperPass::ID = 0; 477 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 478 false, false) 479 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 480 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 481 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 482 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 483 false, false) 484 485 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 486 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 487 488 /// Transform \p F into loop-closed SSA form. 489 bool LCSSAWrapperPass::runOnFunction(Function &F) { 490 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 491 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 492 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 493 SE = SEWP ? &SEWP->getSE() : nullptr; 494 495 return formLCSSAOnAllLoops(LI, *DT, SE); 496 } 497 498 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 499 auto &LI = AM.getResult<LoopAnalysis>(F); 500 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 501 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 502 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 503 return PreservedAnalyses::all(); 504 505 PreservedAnalyses PA; 506 PA.preserveSet<CFGAnalyses>(); 507 PA.preserve<ScalarEvolutionAnalysis>(); 508 // BPI maps terminators to probabilities, since we don't modify the CFG, no 509 // updates are needed to preserve it. 510 PA.preserve<BranchProbabilityAnalysis>(); 511 PA.preserve<MemorySSAAnalysis>(); 512 return PA; 513 } 514