1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/MemorySSA.h" 39 #include "llvm/Analysis/ScalarEvolution.h" 40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 #include "llvm/Transforms/Utils/SSAUpdater.h" 52 using namespace llvm; 53 54 #define DEBUG_TYPE "lcssa" 55 56 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 57 58 #ifdef EXPENSIVE_CHECKS 59 static bool VerifyLoopLCSSA = true; 60 #else 61 static bool VerifyLoopLCSSA = false; 62 #endif 63 static cl::opt<bool, true> 64 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 65 cl::Hidden, 66 cl::desc("Verify loop lcssa form (time consuming)")); 67 68 /// Return true if the specified block is in the list. 69 static bool isExitBlock(BasicBlock *BB, 70 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 71 return is_contained(ExitBlocks, BB); 72 } 73 74 /// For every instruction from the worklist, check to see if it has any uses 75 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 76 /// rewrite the uses. 77 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 78 const DominatorTree &DT, const LoopInfo &LI, 79 ScalarEvolution *SE, 80 SmallVectorImpl<PHINode *> *PHIsToRemove, 81 SmallVectorImpl<PHINode *> *InsertedPHIs) { 82 SmallVector<Use *, 16> UsesToRewrite; 83 SmallSetVector<PHINode *, 16> LocalPHIsToRemove; 84 PredIteratorCache PredCache; 85 bool Changed = false; 86 87 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 88 // instructions within the same loops, computing the exit blocks is 89 // expensive, and we're not mutating the loop structure. 90 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 91 92 while (!Worklist.empty()) { 93 UsesToRewrite.clear(); 94 95 Instruction *I = Worklist.pop_back_val(); 96 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 97 BasicBlock *InstBB = I->getParent(); 98 Loop *L = LI.getLoopFor(InstBB); 99 assert(L && "Instruction belongs to a BB that's not part of a loop"); 100 if (!LoopExitBlocks.count(L)) 101 L->getExitBlocks(LoopExitBlocks[L]); 102 assert(LoopExitBlocks.count(L)); 103 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 104 105 if (ExitBlocks.empty()) 106 continue; 107 108 for (Use &U : make_early_inc_range(I->uses())) { 109 Instruction *User = cast<Instruction>(U.getUser()); 110 BasicBlock *UserBB = User->getParent(); 111 112 // Skip uses in unreachable blocks. 113 if (!DT.isReachableFromEntry(UserBB)) { 114 U.set(PoisonValue::get(I->getType())); 115 continue; 116 } 117 118 // For practical purposes, we consider that the use in a PHI 119 // occurs in the respective predecessor block. For more info, 120 // see the `phi` doc in LangRef and the LCSSA doc. 121 if (auto *PN = dyn_cast<PHINode>(User)) 122 UserBB = PN->getIncomingBlock(U); 123 124 if (InstBB != UserBB && !L->contains(UserBB)) 125 UsesToRewrite.push_back(&U); 126 } 127 128 // If there are no uses outside the loop, exit with no change. 129 if (UsesToRewrite.empty()) 130 continue; 131 132 ++NumLCSSA; // We are applying the transformation 133 134 // Invoke instructions are special in that their result value is not 135 // available along their unwind edge. The code below tests to see whether 136 // DomBB dominates the value, so adjust DomBB to the normal destination 137 // block, which is effectively where the value is first usable. 138 BasicBlock *DomBB = InstBB; 139 if (auto *Inv = dyn_cast<InvokeInst>(I)) 140 DomBB = Inv->getNormalDest(); 141 142 const DomTreeNode *DomNode = DT.getNode(DomBB); 143 144 SmallVector<PHINode *, 16> AddedPHIs; 145 SmallVector<PHINode *, 8> PostProcessPHIs; 146 147 SmallVector<PHINode *, 4> LocalInsertedPHIs; 148 SSAUpdater SSAUpdate(&LocalInsertedPHIs); 149 SSAUpdate.Initialize(I->getType(), I->getName()); 150 151 // Insert the LCSSA phi's into all of the exit blocks dominated by the 152 // value, and add them to the Phi's map. 153 bool HasSCEV = SE && SE->isSCEVable(I->getType()) && 154 SE->getExistingSCEV(I) != nullptr; 155 for (BasicBlock *ExitBB : ExitBlocks) { 156 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 157 continue; 158 159 // If we already inserted something for this BB, don't reprocess it. 160 if (SSAUpdate.HasValueForBlock(ExitBB)) 161 continue; 162 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 163 I->getName() + ".lcssa"); 164 PN->insertBefore(ExitBB->begin()); 165 if (InsertedPHIs) 166 InsertedPHIs->push_back(PN); 167 // Get the debug location from the original instruction. 168 PN->setDebugLoc(I->getDebugLoc()); 169 170 // Add inputs from inside the loop for this PHI. This is valid 171 // because `I` dominates `ExitBB` (checked above). This implies 172 // that every incoming block/edge is dominated by `I` as well, 173 // i.e. we can add uses of `I` to those incoming edges/append to the incoming 174 // blocks without violating the SSA dominance property. 175 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 176 PN->addIncoming(I, Pred); 177 178 // If the exit block has a predecessor not within the loop, arrange for 179 // the incoming value use corresponding to that predecessor to be 180 // rewritten in terms of a different LCSSA PHI. 181 if (!L->contains(Pred)) 182 UsesToRewrite.push_back( 183 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 184 PN->getNumIncomingValues() - 1))); 185 } 186 187 AddedPHIs.push_back(PN); 188 189 // Remember that this phi makes the value alive in this block. 190 SSAUpdate.AddAvailableValue(ExitBB, PN); 191 192 // LoopSimplify might fail to simplify some loops (e.g. when indirect 193 // branches are involved). In such situations, it might happen that an 194 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 195 // create PHIs in such an exit block, we are also inserting PHIs into L2's 196 // header. This could break LCSSA form for L2 because these inserted PHIs 197 // can also have uses outside of L2. Remember all PHIs in such situation 198 // as to revisit than later on. FIXME: Remove this if indirectbr support 199 // into LoopSimplify gets improved. 200 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 201 if (!L->contains(OtherLoop)) 202 PostProcessPHIs.push_back(PN); 203 204 // If we have a cached SCEV for the original instruction, make sure the 205 // new LCSSA phi node is also cached. This makes sures that BECounts 206 // based on it will be invalidated when the LCSSA phi node is invalidated, 207 // which some passes rely on. 208 if (HasSCEV) 209 SE->getSCEV(PN); 210 } 211 212 // Rewrite all uses outside the loop in terms of the new PHIs we just 213 // inserted. 214 for (Use *UseToRewrite : UsesToRewrite) { 215 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 216 BasicBlock *UserBB = User->getParent(); 217 218 // For practical purposes, we consider that the use in a PHI 219 // occurs in the respective predecessor block. For more info, 220 // see the `phi` doc in LangRef and the LCSSA doc. 221 if (auto *PN = dyn_cast<PHINode>(User)) 222 UserBB = PN->getIncomingBlock(*UseToRewrite); 223 224 // If this use is in an exit block, rewrite to use the newly inserted PHI. 225 // This is required for correctness because SSAUpdate doesn't handle uses 226 // in the same block. It assumes the PHI we inserted is at the end of the 227 // block. 228 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 229 UseToRewrite->set(&UserBB->front()); 230 continue; 231 } 232 233 // If we added a single PHI, it must dominate all uses and we can directly 234 // rename it. 235 if (AddedPHIs.size() == 1) { 236 UseToRewrite->set(AddedPHIs[0]); 237 continue; 238 } 239 240 // Otherwise, do full PHI insertion. 241 SSAUpdate.RewriteUse(*UseToRewrite); 242 } 243 244 SmallVector<DbgValueInst *, 4> DbgValues; 245 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 246 llvm::findDbgValues(DbgValues, I, &DbgVariableRecords); 247 248 // Update pre-existing debug value uses that reside outside the loop. 249 for (auto *DVI : DbgValues) { 250 BasicBlock *UserBB = DVI->getParent(); 251 if (InstBB == UserBB || L->contains(UserBB)) 252 continue; 253 // We currently only handle debug values residing in blocks that were 254 // traversed while rewriting the uses. If we inserted just a single PHI, 255 // we will handle all relevant debug values. 256 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 257 : SSAUpdate.FindValueForBlock(UserBB); 258 if (V) 259 DVI->replaceVariableLocationOp(I, V); 260 } 261 262 // RemoveDIs: copy-paste of block above, using non-instruction debug-info 263 // records. 264 for (DbgVariableRecord *DVR : DbgVariableRecords) { 265 BasicBlock *UserBB = DVR->getMarker()->getParent(); 266 if (InstBB == UserBB || L->contains(UserBB)) 267 continue; 268 // We currently only handle debug values residing in blocks that were 269 // traversed while rewriting the uses. If we inserted just a single PHI, 270 // we will handle all relevant debug values. 271 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 272 : SSAUpdate.FindValueForBlock(UserBB); 273 if (V) 274 DVR->replaceVariableLocationOp(I, V); 275 } 276 277 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 278 // to post-process them to keep LCSSA form. 279 for (PHINode *InsertedPN : LocalInsertedPHIs) { 280 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 281 if (!L->contains(OtherLoop)) 282 PostProcessPHIs.push_back(InsertedPN); 283 if (InsertedPHIs) 284 InsertedPHIs->push_back(InsertedPN); 285 } 286 287 // Post process PHI instructions that were inserted into another disjoint 288 // loop and update their exits properly. 289 for (auto *PostProcessPN : PostProcessPHIs) 290 if (!PostProcessPN->use_empty()) 291 Worklist.push_back(PostProcessPN); 292 293 // Keep track of PHI nodes that we want to remove because they did not have 294 // any uses rewritten. 295 for (PHINode *PN : AddedPHIs) 296 if (PN->use_empty()) 297 LocalPHIsToRemove.insert(PN); 298 299 Changed = true; 300 } 301 302 // Remove PHI nodes that did not have any uses rewritten or add them to 303 // PHIsToRemove, so the caller can remove them after some additional cleanup. 304 // We need to redo the use_empty() check here, because even if the PHI node 305 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be 306 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI 307 // nodes that only are used by each other. Such situations has only been 308 // noticed when the input IR contains unreachable code, and leaving some extra 309 // redundant PHI nodes in such situations is considered a minor problem. 310 if (PHIsToRemove) { 311 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end()); 312 } else { 313 for (PHINode *PN : LocalPHIsToRemove) 314 if (PN->use_empty()) 315 PN->eraseFromParent(); 316 } 317 return Changed; 318 } 319 320 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 321 static void computeBlocksDominatingExits( 322 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 323 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 324 // We start from the exit blocks, as every block trivially dominates itself 325 // (not strictly). 326 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks); 327 328 while (!BBWorklist.empty()) { 329 BasicBlock *BB = BBWorklist.pop_back_val(); 330 331 // Check if this is a loop header. If this is the case, we're done. 332 if (L.getHeader() == BB) 333 continue; 334 335 // Otherwise, add its immediate predecessor in the dominator tree to the 336 // worklist, unless we visited it already. 337 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 338 339 // Exit blocks can have an immediate dominator not belonging to the 340 // loop. For an exit block to be immediately dominated by another block 341 // outside the loop, it implies not all paths from that dominator, to the 342 // exit block, go through the loop. 343 // Example: 344 // 345 // |---- A 346 // | | 347 // | B<-- 348 // | | | 349 // |---> C -- 350 // | 351 // D 352 // 353 // C is the exit block of the loop and it's immediately dominated by A, 354 // which doesn't belong to the loop. 355 if (!L.contains(IDomBB)) 356 continue; 357 358 if (BlocksDominatingExits.insert(IDomBB)) 359 BBWorklist.push_back(IDomBB); 360 } 361 } 362 363 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 364 ScalarEvolution *SE) { 365 bool Changed = false; 366 367 #ifdef EXPENSIVE_CHECKS 368 // Verify all sub-loops are in LCSSA form already. 369 for (Loop *SubLoop: L) { 370 (void)SubLoop; // Silence unused variable warning. 371 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 372 } 373 #endif 374 375 SmallVector<BasicBlock *, 8> ExitBlocks; 376 L.getExitBlocks(ExitBlocks); 377 if (ExitBlocks.empty()) 378 return false; 379 380 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 381 382 // We want to avoid use-scanning leveraging dominance informations. 383 // If a block doesn't dominate any of the loop exits, the none of the values 384 // defined in the loop can be used outside. 385 // We compute the set of blocks fullfilling the conditions in advance 386 // walking the dominator tree upwards until we hit a loop header. 387 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 388 389 SmallVector<Instruction *, 8> Worklist; 390 391 // Look at all the instructions in the loop, checking to see if they have uses 392 // outside the loop. If so, put them into the worklist to rewrite those uses. 393 for (BasicBlock *BB : BlocksDominatingExits) { 394 // Skip blocks that are part of any sub-loops, they must be in LCSSA 395 // already. 396 if (LI->getLoopFor(BB) != &L) 397 continue; 398 for (Instruction &I : *BB) { 399 // Reject two common cases fast: instructions with no uses (like stores) 400 // and instructions with one use that is in the same block as this. 401 if (I.use_empty() || 402 (I.hasOneUse() && I.user_back()->getParent() == BB && 403 !isa<PHINode>(I.user_back()))) 404 continue; 405 406 // Tokens cannot be used in PHI nodes, so we skip over them. 407 // We can run into tokens which are live out of a loop with catchswitch 408 // instructions in Windows EH if the catchswitch has one catchpad which 409 // is inside the loop and another which is not. 410 if (I.getType()->isTokenTy()) 411 continue; 412 413 Worklist.push_back(&I); 414 } 415 } 416 417 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE); 418 419 assert(L.isLCSSAForm(DT)); 420 421 return Changed; 422 } 423 424 /// Process a loop nest depth first. 425 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, 426 const LoopInfo *LI, ScalarEvolution *SE) { 427 bool Changed = false; 428 429 // Recurse depth-first through inner loops. 430 for (Loop *SubLoop : L.getSubLoops()) 431 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 432 433 Changed |= formLCSSA(L, DT, LI, SE); 434 return Changed; 435 } 436 437 /// Process all loops in the function, inner-most out. 438 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, 439 ScalarEvolution *SE) { 440 bool Changed = false; 441 for (const auto &L : *LI) 442 Changed |= formLCSSARecursively(*L, DT, LI, SE); 443 return Changed; 444 } 445 446 namespace { 447 struct LCSSAWrapperPass : public FunctionPass { 448 static char ID; // Pass identification, replacement for typeid 449 LCSSAWrapperPass() : FunctionPass(ID) { 450 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 451 } 452 453 // Cached analysis information for the current function. 454 DominatorTree *DT; 455 LoopInfo *LI; 456 ScalarEvolution *SE; 457 458 bool runOnFunction(Function &F) override; 459 void verifyAnalysis() const override { 460 // This check is very expensive. On the loop intensive compiles it may cause 461 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 462 // always does limited form of the LCSSA verification. Similar reasoning 463 // was used for the LoopInfo verifier. 464 if (VerifyLoopLCSSA) { 465 assert(all_of(*LI, 466 [&](Loop *L) { 467 return L->isRecursivelyLCSSAForm(*DT, *LI); 468 }) && 469 "LCSSA form is broken!"); 470 } 471 }; 472 473 /// This transformation requires natural loop information & requires that 474 /// loop preheaders be inserted into the CFG. It maintains both of these, 475 /// as well as the CFG. It also requires dominator information. 476 void getAnalysisUsage(AnalysisUsage &AU) const override { 477 AU.setPreservesCFG(); 478 479 AU.addRequired<DominatorTreeWrapperPass>(); 480 AU.addRequired<LoopInfoWrapperPass>(); 481 AU.addPreservedID(LoopSimplifyID); 482 AU.addPreserved<AAResultsWrapperPass>(); 483 AU.addPreserved<BasicAAWrapperPass>(); 484 AU.addPreserved<GlobalsAAWrapperPass>(); 485 AU.addPreserved<ScalarEvolutionWrapperPass>(); 486 AU.addPreserved<SCEVAAWrapperPass>(); 487 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 488 AU.addPreserved<MemorySSAWrapperPass>(); 489 490 // This is needed to perform LCSSA verification inside LPPassManager 491 AU.addRequired<LCSSAVerificationPass>(); 492 AU.addPreserved<LCSSAVerificationPass>(); 493 } 494 }; 495 } 496 497 char LCSSAWrapperPass::ID = 0; 498 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 499 false, false) 500 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 501 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 502 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 503 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 504 false, false) 505 506 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 507 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 508 509 /// Transform \p F into loop-closed SSA form. 510 bool LCSSAWrapperPass::runOnFunction(Function &F) { 511 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 512 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 513 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 514 SE = SEWP ? &SEWP->getSE() : nullptr; 515 516 return formLCSSAOnAllLoops(LI, *DT, SE); 517 } 518 519 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 520 auto &LI = AM.getResult<LoopAnalysis>(F); 521 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 522 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 523 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 524 return PreservedAnalyses::all(); 525 526 PreservedAnalyses PA; 527 PA.preserveSet<CFGAnalyses>(); 528 PA.preserve<ScalarEvolutionAnalysis>(); 529 // BPI maps terminators to probabilities, since we don't modify the CFG, no 530 // updates are needed to preserve it. 531 PA.preserve<BranchProbabilityAnalysis>(); 532 PA.preserve<MemorySSAAnalysis>(); 533 return PA; 534 } 535