1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/MemorySSA.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/LoopUtils.h" 50 #include "llvm/Transforms/Utils/SSAUpdater.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "lcssa" 54 55 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 56 57 #ifdef EXPENSIVE_CHECKS 58 static bool VerifyLoopLCSSA = true; 59 #else 60 static bool VerifyLoopLCSSA = false; 61 #endif 62 static cl::opt<bool, true> 63 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 64 cl::Hidden, 65 cl::desc("Verify loop lcssa form (time consuming)")); 66 67 /// Return true if the specified block is in the list. 68 static bool isExitBlock(BasicBlock *BB, 69 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 70 return is_contained(ExitBlocks, BB); 71 } 72 73 /// For every instruction from the worklist, check to see if it has any uses 74 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 75 /// rewrite the uses. 76 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 77 DominatorTree &DT, LoopInfo &LI) { 78 SmallVector<Use *, 16> UsesToRewrite; 79 SmallSetVector<PHINode *, 16> PHIsToRemove; 80 PredIteratorCache PredCache; 81 bool Changed = false; 82 83 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 84 // instructions within the same loops, computing the exit blocks is 85 // expensive, and we're not mutating the loop structure. 86 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 87 88 while (!Worklist.empty()) { 89 UsesToRewrite.clear(); 90 91 Instruction *I = Worklist.pop_back_val(); 92 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 93 BasicBlock *InstBB = I->getParent(); 94 Loop *L = LI.getLoopFor(InstBB); 95 assert(L && "Instruction belongs to a BB that's not part of a loop"); 96 if (!LoopExitBlocks.count(L)) 97 L->getExitBlocks(LoopExitBlocks[L]); 98 assert(LoopExitBlocks.count(L)); 99 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 100 101 if (ExitBlocks.empty()) 102 continue; 103 104 for (Use &U : I->uses()) { 105 Instruction *User = cast<Instruction>(U.getUser()); 106 BasicBlock *UserBB = User->getParent(); 107 if (auto *PN = dyn_cast<PHINode>(User)) 108 UserBB = PN->getIncomingBlock(U); 109 110 if (InstBB != UserBB && !L->contains(UserBB)) 111 UsesToRewrite.push_back(&U); 112 } 113 114 // If there are no uses outside the loop, exit with no change. 115 if (UsesToRewrite.empty()) 116 continue; 117 118 ++NumLCSSA; // We are applying the transformation 119 120 // Invoke instructions are special in that their result value is not 121 // available along their unwind edge. The code below tests to see whether 122 // DomBB dominates the value, so adjust DomBB to the normal destination 123 // block, which is effectively where the value is first usable. 124 BasicBlock *DomBB = InstBB; 125 if (auto *Inv = dyn_cast<InvokeInst>(I)) 126 DomBB = Inv->getNormalDest(); 127 128 DomTreeNode *DomNode = DT.getNode(DomBB); 129 130 SmallVector<PHINode *, 16> AddedPHIs; 131 SmallVector<PHINode *, 8> PostProcessPHIs; 132 133 SmallVector<PHINode *, 4> InsertedPHIs; 134 SSAUpdater SSAUpdate(&InsertedPHIs); 135 SSAUpdate.Initialize(I->getType(), I->getName()); 136 137 // Insert the LCSSA phi's into all of the exit blocks dominated by the 138 // value, and add them to the Phi's map. 139 for (BasicBlock *ExitBB : ExitBlocks) { 140 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 141 continue; 142 143 // If we already inserted something for this BB, don't reprocess it. 144 if (SSAUpdate.HasValueForBlock(ExitBB)) 145 continue; 146 147 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 148 I->getName() + ".lcssa", &ExitBB->front()); 149 // Get the debug location from the original instruction. 150 PN->setDebugLoc(I->getDebugLoc()); 151 // Add inputs from inside the loop for this PHI. 152 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 153 PN->addIncoming(I, Pred); 154 155 // If the exit block has a predecessor not within the loop, arrange for 156 // the incoming value use corresponding to that predecessor to be 157 // rewritten in terms of a different LCSSA PHI. 158 if (!L->contains(Pred)) 159 UsesToRewrite.push_back( 160 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 161 PN->getNumIncomingValues() - 1))); 162 } 163 164 AddedPHIs.push_back(PN); 165 166 // Remember that this phi makes the value alive in this block. 167 SSAUpdate.AddAvailableValue(ExitBB, PN); 168 169 // LoopSimplify might fail to simplify some loops (e.g. when indirect 170 // branches are involved). In such situations, it might happen that an 171 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 172 // create PHIs in such an exit block, we are also inserting PHIs into L2's 173 // header. This could break LCSSA form for L2 because these inserted PHIs 174 // can also have uses outside of L2. Remember all PHIs in such situation 175 // as to revisit than later on. FIXME: Remove this if indirectbr support 176 // into LoopSimplify gets improved. 177 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 178 if (!L->contains(OtherLoop)) 179 PostProcessPHIs.push_back(PN); 180 } 181 182 // Rewrite all uses outside the loop in terms of the new PHIs we just 183 // inserted. 184 for (Use *UseToRewrite : UsesToRewrite) { 185 // If this use is in an exit block, rewrite to use the newly inserted PHI. 186 // This is required for correctness because SSAUpdate doesn't handle uses 187 // in the same block. It assumes the PHI we inserted is at the end of the 188 // block. 189 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 190 BasicBlock *UserBB = User->getParent(); 191 if (auto *PN = dyn_cast<PHINode>(User)) 192 UserBB = PN->getIncomingBlock(*UseToRewrite); 193 194 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 195 // Tell the VHs that the uses changed. This updates SCEV's caches. 196 if (UseToRewrite->get()->hasValueHandle()) 197 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 198 UseToRewrite->set(&UserBB->front()); 199 continue; 200 } 201 202 // If we added a single PHI, it must dominate all uses and we can directly 203 // rename it. 204 if (AddedPHIs.size() == 1) { 205 // Tell the VHs that the uses changed. This updates SCEV's caches. 206 // We might call ValueIsRAUWd multiple times for the same value. 207 if (UseToRewrite->get()->hasValueHandle()) 208 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]); 209 UseToRewrite->set(AddedPHIs[0]); 210 continue; 211 } 212 213 // Otherwise, do full PHI insertion. 214 SSAUpdate.RewriteUse(*UseToRewrite); 215 } 216 217 SmallVector<DbgValueInst *, 4> DbgValues; 218 llvm::findDbgValues(DbgValues, I); 219 220 // Update pre-existing debug value uses that reside outside the loop. 221 auto &Ctx = I->getContext(); 222 for (auto DVI : DbgValues) { 223 BasicBlock *UserBB = DVI->getParent(); 224 if (InstBB == UserBB || L->contains(UserBB)) 225 continue; 226 // We currently only handle debug values residing in blocks that were 227 // traversed while rewriting the uses. If we inserted just a single PHI, 228 // we will handle all relevant debug values. 229 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 230 : SSAUpdate.FindValueForBlock(UserBB); 231 if (V) 232 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 233 } 234 235 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 236 // to post-process them to keep LCSSA form. 237 for (PHINode *InsertedPN : InsertedPHIs) { 238 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 239 if (!L->contains(OtherLoop)) 240 PostProcessPHIs.push_back(InsertedPN); 241 } 242 243 // Post process PHI instructions that were inserted into another disjoint 244 // loop and update their exits properly. 245 for (auto *PostProcessPN : PostProcessPHIs) 246 if (!PostProcessPN->use_empty()) 247 Worklist.push_back(PostProcessPN); 248 249 // Keep track of PHI nodes that we want to remove because they did not have 250 // any uses rewritten. If the new PHI is used, store it so that we can 251 // try to propagate dbg.value intrinsics to it. 252 SmallVector<PHINode *, 2> NeedDbgValues; 253 for (PHINode *PN : AddedPHIs) 254 if (PN->use_empty()) 255 PHIsToRemove.insert(PN); 256 else 257 NeedDbgValues.push_back(PN); 258 insertDebugValuesForPHIs(InstBB, NeedDbgValues); 259 Changed = true; 260 } 261 // Remove PHI nodes that did not have any uses rewritten. We need to redo the 262 // use_empty() check here, because even if the PHI node wasn't used when added 263 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is 264 // not guaranteed to handle trees/cycles of PHI nodes that only are used by 265 // each other. Such situations has only been noticed when the input IR 266 // contains unreachable code, and leaving some extra redundant PHI nodes in 267 // such situations is considered a minor problem. 268 for (PHINode *PN : PHIsToRemove) 269 if (PN->use_empty()) 270 PN->eraseFromParent(); 271 return Changed; 272 } 273 274 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 275 static void computeBlocksDominatingExits( 276 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 277 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 278 SmallVector<BasicBlock *, 8> BBWorklist; 279 280 // We start from the exit blocks, as every block trivially dominates itself 281 // (not strictly). 282 for (BasicBlock *BB : ExitBlocks) 283 BBWorklist.push_back(BB); 284 285 while (!BBWorklist.empty()) { 286 BasicBlock *BB = BBWorklist.pop_back_val(); 287 288 // Check if this is a loop header. If this is the case, we're done. 289 if (L.getHeader() == BB) 290 continue; 291 292 // Otherwise, add its immediate predecessor in the dominator tree to the 293 // worklist, unless we visited it already. 294 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 295 296 // Exit blocks can have an immediate dominator not beloinging to the 297 // loop. For an exit block to be immediately dominated by another block 298 // outside the loop, it implies not all paths from that dominator, to the 299 // exit block, go through the loop. 300 // Example: 301 // 302 // |---- A 303 // | | 304 // | B<-- 305 // | | | 306 // |---> C -- 307 // | 308 // D 309 // 310 // C is the exit block of the loop and it's immediately dominated by A, 311 // which doesn't belong to the loop. 312 if (!L.contains(IDomBB)) 313 continue; 314 315 if (BlocksDominatingExits.insert(IDomBB)) 316 BBWorklist.push_back(IDomBB); 317 } 318 } 319 320 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 321 ScalarEvolution *SE) { 322 bool Changed = false; 323 324 #ifdef EXPENSIVE_CHECKS 325 // Verify all sub-loops are in LCSSA form already. 326 for (Loop *SubLoop: L) 327 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 328 #endif 329 330 SmallVector<BasicBlock *, 8> ExitBlocks; 331 L.getExitBlocks(ExitBlocks); 332 if (ExitBlocks.empty()) 333 return false; 334 335 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 336 337 // We want to avoid use-scanning leveraging dominance informations. 338 // If a block doesn't dominate any of the loop exits, the none of the values 339 // defined in the loop can be used outside. 340 // We compute the set of blocks fullfilling the conditions in advance 341 // walking the dominator tree upwards until we hit a loop header. 342 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 343 344 SmallVector<Instruction *, 8> Worklist; 345 346 // Look at all the instructions in the loop, checking to see if they have uses 347 // outside the loop. If so, put them into the worklist to rewrite those uses. 348 for (BasicBlock *BB : BlocksDominatingExits) { 349 // Skip blocks that are part of any sub-loops, they must be in LCSSA 350 // already. 351 if (LI->getLoopFor(BB) != &L) 352 continue; 353 for (Instruction &I : *BB) { 354 // Reject two common cases fast: instructions with no uses (like stores) 355 // and instructions with one use that is in the same block as this. 356 if (I.use_empty() || 357 (I.hasOneUse() && I.user_back()->getParent() == BB && 358 !isa<PHINode>(I.user_back()))) 359 continue; 360 361 // Tokens cannot be used in PHI nodes, so we skip over them. 362 // We can run into tokens which are live out of a loop with catchswitch 363 // instructions in Windows EH if the catchswitch has one catchpad which 364 // is inside the loop and another which is not. 365 if (I.getType()->isTokenTy()) 366 continue; 367 368 Worklist.push_back(&I); 369 } 370 } 371 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 372 373 // If we modified the code, remove any caches about the loop from SCEV to 374 // avoid dangling entries. 375 // FIXME: This is a big hammer, can we clear the cache more selectively? 376 if (SE && Changed) 377 SE->forgetLoop(&L); 378 379 assert(L.isLCSSAForm(DT)); 380 381 return Changed; 382 } 383 384 /// Process a loop nest depth first. 385 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 386 ScalarEvolution *SE) { 387 bool Changed = false; 388 389 // Recurse depth-first through inner loops. 390 for (Loop *SubLoop : L.getSubLoops()) 391 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 392 393 Changed |= formLCSSA(L, DT, LI, SE); 394 return Changed; 395 } 396 397 /// Process all loops in the function, inner-most out. 398 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 399 ScalarEvolution *SE) { 400 bool Changed = false; 401 for (auto &L : *LI) 402 Changed |= formLCSSARecursively(*L, DT, LI, SE); 403 return Changed; 404 } 405 406 namespace { 407 struct LCSSAWrapperPass : public FunctionPass { 408 static char ID; // Pass identification, replacement for typeid 409 LCSSAWrapperPass() : FunctionPass(ID) { 410 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 411 } 412 413 // Cached analysis information for the current function. 414 DominatorTree *DT; 415 LoopInfo *LI; 416 ScalarEvolution *SE; 417 418 bool runOnFunction(Function &F) override; 419 void verifyAnalysis() const override { 420 // This check is very expensive. On the loop intensive compiles it may cause 421 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 422 // always does limited form of the LCSSA verification. Similar reasoning 423 // was used for the LoopInfo verifier. 424 if (VerifyLoopLCSSA) { 425 assert(all_of(*LI, 426 [&](Loop *L) { 427 return L->isRecursivelyLCSSAForm(*DT, *LI); 428 }) && 429 "LCSSA form is broken!"); 430 } 431 }; 432 433 /// This transformation requires natural loop information & requires that 434 /// loop preheaders be inserted into the CFG. It maintains both of these, 435 /// as well as the CFG. It also requires dominator information. 436 void getAnalysisUsage(AnalysisUsage &AU) const override { 437 AU.setPreservesCFG(); 438 439 AU.addRequired<DominatorTreeWrapperPass>(); 440 AU.addRequired<LoopInfoWrapperPass>(); 441 AU.addPreservedID(LoopSimplifyID); 442 AU.addPreserved<AAResultsWrapperPass>(); 443 AU.addPreserved<BasicAAWrapperPass>(); 444 AU.addPreserved<GlobalsAAWrapperPass>(); 445 AU.addPreserved<ScalarEvolutionWrapperPass>(); 446 AU.addPreserved<SCEVAAWrapperPass>(); 447 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 448 AU.addPreserved<MemorySSAWrapperPass>(); 449 450 // This is needed to perform LCSSA verification inside LPPassManager 451 AU.addRequired<LCSSAVerificationPass>(); 452 AU.addPreserved<LCSSAVerificationPass>(); 453 } 454 }; 455 } 456 457 char LCSSAWrapperPass::ID = 0; 458 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 459 false, false) 460 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 461 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 462 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 463 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 464 false, false) 465 466 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 467 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 468 469 /// Transform \p F into loop-closed SSA form. 470 bool LCSSAWrapperPass::runOnFunction(Function &F) { 471 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 472 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 473 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 474 SE = SEWP ? &SEWP->getSE() : nullptr; 475 476 return formLCSSAOnAllLoops(LI, *DT, SE); 477 } 478 479 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 480 auto &LI = AM.getResult<LoopAnalysis>(F); 481 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 482 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 483 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 484 return PreservedAnalyses::all(); 485 486 PreservedAnalyses PA; 487 PA.preserveSet<CFGAnalyses>(); 488 PA.preserve<BasicAA>(); 489 PA.preserve<GlobalsAA>(); 490 PA.preserve<SCEVAA>(); 491 PA.preserve<ScalarEvolutionAnalysis>(); 492 // BPI maps terminators to probabilities, since we don't modify the CFG, no 493 // updates are needed to preserve it. 494 PA.preserve<BranchProbabilityAnalysis>(); 495 PA.preserve<MemorySSAAnalysis>(); 496 return PA; 497 } 498