xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include "llvm/Transforms/Utils/SSAUpdater.h"
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "lcssa"
54 
55 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
56 
57 #ifdef EXPENSIVE_CHECKS
58 static bool VerifyLoopLCSSA = true;
59 #else
60 static bool VerifyLoopLCSSA = false;
61 #endif
62 static cl::opt<bool, true>
63     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
64                         cl::Hidden,
65                         cl::desc("Verify loop lcssa form (time consuming)"));
66 
67 /// Return true if the specified block is in the list.
68 static bool isExitBlock(BasicBlock *BB,
69                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
70   return is_contained(ExitBlocks, BB);
71 }
72 
73 /// For every instruction from the worklist, check to see if it has any uses
74 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
75 /// rewrite the uses.
76 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
77                                     DominatorTree &DT, LoopInfo &LI) {
78   SmallVector<Use *, 16> UsesToRewrite;
79   SmallSetVector<PHINode *, 16> PHIsToRemove;
80   PredIteratorCache PredCache;
81   bool Changed = false;
82 
83   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
84   // instructions within the same loops, computing the exit blocks is
85   // expensive, and we're not mutating the loop structure.
86   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
87 
88   while (!Worklist.empty()) {
89     UsesToRewrite.clear();
90 
91     Instruction *I = Worklist.pop_back_val();
92     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
93     BasicBlock *InstBB = I->getParent();
94     Loop *L = LI.getLoopFor(InstBB);
95     assert(L && "Instruction belongs to a BB that's not part of a loop");
96     if (!LoopExitBlocks.count(L))
97       L->getExitBlocks(LoopExitBlocks[L]);
98     assert(LoopExitBlocks.count(L));
99     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
100 
101     if (ExitBlocks.empty())
102       continue;
103 
104     for (Use &U : I->uses()) {
105       Instruction *User = cast<Instruction>(U.getUser());
106       BasicBlock *UserBB = User->getParent();
107       if (auto *PN = dyn_cast<PHINode>(User))
108         UserBB = PN->getIncomingBlock(U);
109 
110       if (InstBB != UserBB && !L->contains(UserBB))
111         UsesToRewrite.push_back(&U);
112     }
113 
114     // If there are no uses outside the loop, exit with no change.
115     if (UsesToRewrite.empty())
116       continue;
117 
118     ++NumLCSSA; // We are applying the transformation
119 
120     // Invoke instructions are special in that their result value is not
121     // available along their unwind edge. The code below tests to see whether
122     // DomBB dominates the value, so adjust DomBB to the normal destination
123     // block, which is effectively where the value is first usable.
124     BasicBlock *DomBB = InstBB;
125     if (auto *Inv = dyn_cast<InvokeInst>(I))
126       DomBB = Inv->getNormalDest();
127 
128     DomTreeNode *DomNode = DT.getNode(DomBB);
129 
130     SmallVector<PHINode *, 16> AddedPHIs;
131     SmallVector<PHINode *, 8> PostProcessPHIs;
132 
133     SmallVector<PHINode *, 4> InsertedPHIs;
134     SSAUpdater SSAUpdate(&InsertedPHIs);
135     SSAUpdate.Initialize(I->getType(), I->getName());
136 
137     // Insert the LCSSA phi's into all of the exit blocks dominated by the
138     // value, and add them to the Phi's map.
139     for (BasicBlock *ExitBB : ExitBlocks) {
140       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
141         continue;
142 
143       // If we already inserted something for this BB, don't reprocess it.
144       if (SSAUpdate.HasValueForBlock(ExitBB))
145         continue;
146 
147       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
148                                     I->getName() + ".lcssa", &ExitBB->front());
149       // Get the debug location from the original instruction.
150       PN->setDebugLoc(I->getDebugLoc());
151       // Add inputs from inside the loop for this PHI.
152       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
153         PN->addIncoming(I, Pred);
154 
155         // If the exit block has a predecessor not within the loop, arrange for
156         // the incoming value use corresponding to that predecessor to be
157         // rewritten in terms of a different LCSSA PHI.
158         if (!L->contains(Pred))
159           UsesToRewrite.push_back(
160               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
161                   PN->getNumIncomingValues() - 1)));
162       }
163 
164       AddedPHIs.push_back(PN);
165 
166       // Remember that this phi makes the value alive in this block.
167       SSAUpdate.AddAvailableValue(ExitBB, PN);
168 
169       // LoopSimplify might fail to simplify some loops (e.g. when indirect
170       // branches are involved). In such situations, it might happen that an
171       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
172       // create PHIs in such an exit block, we are also inserting PHIs into L2's
173       // header. This could break LCSSA form for L2 because these inserted PHIs
174       // can also have uses outside of L2. Remember all PHIs in such situation
175       // as to revisit than later on. FIXME: Remove this if indirectbr support
176       // into LoopSimplify gets improved.
177       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
178         if (!L->contains(OtherLoop))
179           PostProcessPHIs.push_back(PN);
180     }
181 
182     // Rewrite all uses outside the loop in terms of the new PHIs we just
183     // inserted.
184     for (Use *UseToRewrite : UsesToRewrite) {
185       // If this use is in an exit block, rewrite to use the newly inserted PHI.
186       // This is required for correctness because SSAUpdate doesn't handle uses
187       // in the same block.  It assumes the PHI we inserted is at the end of the
188       // block.
189       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
190       BasicBlock *UserBB = User->getParent();
191       if (auto *PN = dyn_cast<PHINode>(User))
192         UserBB = PN->getIncomingBlock(*UseToRewrite);
193 
194       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
195         // Tell the VHs that the uses changed. This updates SCEV's caches.
196         if (UseToRewrite->get()->hasValueHandle())
197           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
198         UseToRewrite->set(&UserBB->front());
199         continue;
200       }
201 
202       // If we added a single PHI, it must dominate all uses and we can directly
203       // rename it.
204       if (AddedPHIs.size() == 1) {
205         // Tell the VHs that the uses changed. This updates SCEV's caches.
206         // We might call ValueIsRAUWd multiple times for the same value.
207         if (UseToRewrite->get()->hasValueHandle())
208           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]);
209         UseToRewrite->set(AddedPHIs[0]);
210         continue;
211       }
212 
213       // Otherwise, do full PHI insertion.
214       SSAUpdate.RewriteUse(*UseToRewrite);
215     }
216 
217     SmallVector<DbgValueInst *, 4> DbgValues;
218     llvm::findDbgValues(DbgValues, I);
219 
220     // Update pre-existing debug value uses that reside outside the loop.
221     auto &Ctx = I->getContext();
222     for (auto DVI : DbgValues) {
223       BasicBlock *UserBB = DVI->getParent();
224       if (InstBB == UserBB || L->contains(UserBB))
225         continue;
226       // We currently only handle debug values residing in blocks that were
227       // traversed while rewriting the uses. If we inserted just a single PHI,
228       // we will handle all relevant debug values.
229       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
230                                        : SSAUpdate.FindValueForBlock(UserBB);
231       if (V)
232         DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
233     }
234 
235     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
236     // to post-process them to keep LCSSA form.
237     for (PHINode *InsertedPN : InsertedPHIs) {
238       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
239         if (!L->contains(OtherLoop))
240           PostProcessPHIs.push_back(InsertedPN);
241     }
242 
243     // Post process PHI instructions that were inserted into another disjoint
244     // loop and update their exits properly.
245     for (auto *PostProcessPN : PostProcessPHIs)
246       if (!PostProcessPN->use_empty())
247         Worklist.push_back(PostProcessPN);
248 
249     // Keep track of PHI nodes that we want to remove because they did not have
250     // any uses rewritten. If the new PHI is used, store it so that we can
251     // try to propagate dbg.value intrinsics to it.
252     SmallVector<PHINode *, 2> NeedDbgValues;
253     for (PHINode *PN : AddedPHIs)
254       if (PN->use_empty())
255         PHIsToRemove.insert(PN);
256       else
257         NeedDbgValues.push_back(PN);
258     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
259     Changed = true;
260   }
261   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
262   // use_empty() check here, because even if the PHI node wasn't used when added
263   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
264   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
265   // each other. Such situations has only been noticed when the input IR
266   // contains unreachable code, and leaving some extra redundant PHI nodes in
267   // such situations is considered a minor problem.
268   for (PHINode *PN : PHIsToRemove)
269     if (PN->use_empty())
270       PN->eraseFromParent();
271   return Changed;
272 }
273 
274 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
275 static void computeBlocksDominatingExits(
276     Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
277     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
278   SmallVector<BasicBlock *, 8> BBWorklist;
279 
280   // We start from the exit blocks, as every block trivially dominates itself
281   // (not strictly).
282   for (BasicBlock *BB : ExitBlocks)
283     BBWorklist.push_back(BB);
284 
285   while (!BBWorklist.empty()) {
286     BasicBlock *BB = BBWorklist.pop_back_val();
287 
288     // Check if this is a loop header. If this is the case, we're done.
289     if (L.getHeader() == BB)
290       continue;
291 
292     // Otherwise, add its immediate predecessor in the dominator tree to the
293     // worklist, unless we visited it already.
294     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
295 
296     // Exit blocks can have an immediate dominator not beloinging to the
297     // loop. For an exit block to be immediately dominated by another block
298     // outside the loop, it implies not all paths from that dominator, to the
299     // exit block, go through the loop.
300     // Example:
301     //
302     // |---- A
303     // |     |
304     // |     B<--
305     // |     |  |
306     // |---> C --
307     //       |
308     //       D
309     //
310     // C is the exit block of the loop and it's immediately dominated by A,
311     // which doesn't belong to the loop.
312     if (!L.contains(IDomBB))
313       continue;
314 
315     if (BlocksDominatingExits.insert(IDomBB))
316       BBWorklist.push_back(IDomBB);
317   }
318 }
319 
320 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
321                      ScalarEvolution *SE) {
322   bool Changed = false;
323 
324 #ifdef EXPENSIVE_CHECKS
325   // Verify all sub-loops are in LCSSA form already.
326   for (Loop *SubLoop: L)
327     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
328 #endif
329 
330   SmallVector<BasicBlock *, 8> ExitBlocks;
331   L.getExitBlocks(ExitBlocks);
332   if (ExitBlocks.empty())
333     return false;
334 
335   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
336 
337   // We want to avoid use-scanning leveraging dominance informations.
338   // If a block doesn't dominate any of the loop exits, the none of the values
339   // defined in the loop can be used outside.
340   // We compute the set of blocks fullfilling the conditions in advance
341   // walking the dominator tree upwards until we hit a loop header.
342   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
343 
344   SmallVector<Instruction *, 8> Worklist;
345 
346   // Look at all the instructions in the loop, checking to see if they have uses
347   // outside the loop.  If so, put them into the worklist to rewrite those uses.
348   for (BasicBlock *BB : BlocksDominatingExits) {
349     // Skip blocks that are part of any sub-loops, they must be in LCSSA
350     // already.
351     if (LI->getLoopFor(BB) != &L)
352       continue;
353     for (Instruction &I : *BB) {
354       // Reject two common cases fast: instructions with no uses (like stores)
355       // and instructions with one use that is in the same block as this.
356       if (I.use_empty() ||
357           (I.hasOneUse() && I.user_back()->getParent() == BB &&
358            !isa<PHINode>(I.user_back())))
359         continue;
360 
361       // Tokens cannot be used in PHI nodes, so we skip over them.
362       // We can run into tokens which are live out of a loop with catchswitch
363       // instructions in Windows EH if the catchswitch has one catchpad which
364       // is inside the loop and another which is not.
365       if (I.getType()->isTokenTy())
366         continue;
367 
368       Worklist.push_back(&I);
369     }
370   }
371   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
372 
373   // If we modified the code, remove any caches about the loop from SCEV to
374   // avoid dangling entries.
375   // FIXME: This is a big hammer, can we clear the cache more selectively?
376   if (SE && Changed)
377     SE->forgetLoop(&L);
378 
379   assert(L.isLCSSAForm(DT));
380 
381   return Changed;
382 }
383 
384 /// Process a loop nest depth first.
385 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
386                                 ScalarEvolution *SE) {
387   bool Changed = false;
388 
389   // Recurse depth-first through inner loops.
390   for (Loop *SubLoop : L.getSubLoops())
391     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
392 
393   Changed |= formLCSSA(L, DT, LI, SE);
394   return Changed;
395 }
396 
397 /// Process all loops in the function, inner-most out.
398 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
399                                 ScalarEvolution *SE) {
400   bool Changed = false;
401   for (auto &L : *LI)
402     Changed |= formLCSSARecursively(*L, DT, LI, SE);
403   return Changed;
404 }
405 
406 namespace {
407 struct LCSSAWrapperPass : public FunctionPass {
408   static char ID; // Pass identification, replacement for typeid
409   LCSSAWrapperPass() : FunctionPass(ID) {
410     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
411   }
412 
413   // Cached analysis information for the current function.
414   DominatorTree *DT;
415   LoopInfo *LI;
416   ScalarEvolution *SE;
417 
418   bool runOnFunction(Function &F) override;
419   void verifyAnalysis() const override {
420     // This check is very expensive. On the loop intensive compiles it may cause
421     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
422     // always does limited form of the LCSSA verification. Similar reasoning
423     // was used for the LoopInfo verifier.
424     if (VerifyLoopLCSSA) {
425       assert(all_of(*LI,
426                     [&](Loop *L) {
427                       return L->isRecursivelyLCSSAForm(*DT, *LI);
428                     }) &&
429              "LCSSA form is broken!");
430     }
431   };
432 
433   /// This transformation requires natural loop information & requires that
434   /// loop preheaders be inserted into the CFG.  It maintains both of these,
435   /// as well as the CFG.  It also requires dominator information.
436   void getAnalysisUsage(AnalysisUsage &AU) const override {
437     AU.setPreservesCFG();
438 
439     AU.addRequired<DominatorTreeWrapperPass>();
440     AU.addRequired<LoopInfoWrapperPass>();
441     AU.addPreservedID(LoopSimplifyID);
442     AU.addPreserved<AAResultsWrapperPass>();
443     AU.addPreserved<BasicAAWrapperPass>();
444     AU.addPreserved<GlobalsAAWrapperPass>();
445     AU.addPreserved<ScalarEvolutionWrapperPass>();
446     AU.addPreserved<SCEVAAWrapperPass>();
447     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
448     AU.addPreserved<MemorySSAWrapperPass>();
449 
450     // This is needed to perform LCSSA verification inside LPPassManager
451     AU.addRequired<LCSSAVerificationPass>();
452     AU.addPreserved<LCSSAVerificationPass>();
453   }
454 };
455 }
456 
457 char LCSSAWrapperPass::ID = 0;
458 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
459                       false, false)
460 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
461 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
462 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
463 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
464                     false, false)
465 
466 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
467 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
468 
469 /// Transform \p F into loop-closed SSA form.
470 bool LCSSAWrapperPass::runOnFunction(Function &F) {
471   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
472   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
473   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
474   SE = SEWP ? &SEWP->getSE() : nullptr;
475 
476   return formLCSSAOnAllLoops(LI, *DT, SE);
477 }
478 
479 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
480   auto &LI = AM.getResult<LoopAnalysis>(F);
481   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
482   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
483   if (!formLCSSAOnAllLoops(&LI, DT, SE))
484     return PreservedAnalyses::all();
485 
486   PreservedAnalyses PA;
487   PA.preserveSet<CFGAnalyses>();
488   PA.preserve<BasicAA>();
489   PA.preserve<GlobalsAA>();
490   PA.preserve<SCEVAA>();
491   PA.preserve<ScalarEvolutionAnalysis>();
492   // BPI maps terminators to probabilities, since we don't modify the CFG, no
493   // updates are needed to preserve it.
494   PA.preserve<BranchProbabilityAnalysis>();
495   PA.preserve<MemorySSAAnalysis>();
496   return PA;
497 }
498