1 //===-- IntegerDivision.cpp - Expand integer division ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains an implementation of 32bit and 64bit scalar integer 10 // division for targets that don't have native support. It's largely derived 11 // from compiler-rt's implementations of __udivsi3 and __udivmoddi4, 12 // but hand-tuned for targets that prefer less control flow. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/IntegerDivision.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/Intrinsics.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "integer-division" 25 26 /// Generate code to compute the remainder of two signed integers. Returns the 27 /// remainder, which will have the sign of the dividend. Builder's insert point 28 /// should be pointing where the caller wants code generated, e.g. at the srem 29 /// instruction. This will generate a urem in the process, and Builder's insert 30 /// point will be pointing at the uren (if present, i.e. not folded), ready to 31 /// be expanded if the user wishes 32 static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor, 33 IRBuilder<> &Builder) { 34 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); 35 ConstantInt *Shift; 36 37 if (BitWidth == 64) { 38 Shift = Builder.getInt64(63); 39 } else { 40 assert(BitWidth == 32 && "Unexpected bit width"); 41 Shift = Builder.getInt32(31); 42 } 43 44 // Following instructions are generated for both i32 (shift 31) and 45 // i64 (shift 63). 46 47 // ; %dividend_sgn = ashr i32 %dividend, 31 48 // ; %divisor_sgn = ashr i32 %divisor, 31 49 // ; %dvd_xor = xor i32 %dividend, %dividend_sgn 50 // ; %dvs_xor = xor i32 %divisor, %divisor_sgn 51 // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn 52 // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn 53 // ; %urem = urem i32 %dividend, %divisor 54 // ; %xored = xor i32 %urem, %dividend_sgn 55 // ; %srem = sub i32 %xored, %dividend_sgn 56 Value *DividendSign = Builder.CreateAShr(Dividend, Shift); 57 Value *DivisorSign = Builder.CreateAShr(Divisor, Shift); 58 Value *DvdXor = Builder.CreateXor(Dividend, DividendSign); 59 Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign); 60 Value *UDividend = Builder.CreateSub(DvdXor, DividendSign); 61 Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign); 62 Value *URem = Builder.CreateURem(UDividend, UDivisor); 63 Value *Xored = Builder.CreateXor(URem, DividendSign); 64 Value *SRem = Builder.CreateSub(Xored, DividendSign); 65 66 if (Instruction *URemInst = dyn_cast<Instruction>(URem)) 67 Builder.SetInsertPoint(URemInst); 68 69 return SRem; 70 } 71 72 73 /// Generate code to compute the remainder of two unsigned integers. Returns the 74 /// remainder. Builder's insert point should be pointing where the caller wants 75 /// code generated, e.g. at the urem instruction. This will generate a udiv in 76 /// the process, and Builder's insert point will be pointing at the udiv (if 77 /// present, i.e. not folded), ready to be expanded if the user wishes 78 static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor, 79 IRBuilder<> &Builder) { 80 // Remainder = Dividend - Quotient*Divisor 81 82 // Following instructions are generated for both i32 and i64 83 84 // ; %quotient = udiv i32 %dividend, %divisor 85 // ; %product = mul i32 %divisor, %quotient 86 // ; %remainder = sub i32 %dividend, %product 87 Value *Quotient = Builder.CreateUDiv(Dividend, Divisor); 88 Value *Product = Builder.CreateMul(Divisor, Quotient); 89 Value *Remainder = Builder.CreateSub(Dividend, Product); 90 91 if (Instruction *UDiv = dyn_cast<Instruction>(Quotient)) 92 Builder.SetInsertPoint(UDiv); 93 94 return Remainder; 95 } 96 97 /// Generate code to divide two signed integers. Returns the quotient, rounded 98 /// towards 0. Builder's insert point should be pointing where the caller wants 99 /// code generated, e.g. at the sdiv instruction. This will generate a udiv in 100 /// the process, and Builder's insert point will be pointing at the udiv (if 101 /// present, i.e. not folded), ready to be expanded if the user wishes. 102 static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor, 103 IRBuilder<> &Builder) { 104 // Implementation taken from compiler-rt's __divsi3 and __divdi3 105 106 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); 107 ConstantInt *Shift; 108 109 if (BitWidth == 64) { 110 Shift = Builder.getInt64(63); 111 } else { 112 assert(BitWidth == 32 && "Unexpected bit width"); 113 Shift = Builder.getInt32(31); 114 } 115 116 // Following instructions are generated for both i32 (shift 31) and 117 // i64 (shift 63). 118 119 // ; %tmp = ashr i32 %dividend, 31 120 // ; %tmp1 = ashr i32 %divisor, 31 121 // ; %tmp2 = xor i32 %tmp, %dividend 122 // ; %u_dvnd = sub nsw i32 %tmp2, %tmp 123 // ; %tmp3 = xor i32 %tmp1, %divisor 124 // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1 125 // ; %q_sgn = xor i32 %tmp1, %tmp 126 // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr 127 // ; %tmp4 = xor i32 %q_mag, %q_sgn 128 // ; %q = sub i32 %tmp4, %q_sgn 129 Value *Tmp = Builder.CreateAShr(Dividend, Shift); 130 Value *Tmp1 = Builder.CreateAShr(Divisor, Shift); 131 Value *Tmp2 = Builder.CreateXor(Tmp, Dividend); 132 Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp); 133 Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor); 134 Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1); 135 Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp); 136 Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr); 137 Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn); 138 Value *Q = Builder.CreateSub(Tmp4, Q_Sgn); 139 140 if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag)) 141 Builder.SetInsertPoint(UDiv); 142 143 return Q; 144 } 145 146 /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers. 147 /// Returns the quotient, rounded towards 0. Builder's insert point should 148 /// point where the caller wants code generated, e.g. at the udiv instruction. 149 static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor, 150 IRBuilder<> &Builder) { 151 // The basic algorithm can be found in the compiler-rt project's 152 // implementation of __udivsi3.c. Here, we do a lower-level IR based approach 153 // that's been hand-tuned to lessen the amount of control flow involved. 154 155 // Some helper values 156 IntegerType *DivTy = cast<IntegerType>(Dividend->getType()); 157 unsigned BitWidth = DivTy->getBitWidth(); 158 159 ConstantInt *Zero; 160 ConstantInt *One; 161 ConstantInt *NegOne; 162 ConstantInt *MSB; 163 164 if (BitWidth == 64) { 165 Zero = Builder.getInt64(0); 166 One = Builder.getInt64(1); 167 NegOne = ConstantInt::getSigned(DivTy, -1); 168 MSB = Builder.getInt64(63); 169 } else { 170 assert(BitWidth == 32 && "Unexpected bit width"); 171 Zero = Builder.getInt32(0); 172 One = Builder.getInt32(1); 173 NegOne = ConstantInt::getSigned(DivTy, -1); 174 MSB = Builder.getInt32(31); 175 } 176 177 ConstantInt *True = Builder.getTrue(); 178 179 BasicBlock *IBB = Builder.GetInsertBlock(); 180 Function *F = IBB->getParent(); 181 Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, 182 DivTy); 183 184 // Our CFG is going to look like: 185 // +---------------------+ 186 // | special-cases | 187 // | ... | 188 // +---------------------+ 189 // | | 190 // | +----------+ 191 // | | bb1 | 192 // | | ... | 193 // | +----------+ 194 // | | | 195 // | | +------------+ 196 // | | | preheader | 197 // | | | ... | 198 // | | +------------+ 199 // | | | 200 // | | | +---+ 201 // | | | | | 202 // | | +------------+ | 203 // | | | do-while | | 204 // | | | ... | | 205 // | | +------------+ | 206 // | | | | | 207 // | +-----------+ +---+ 208 // | | loop-exit | 209 // | | ... | 210 // | +-----------+ 211 // | | 212 // +-------+ 213 // | ... | 214 // | end | 215 // +-------+ 216 BasicBlock *SpecialCases = Builder.GetInsertBlock(); 217 SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases")); 218 BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(), 219 "udiv-end"); 220 BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(), 221 "udiv-loop-exit", F, End); 222 BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(), 223 "udiv-do-while", F, End); 224 BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(), 225 "udiv-preheader", F, End); 226 BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(), 227 "udiv-bb1", F, End); 228 229 // We'll be overwriting the terminator to insert our extra blocks 230 SpecialCases->getTerminator()->eraseFromParent(); 231 232 // Same instructions are generated for both i32 (msb 31) and i64 (msb 63). 233 234 // First off, check for special cases: dividend or divisor is zero, divisor 235 // is greater than dividend, and divisor is 1. 236 // ; special-cases: 237 // ; %ret0_1 = icmp eq i32 %divisor, 0 238 // ; %ret0_2 = icmp eq i32 %dividend, 0 239 // ; %ret0_3 = or i1 %ret0_1, %ret0_2 240 // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true) 241 // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true) 242 // ; %sr = sub nsw i32 %tmp0, %tmp1 243 // ; %ret0_4 = icmp ugt i32 %sr, 31 244 // ; %ret0 = or i1 %ret0_3, %ret0_4 245 // ; %retDividend = icmp eq i32 %sr, 31 246 // ; %retVal = select i1 %ret0, i32 0, i32 %dividend 247 // ; %earlyRet = or i1 %ret0, %retDividend 248 // ; br i1 %earlyRet, label %end, label %bb1 249 Builder.SetInsertPoint(SpecialCases); 250 Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero); 251 Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero); 252 Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2); 253 Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True}); 254 Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True}); 255 Value *SR = Builder.CreateSub(Tmp0, Tmp1); 256 Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB); 257 Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4); 258 Value *RetDividend = Builder.CreateICmpEQ(SR, MSB); 259 Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend); 260 Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend); 261 Builder.CreateCondBr(EarlyRet, End, BB1); 262 263 // ; bb1: ; preds = %special-cases 264 // ; %sr_1 = add i32 %sr, 1 265 // ; %tmp2 = sub i32 31, %sr 266 // ; %q = shl i32 %dividend, %tmp2 267 // ; %skipLoop = icmp eq i32 %sr_1, 0 268 // ; br i1 %skipLoop, label %loop-exit, label %preheader 269 Builder.SetInsertPoint(BB1); 270 Value *SR_1 = Builder.CreateAdd(SR, One); 271 Value *Tmp2 = Builder.CreateSub(MSB, SR); 272 Value *Q = Builder.CreateShl(Dividend, Tmp2); 273 Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero); 274 Builder.CreateCondBr(SkipLoop, LoopExit, Preheader); 275 276 // ; preheader: ; preds = %bb1 277 // ; %tmp3 = lshr i32 %dividend, %sr_1 278 // ; %tmp4 = add i32 %divisor, -1 279 // ; br label %do-while 280 Builder.SetInsertPoint(Preheader); 281 Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1); 282 Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne); 283 Builder.CreateBr(DoWhile); 284 285 // ; do-while: ; preds = %do-while, %preheader 286 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] 287 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] 288 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] 289 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] 290 // ; %tmp5 = shl i32 %r_1, 1 291 // ; %tmp6 = lshr i32 %q_2, 31 292 // ; %tmp7 = or i32 %tmp5, %tmp6 293 // ; %tmp8 = shl i32 %q_2, 1 294 // ; %q_1 = or i32 %carry_1, %tmp8 295 // ; %tmp9 = sub i32 %tmp4, %tmp7 296 // ; %tmp10 = ashr i32 %tmp9, 31 297 // ; %carry = and i32 %tmp10, 1 298 // ; %tmp11 = and i32 %tmp10, %divisor 299 // ; %r = sub i32 %tmp7, %tmp11 300 // ; %sr_2 = add i32 %sr_3, -1 301 // ; %tmp12 = icmp eq i32 %sr_2, 0 302 // ; br i1 %tmp12, label %loop-exit, label %do-while 303 Builder.SetInsertPoint(DoWhile); 304 PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2); 305 PHINode *SR_3 = Builder.CreatePHI(DivTy, 2); 306 PHINode *R_1 = Builder.CreatePHI(DivTy, 2); 307 PHINode *Q_2 = Builder.CreatePHI(DivTy, 2); 308 Value *Tmp5 = Builder.CreateShl(R_1, One); 309 Value *Tmp6 = Builder.CreateLShr(Q_2, MSB); 310 Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6); 311 Value *Tmp8 = Builder.CreateShl(Q_2, One); 312 Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8); 313 Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7); 314 Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB); 315 Value *Carry = Builder.CreateAnd(Tmp10, One); 316 Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor); 317 Value *R = Builder.CreateSub(Tmp7, Tmp11); 318 Value *SR_2 = Builder.CreateAdd(SR_3, NegOne); 319 Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero); 320 Builder.CreateCondBr(Tmp12, LoopExit, DoWhile); 321 322 // ; loop-exit: ; preds = %do-while, %bb1 323 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] 324 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] 325 // ; %tmp13 = shl i32 %q_3, 1 326 // ; %q_4 = or i32 %carry_2, %tmp13 327 // ; br label %end 328 Builder.SetInsertPoint(LoopExit); 329 PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2); 330 PHINode *Q_3 = Builder.CreatePHI(DivTy, 2); 331 Value *Tmp13 = Builder.CreateShl(Q_3, One); 332 Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13); 333 Builder.CreateBr(End); 334 335 // ; end: ; preds = %loop-exit, %special-cases 336 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] 337 // ; ret i32 %q_5 338 Builder.SetInsertPoint(End, End->begin()); 339 PHINode *Q_5 = Builder.CreatePHI(DivTy, 2); 340 341 // Populate the Phis, since all values have now been created. Our Phis were: 342 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] 343 Carry_1->addIncoming(Zero, Preheader); 344 Carry_1->addIncoming(Carry, DoWhile); 345 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] 346 SR_3->addIncoming(SR_1, Preheader); 347 SR_3->addIncoming(SR_2, DoWhile); 348 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] 349 R_1->addIncoming(Tmp3, Preheader); 350 R_1->addIncoming(R, DoWhile); 351 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] 352 Q_2->addIncoming(Q, Preheader); 353 Q_2->addIncoming(Q_1, DoWhile); 354 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] 355 Carry_2->addIncoming(Zero, BB1); 356 Carry_2->addIncoming(Carry, DoWhile); 357 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] 358 Q_3->addIncoming(Q, BB1); 359 Q_3->addIncoming(Q_1, DoWhile); 360 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] 361 Q_5->addIncoming(Q_4, LoopExit); 362 Q_5->addIncoming(RetVal, SpecialCases); 363 364 return Q_5; 365 } 366 367 /// Generate code to calculate the remainder of two integers, replacing Rem with 368 /// the generated code. This currently generates code using the udiv expansion, 369 /// but future work includes generating more specialized code, e.g. when more 370 /// information about the operands are known. Implements both 32bit and 64bit 371 /// scalar division. 372 /// 373 /// Replace Rem with generated code. 374 bool llvm::expandRemainder(BinaryOperator *Rem) { 375 assert((Rem->getOpcode() == Instruction::SRem || 376 Rem->getOpcode() == Instruction::URem) && 377 "Trying to expand remainder from a non-remainder function"); 378 379 IRBuilder<> Builder(Rem); 380 381 assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported"); 382 assert((Rem->getType()->getIntegerBitWidth() == 32 || 383 Rem->getType()->getIntegerBitWidth() == 64) && 384 "Div of bitwidth other than 32 or 64 not supported"); 385 386 // First prepare the sign if it's a signed remainder 387 if (Rem->getOpcode() == Instruction::SRem) { 388 Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0), 389 Rem->getOperand(1), Builder); 390 391 // Check whether this is the insert point while Rem is still valid. 392 bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint(); 393 Rem->replaceAllUsesWith(Remainder); 394 Rem->dropAllReferences(); 395 Rem->eraseFromParent(); 396 397 // If we didn't actually generate an urem instruction, we're done 398 // This happens for example if the input were constant. In this case the 399 // Builder insertion point was unchanged 400 if (IsInsertPoint) 401 return true; 402 403 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); 404 Rem = BO; 405 } 406 407 Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0), 408 Rem->getOperand(1), 409 Builder); 410 411 Rem->replaceAllUsesWith(Remainder); 412 Rem->dropAllReferences(); 413 Rem->eraseFromParent(); 414 415 // Expand the udiv 416 if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) { 417 assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?"); 418 expandDivision(UDiv); 419 } 420 421 return true; 422 } 423 424 425 /// Generate code to divide two integers, replacing Div with the generated 426 /// code. This currently generates code similarly to compiler-rt's 427 /// implementations, but future work includes generating more specialized code 428 /// when more information about the operands are known. Implements both 429 /// 32bit and 64bit scalar division. 430 /// 431 /// Replace Div with generated code. 432 bool llvm::expandDivision(BinaryOperator *Div) { 433 assert((Div->getOpcode() == Instruction::SDiv || 434 Div->getOpcode() == Instruction::UDiv) && 435 "Trying to expand division from a non-division function"); 436 437 IRBuilder<> Builder(Div); 438 439 assert(!Div->getType()->isVectorTy() && "Div over vectors not supported"); 440 assert((Div->getType()->getIntegerBitWidth() == 32 || 441 Div->getType()->getIntegerBitWidth() == 64) && 442 "Div of bitwidth other than 32 or 64 not supported"); 443 444 // First prepare the sign if it's a signed division 445 if (Div->getOpcode() == Instruction::SDiv) { 446 // Lower the code to unsigned division, and reset Div to point to the udiv. 447 Value *Quotient = generateSignedDivisionCode(Div->getOperand(0), 448 Div->getOperand(1), Builder); 449 450 // Check whether this is the insert point while Div is still valid. 451 bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint(); 452 Div->replaceAllUsesWith(Quotient); 453 Div->dropAllReferences(); 454 Div->eraseFromParent(); 455 456 // If we didn't actually generate an udiv instruction, we're done 457 // This happens for example if the input were constant. In this case the 458 // Builder insertion point was unchanged 459 if (IsInsertPoint) 460 return true; 461 462 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); 463 Div = BO; 464 } 465 466 // Insert the unsigned division code 467 Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0), 468 Div->getOperand(1), 469 Builder); 470 Div->replaceAllUsesWith(Quotient); 471 Div->dropAllReferences(); 472 Div->eraseFromParent(); 473 474 return true; 475 } 476 477 /// Generate code to compute the remainder of two integers of bitwidth up to 478 /// 32 bits. Uses the above routines and extends the inputs/truncates the 479 /// outputs to operate in 32 bits; that is, these routines are good for targets 480 /// that have no or very little suppport for smaller than 32 bit integer 481 /// arithmetic. 482 /// 483 /// Replace Rem with emulation code. 484 bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) { 485 assert((Rem->getOpcode() == Instruction::SRem || 486 Rem->getOpcode() == Instruction::URem) && 487 "Trying to expand remainder from a non-remainder function"); 488 489 Type *RemTy = Rem->getType(); 490 assert(!RemTy->isVectorTy() && "Div over vectors not supported"); 491 492 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); 493 494 assert(RemTyBitWidth <= 32 && 495 "Div of bitwidth greater than 32 not supported"); 496 497 if (RemTyBitWidth == 32) 498 return expandRemainder(Rem); 499 500 // If bitwidth smaller than 32 extend inputs, extend output and proceed 501 // with 32 bit division. 502 IRBuilder<> Builder(Rem); 503 504 Value *ExtDividend; 505 Value *ExtDivisor; 506 Value *ExtRem; 507 Value *Trunc; 508 Type *Int32Ty = Builder.getInt32Ty(); 509 510 if (Rem->getOpcode() == Instruction::SRem) { 511 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty); 512 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty); 513 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); 514 } else { 515 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty); 516 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty); 517 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); 518 } 519 Trunc = Builder.CreateTrunc(ExtRem, RemTy); 520 521 Rem->replaceAllUsesWith(Trunc); 522 Rem->dropAllReferences(); 523 Rem->eraseFromParent(); 524 525 return expandRemainder(cast<BinaryOperator>(ExtRem)); 526 } 527 528 /// Generate code to compute the remainder of two integers of bitwidth up to 529 /// 64 bits. Uses the above routines and extends the inputs/truncates the 530 /// outputs to operate in 64 bits. 531 /// 532 /// Replace Rem with emulation code. 533 bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) { 534 assert((Rem->getOpcode() == Instruction::SRem || 535 Rem->getOpcode() == Instruction::URem) && 536 "Trying to expand remainder from a non-remainder function"); 537 538 Type *RemTy = Rem->getType(); 539 assert(!RemTy->isVectorTy() && "Div over vectors not supported"); 540 541 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); 542 543 assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported"); 544 545 if (RemTyBitWidth == 64) 546 return expandRemainder(Rem); 547 548 // If bitwidth smaller than 64 extend inputs, extend output and proceed 549 // with 64 bit division. 550 IRBuilder<> Builder(Rem); 551 552 Value *ExtDividend; 553 Value *ExtDivisor; 554 Value *ExtRem; 555 Value *Trunc; 556 Type *Int64Ty = Builder.getInt64Ty(); 557 558 if (Rem->getOpcode() == Instruction::SRem) { 559 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty); 560 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty); 561 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); 562 } else { 563 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty); 564 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty); 565 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); 566 } 567 Trunc = Builder.CreateTrunc(ExtRem, RemTy); 568 569 Rem->replaceAllUsesWith(Trunc); 570 Rem->dropAllReferences(); 571 Rem->eraseFromParent(); 572 573 return expandRemainder(cast<BinaryOperator>(ExtRem)); 574 } 575 576 /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the 577 /// above routines and extends the inputs/truncates the outputs to operate 578 /// in 32 bits; that is, these routines are good for targets that have no 579 /// or very little support for smaller than 32 bit integer arithmetic. 580 /// 581 /// Replace Div with emulation code. 582 bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) { 583 assert((Div->getOpcode() == Instruction::SDiv || 584 Div->getOpcode() == Instruction::UDiv) && 585 "Trying to expand division from a non-division function"); 586 587 Type *DivTy = Div->getType(); 588 assert(!DivTy->isVectorTy() && "Div over vectors not supported"); 589 590 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); 591 592 assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported"); 593 594 if (DivTyBitWidth == 32) 595 return expandDivision(Div); 596 597 // If bitwidth smaller than 32 extend inputs, extend output and proceed 598 // with 32 bit division. 599 IRBuilder<> Builder(Div); 600 601 Value *ExtDividend; 602 Value *ExtDivisor; 603 Value *ExtDiv; 604 Value *Trunc; 605 Type *Int32Ty = Builder.getInt32Ty(); 606 607 if (Div->getOpcode() == Instruction::SDiv) { 608 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty); 609 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty); 610 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); 611 } else { 612 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty); 613 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty); 614 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); 615 } 616 Trunc = Builder.CreateTrunc(ExtDiv, DivTy); 617 618 Div->replaceAllUsesWith(Trunc); 619 Div->dropAllReferences(); 620 Div->eraseFromParent(); 621 622 return expandDivision(cast<BinaryOperator>(ExtDiv)); 623 } 624 625 /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the 626 /// above routines and extends the inputs/truncates the outputs to operate 627 /// in 64 bits. 628 /// 629 /// Replace Div with emulation code. 630 bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) { 631 assert((Div->getOpcode() == Instruction::SDiv || 632 Div->getOpcode() == Instruction::UDiv) && 633 "Trying to expand division from a non-division function"); 634 635 Type *DivTy = Div->getType(); 636 assert(!DivTy->isVectorTy() && "Div over vectors not supported"); 637 638 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); 639 640 assert(DivTyBitWidth <= 64 && 641 "Div of bitwidth greater than 64 not supported"); 642 643 if (DivTyBitWidth == 64) 644 return expandDivision(Div); 645 646 // If bitwidth smaller than 64 extend inputs, extend output and proceed 647 // with 64 bit division. 648 IRBuilder<> Builder(Div); 649 650 Value *ExtDividend; 651 Value *ExtDivisor; 652 Value *ExtDiv; 653 Value *Trunc; 654 Type *Int64Ty = Builder.getInt64Ty(); 655 656 if (Div->getOpcode() == Instruction::SDiv) { 657 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty); 658 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty); 659 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); 660 } else { 661 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty); 662 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty); 663 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); 664 } 665 Trunc = Builder.CreateTrunc(ExtDiv, DivTy); 666 667 Div->replaceAllUsesWith(Trunc); 668 Div->dropAllReferences(); 669 Div->eraseFromParent(); 670 671 return expandDivision(cast<BinaryOperator>(ExtDiv)); 672 } 673