1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/MemorySSA.h" 39 #include "llvm/Analysis/ScalarEvolution.h" 40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/PredIteratorCache.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Transforms/Utils.h" 51 #include "llvm/Transforms/Utils/LoopUtils.h" 52 #include "llvm/Transforms/Utils/SSAUpdater.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "lcssa" 56 57 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 58 59 #ifdef EXPENSIVE_CHECKS 60 static bool VerifyLoopLCSSA = true; 61 #else 62 static bool VerifyLoopLCSSA = false; 63 #endif 64 static cl::opt<bool, true> 65 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 66 cl::Hidden, 67 cl::desc("Verify loop lcssa form (time consuming)")); 68 69 /// Return true if the specified block is in the list. 70 static bool isExitBlock(BasicBlock *BB, 71 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 72 return is_contained(ExitBlocks, BB); 73 } 74 75 /// For every instruction from the worklist, check to see if it has any uses 76 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 77 /// rewrite the uses. 78 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 79 const DominatorTree &DT, const LoopInfo &LI, 80 ScalarEvolution *SE, IRBuilderBase &Builder, 81 SmallVectorImpl<PHINode *> *PHIsToRemove) { 82 SmallVector<Use *, 16> UsesToRewrite; 83 SmallSetVector<PHINode *, 16> LocalPHIsToRemove; 84 PredIteratorCache PredCache; 85 bool Changed = false; 86 87 IRBuilderBase::InsertPointGuard InsertPtGuard(Builder); 88 89 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 90 // instructions within the same loops, computing the exit blocks is 91 // expensive, and we're not mutating the loop structure. 92 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 93 94 while (!Worklist.empty()) { 95 UsesToRewrite.clear(); 96 97 Instruction *I = Worklist.pop_back_val(); 98 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 99 BasicBlock *InstBB = I->getParent(); 100 Loop *L = LI.getLoopFor(InstBB); 101 assert(L && "Instruction belongs to a BB that's not part of a loop"); 102 if (!LoopExitBlocks.count(L)) 103 L->getExitBlocks(LoopExitBlocks[L]); 104 assert(LoopExitBlocks.count(L)); 105 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 106 107 if (ExitBlocks.empty()) 108 continue; 109 110 for (Use &U : make_early_inc_range(I->uses())) { 111 Instruction *User = cast<Instruction>(U.getUser()); 112 BasicBlock *UserBB = User->getParent(); 113 114 // Skip uses in unreachable blocks. 115 if (!DT.isReachableFromEntry(UserBB)) { 116 U.set(PoisonValue::get(I->getType())); 117 continue; 118 } 119 120 // For practical purposes, we consider that the use in a PHI 121 // occurs in the respective predecessor block. For more info, 122 // see the `phi` doc in LangRef and the LCSSA doc. 123 if (auto *PN = dyn_cast<PHINode>(User)) 124 UserBB = PN->getIncomingBlock(U); 125 126 if (InstBB != UserBB && !L->contains(UserBB)) 127 UsesToRewrite.push_back(&U); 128 } 129 130 // If there are no uses outside the loop, exit with no change. 131 if (UsesToRewrite.empty()) 132 continue; 133 134 ++NumLCSSA; // We are applying the transformation 135 136 // Invoke instructions are special in that their result value is not 137 // available along their unwind edge. The code below tests to see whether 138 // DomBB dominates the value, so adjust DomBB to the normal destination 139 // block, which is effectively where the value is first usable. 140 BasicBlock *DomBB = InstBB; 141 if (auto *Inv = dyn_cast<InvokeInst>(I)) 142 DomBB = Inv->getNormalDest(); 143 144 const DomTreeNode *DomNode = DT.getNode(DomBB); 145 146 SmallVector<PHINode *, 16> AddedPHIs; 147 SmallVector<PHINode *, 8> PostProcessPHIs; 148 149 SmallVector<PHINode *, 4> InsertedPHIs; 150 SSAUpdater SSAUpdate(&InsertedPHIs); 151 SSAUpdate.Initialize(I->getType(), I->getName()); 152 153 // Force re-computation of I, as some users now need to use the new PHI 154 // node. 155 if (SE) 156 SE->forgetValue(I); 157 158 // Insert the LCSSA phi's into all of the exit blocks dominated by the 159 // value, and add them to the Phi's map. 160 for (BasicBlock *ExitBB : ExitBlocks) { 161 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 162 continue; 163 164 // If we already inserted something for this BB, don't reprocess it. 165 if (SSAUpdate.HasValueForBlock(ExitBB)) 166 continue; 167 Builder.SetInsertPoint(&ExitBB->front()); 168 PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB), 169 I->getName() + ".lcssa"); 170 // Get the debug location from the original instruction. 171 PN->setDebugLoc(I->getDebugLoc()); 172 173 // Add inputs from inside the loop for this PHI. This is valid 174 // because `I` dominates `ExitBB` (checked above). This implies 175 // that every incoming block/edge is dominated by `I` as well, 176 // i.e. we can add uses of `I` to those incoming edges/append to the incoming 177 // blocks without violating the SSA dominance property. 178 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 179 PN->addIncoming(I, Pred); 180 181 // If the exit block has a predecessor not within the loop, arrange for 182 // the incoming value use corresponding to that predecessor to be 183 // rewritten in terms of a different LCSSA PHI. 184 if (!L->contains(Pred)) 185 UsesToRewrite.push_back( 186 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 187 PN->getNumIncomingValues() - 1))); 188 } 189 190 AddedPHIs.push_back(PN); 191 192 // Remember that this phi makes the value alive in this block. 193 SSAUpdate.AddAvailableValue(ExitBB, PN); 194 195 // LoopSimplify might fail to simplify some loops (e.g. when indirect 196 // branches are involved). In such situations, it might happen that an 197 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 198 // create PHIs in such an exit block, we are also inserting PHIs into L2's 199 // header. This could break LCSSA form for L2 because these inserted PHIs 200 // can also have uses outside of L2. Remember all PHIs in such situation 201 // as to revisit than later on. FIXME: Remove this if indirectbr support 202 // into LoopSimplify gets improved. 203 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 204 if (!L->contains(OtherLoop)) 205 PostProcessPHIs.push_back(PN); 206 } 207 208 // Rewrite all uses outside the loop in terms of the new PHIs we just 209 // inserted. 210 for (Use *UseToRewrite : UsesToRewrite) { 211 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 212 BasicBlock *UserBB = User->getParent(); 213 214 // For practical purposes, we consider that the use in a PHI 215 // occurs in the respective predecessor block. For more info, 216 // see the `phi` doc in LangRef and the LCSSA doc. 217 if (auto *PN = dyn_cast<PHINode>(User)) 218 UserBB = PN->getIncomingBlock(*UseToRewrite); 219 220 // If this use is in an exit block, rewrite to use the newly inserted PHI. 221 // This is required for correctness because SSAUpdate doesn't handle uses 222 // in the same block. It assumes the PHI we inserted is at the end of the 223 // block. 224 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 225 UseToRewrite->set(&UserBB->front()); 226 continue; 227 } 228 229 // If we added a single PHI, it must dominate all uses and we can directly 230 // rename it. 231 if (AddedPHIs.size() == 1) { 232 UseToRewrite->set(AddedPHIs[0]); 233 continue; 234 } 235 236 // Otherwise, do full PHI insertion. 237 SSAUpdate.RewriteUse(*UseToRewrite); 238 } 239 240 SmallVector<DbgValueInst *, 4> DbgValues; 241 llvm::findDbgValues(DbgValues, I); 242 243 // Update pre-existing debug value uses that reside outside the loop. 244 for (auto *DVI : DbgValues) { 245 BasicBlock *UserBB = DVI->getParent(); 246 if (InstBB == UserBB || L->contains(UserBB)) 247 continue; 248 // We currently only handle debug values residing in blocks that were 249 // traversed while rewriting the uses. If we inserted just a single PHI, 250 // we will handle all relevant debug values. 251 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 252 : SSAUpdate.FindValueForBlock(UserBB); 253 if (V) 254 DVI->replaceVariableLocationOp(I, V); 255 } 256 257 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 258 // to post-process them to keep LCSSA form. 259 for (PHINode *InsertedPN : InsertedPHIs) { 260 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 261 if (!L->contains(OtherLoop)) 262 PostProcessPHIs.push_back(InsertedPN); 263 } 264 265 // Post process PHI instructions that were inserted into another disjoint 266 // loop and update their exits properly. 267 for (auto *PostProcessPN : PostProcessPHIs) 268 if (!PostProcessPN->use_empty()) 269 Worklist.push_back(PostProcessPN); 270 271 // Keep track of PHI nodes that we want to remove because they did not have 272 // any uses rewritten. 273 for (PHINode *PN : AddedPHIs) 274 if (PN->use_empty()) 275 LocalPHIsToRemove.insert(PN); 276 277 Changed = true; 278 } 279 280 // Remove PHI nodes that did not have any uses rewritten or add them to 281 // PHIsToRemove, so the caller can remove them after some additional cleanup. 282 // We need to redo the use_empty() check here, because even if the PHI node 283 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be 284 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI 285 // nodes that only are used by each other. Such situations has only been 286 // noticed when the input IR contains unreachable code, and leaving some extra 287 // redundant PHI nodes in such situations is considered a minor problem. 288 if (PHIsToRemove) { 289 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end()); 290 } else { 291 for (PHINode *PN : LocalPHIsToRemove) 292 if (PN->use_empty()) 293 PN->eraseFromParent(); 294 } 295 return Changed; 296 } 297 298 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 299 static void computeBlocksDominatingExits( 300 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 301 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 302 // We start from the exit blocks, as every block trivially dominates itself 303 // (not strictly). 304 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks); 305 306 while (!BBWorklist.empty()) { 307 BasicBlock *BB = BBWorklist.pop_back_val(); 308 309 // Check if this is a loop header. If this is the case, we're done. 310 if (L.getHeader() == BB) 311 continue; 312 313 // Otherwise, add its immediate predecessor in the dominator tree to the 314 // worklist, unless we visited it already. 315 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 316 317 // Exit blocks can have an immediate dominator not belonging to the 318 // loop. For an exit block to be immediately dominated by another block 319 // outside the loop, it implies not all paths from that dominator, to the 320 // exit block, go through the loop. 321 // Example: 322 // 323 // |---- A 324 // | | 325 // | B<-- 326 // | | | 327 // |---> C -- 328 // | 329 // D 330 // 331 // C is the exit block of the loop and it's immediately dominated by A, 332 // which doesn't belong to the loop. 333 if (!L.contains(IDomBB)) 334 continue; 335 336 if (BlocksDominatingExits.insert(IDomBB)) 337 BBWorklist.push_back(IDomBB); 338 } 339 } 340 341 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 342 ScalarEvolution *SE) { 343 bool Changed = false; 344 345 #ifdef EXPENSIVE_CHECKS 346 // Verify all sub-loops are in LCSSA form already. 347 for (Loop *SubLoop: L) { 348 (void)SubLoop; // Silence unused variable warning. 349 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 350 } 351 #endif 352 353 SmallVector<BasicBlock *, 8> ExitBlocks; 354 L.getExitBlocks(ExitBlocks); 355 if (ExitBlocks.empty()) 356 return false; 357 358 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 359 360 // We want to avoid use-scanning leveraging dominance informations. 361 // If a block doesn't dominate any of the loop exits, the none of the values 362 // defined in the loop can be used outside. 363 // We compute the set of blocks fullfilling the conditions in advance 364 // walking the dominator tree upwards until we hit a loop header. 365 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 366 367 SmallVector<Instruction *, 8> Worklist; 368 369 // Look at all the instructions in the loop, checking to see if they have uses 370 // outside the loop. If so, put them into the worklist to rewrite those uses. 371 for (BasicBlock *BB : BlocksDominatingExits) { 372 // Skip blocks that are part of any sub-loops, they must be in LCSSA 373 // already. 374 if (LI->getLoopFor(BB) != &L) 375 continue; 376 for (Instruction &I : *BB) { 377 // Reject two common cases fast: instructions with no uses (like stores) 378 // and instructions with one use that is in the same block as this. 379 if (I.use_empty() || 380 (I.hasOneUse() && I.user_back()->getParent() == BB && 381 !isa<PHINode>(I.user_back()))) 382 continue; 383 384 // Tokens cannot be used in PHI nodes, so we skip over them. 385 // We can run into tokens which are live out of a loop with catchswitch 386 // instructions in Windows EH if the catchswitch has one catchpad which 387 // is inside the loop and another which is not. 388 if (I.getType()->isTokenTy()) 389 continue; 390 391 Worklist.push_back(&I); 392 } 393 } 394 395 IRBuilder<> Builder(L.getHeader()->getContext()); 396 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder); 397 398 // If we modified the code, remove any caches about the loop from SCEV to 399 // avoid dangling entries. 400 // FIXME: This is a big hammer, can we clear the cache more selectively? 401 if (SE && Changed) 402 SE->forgetLoop(&L); 403 404 assert(L.isLCSSAForm(DT)); 405 406 return Changed; 407 } 408 409 /// Process a loop nest depth first. 410 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, 411 const LoopInfo *LI, ScalarEvolution *SE) { 412 bool Changed = false; 413 414 // Recurse depth-first through inner loops. 415 for (Loop *SubLoop : L.getSubLoops()) 416 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 417 418 Changed |= formLCSSA(L, DT, LI, SE); 419 return Changed; 420 } 421 422 /// Process all loops in the function, inner-most out. 423 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, 424 ScalarEvolution *SE) { 425 bool Changed = false; 426 for (const auto &L : *LI) 427 Changed |= formLCSSARecursively(*L, DT, LI, SE); 428 return Changed; 429 } 430 431 namespace { 432 struct LCSSAWrapperPass : public FunctionPass { 433 static char ID; // Pass identification, replacement for typeid 434 LCSSAWrapperPass() : FunctionPass(ID) { 435 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 436 } 437 438 // Cached analysis information for the current function. 439 DominatorTree *DT; 440 LoopInfo *LI; 441 ScalarEvolution *SE; 442 443 bool runOnFunction(Function &F) override; 444 void verifyAnalysis() const override { 445 // This check is very expensive. On the loop intensive compiles it may cause 446 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 447 // always does limited form of the LCSSA verification. Similar reasoning 448 // was used for the LoopInfo verifier. 449 if (VerifyLoopLCSSA) { 450 assert(all_of(*LI, 451 [&](Loop *L) { 452 return L->isRecursivelyLCSSAForm(*DT, *LI); 453 }) && 454 "LCSSA form is broken!"); 455 } 456 }; 457 458 /// This transformation requires natural loop information & requires that 459 /// loop preheaders be inserted into the CFG. It maintains both of these, 460 /// as well as the CFG. It also requires dominator information. 461 void getAnalysisUsage(AnalysisUsage &AU) const override { 462 AU.setPreservesCFG(); 463 464 AU.addRequired<DominatorTreeWrapperPass>(); 465 AU.addRequired<LoopInfoWrapperPass>(); 466 AU.addPreservedID(LoopSimplifyID); 467 AU.addPreserved<AAResultsWrapperPass>(); 468 AU.addPreserved<BasicAAWrapperPass>(); 469 AU.addPreserved<GlobalsAAWrapperPass>(); 470 AU.addPreserved<ScalarEvolutionWrapperPass>(); 471 AU.addPreserved<SCEVAAWrapperPass>(); 472 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 473 AU.addPreserved<MemorySSAWrapperPass>(); 474 475 // This is needed to perform LCSSA verification inside LPPassManager 476 AU.addRequired<LCSSAVerificationPass>(); 477 AU.addPreserved<LCSSAVerificationPass>(); 478 } 479 }; 480 } 481 482 char LCSSAWrapperPass::ID = 0; 483 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 484 false, false) 485 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 486 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 487 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 488 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 489 false, false) 490 491 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 492 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 493 494 /// Transform \p F into loop-closed SSA form. 495 bool LCSSAWrapperPass::runOnFunction(Function &F) { 496 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 497 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 498 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 499 SE = SEWP ? &SEWP->getSE() : nullptr; 500 501 return formLCSSAOnAllLoops(LI, *DT, SE); 502 } 503 504 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 505 auto &LI = AM.getResult<LoopAnalysis>(F); 506 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 507 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 508 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 509 return PreservedAnalyses::all(); 510 511 PreservedAnalyses PA; 512 PA.preserveSet<CFGAnalyses>(); 513 PA.preserve<ScalarEvolutionAnalysis>(); 514 // BPI maps terminators to probabilities, since we don't modify the CFG, no 515 // updates are needed to preserve it. 516 PA.preserve<BranchProbabilityAnalysis>(); 517 PA.preserve<MemorySSAAnalysis>(); 518 return PA; 519 } 520