1 //===-- IntegerDivision.cpp - Expand integer division ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains an implementation of 32bit and 64bit scalar integer 10 // division for targets that don't have native support. It's largely derived 11 // from compiler-rt's implementations of __udivsi3 and __udivmoddi4, 12 // but hand-tuned for targets that prefer less control flow. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/IntegerDivision.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/Intrinsics.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "integer-division" 25 26 /// Generate code to compute the remainder of two signed integers. Returns the 27 /// remainder, which will have the sign of the dividend. Builder's insert point 28 /// should be pointing where the caller wants code generated, e.g. at the srem 29 /// instruction. This will generate a urem in the process, and Builder's insert 30 /// point will be pointing at the uren (if present, i.e. not folded), ready to 31 /// be expanded if the user wishes 32 static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor, 33 IRBuilder<> &Builder) { 34 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); 35 ConstantInt *Shift = Builder.getIntN(BitWidth, BitWidth - 1); 36 37 // Following instructions are generated for both i32 (shift 31) and 38 // i64 (shift 63). 39 40 // ; %dividend_sgn = ashr i32 %dividend, 31 41 // ; %divisor_sgn = ashr i32 %divisor, 31 42 // ; %dvd_xor = xor i32 %dividend, %dividend_sgn 43 // ; %dvs_xor = xor i32 %divisor, %divisor_sgn 44 // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn 45 // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn 46 // ; %urem = urem i32 %dividend, %divisor 47 // ; %xored = xor i32 %urem, %dividend_sgn 48 // ; %srem = sub i32 %xored, %dividend_sgn 49 Dividend = Builder.CreateFreeze(Dividend); 50 Divisor = Builder.CreateFreeze(Divisor); 51 Value *DividendSign = Builder.CreateAShr(Dividend, Shift); 52 Value *DivisorSign = Builder.CreateAShr(Divisor, Shift); 53 Value *DvdXor = Builder.CreateXor(Dividend, DividendSign); 54 Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign); 55 Value *UDividend = Builder.CreateSub(DvdXor, DividendSign); 56 Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign); 57 Value *URem = Builder.CreateURem(UDividend, UDivisor); 58 Value *Xored = Builder.CreateXor(URem, DividendSign); 59 Value *SRem = Builder.CreateSub(Xored, DividendSign); 60 61 if (Instruction *URemInst = dyn_cast<Instruction>(URem)) 62 Builder.SetInsertPoint(URemInst); 63 64 return SRem; 65 } 66 67 68 /// Generate code to compute the remainder of two unsigned integers. Returns the 69 /// remainder. Builder's insert point should be pointing where the caller wants 70 /// code generated, e.g. at the urem instruction. This will generate a udiv in 71 /// the process, and Builder's insert point will be pointing at the udiv (if 72 /// present, i.e. not folded), ready to be expanded if the user wishes 73 static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor, 74 IRBuilder<> &Builder) { 75 // Remainder = Dividend - Quotient*Divisor 76 77 // Following instructions are generated for both i32 and i64 78 79 // ; %quotient = udiv i32 %dividend, %divisor 80 // ; %product = mul i32 %divisor, %quotient 81 // ; %remainder = sub i32 %dividend, %product 82 Dividend = Builder.CreateFreeze(Dividend); 83 Divisor = Builder.CreateFreeze(Divisor); 84 Value *Quotient = Builder.CreateUDiv(Dividend, Divisor); 85 Value *Product = Builder.CreateMul(Divisor, Quotient); 86 Value *Remainder = Builder.CreateSub(Dividend, Product); 87 88 if (Instruction *UDiv = dyn_cast<Instruction>(Quotient)) 89 Builder.SetInsertPoint(UDiv); 90 91 return Remainder; 92 } 93 94 /// Generate code to divide two signed integers. Returns the quotient, rounded 95 /// towards 0. Builder's insert point should be pointing where the caller wants 96 /// code generated, e.g. at the sdiv instruction. This will generate a udiv in 97 /// the process, and Builder's insert point will be pointing at the udiv (if 98 /// present, i.e. not folded), ready to be expanded if the user wishes. 99 static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor, 100 IRBuilder<> &Builder) { 101 // Implementation taken from compiler-rt's __divsi3 and __divdi3 102 103 unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); 104 ConstantInt *Shift = Builder.getIntN(BitWidth, BitWidth - 1); 105 106 // Following instructions are generated for both i32 (shift 31) and 107 // i64 (shift 63). 108 109 // ; %tmp = ashr i32 %dividend, 31 110 // ; %tmp1 = ashr i32 %divisor, 31 111 // ; %tmp2 = xor i32 %tmp, %dividend 112 // ; %u_dvnd = sub nsw i32 %tmp2, %tmp 113 // ; %tmp3 = xor i32 %tmp1, %divisor 114 // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1 115 // ; %q_sgn = xor i32 %tmp1, %tmp 116 // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr 117 // ; %tmp4 = xor i32 %q_mag, %q_sgn 118 // ; %q = sub i32 %tmp4, %q_sgn 119 Dividend = Builder.CreateFreeze(Dividend); 120 Divisor = Builder.CreateFreeze(Divisor); 121 Value *Tmp = Builder.CreateAShr(Dividend, Shift); 122 Value *Tmp1 = Builder.CreateAShr(Divisor, Shift); 123 Value *Tmp2 = Builder.CreateXor(Tmp, Dividend); 124 Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp); 125 Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor); 126 Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1); 127 Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp); 128 Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr); 129 Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn); 130 Value *Q = Builder.CreateSub(Tmp4, Q_Sgn); 131 132 if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag)) 133 Builder.SetInsertPoint(UDiv); 134 135 return Q; 136 } 137 138 /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers. 139 /// Returns the quotient, rounded towards 0. Builder's insert point should 140 /// point where the caller wants code generated, e.g. at the udiv instruction. 141 static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor, 142 IRBuilder<> &Builder) { 143 // The basic algorithm can be found in the compiler-rt project's 144 // implementation of __udivsi3.c. Here, we do a lower-level IR based approach 145 // that's been hand-tuned to lessen the amount of control flow involved. 146 147 // Some helper values 148 IntegerType *DivTy = cast<IntegerType>(Dividend->getType()); 149 unsigned BitWidth = DivTy->getBitWidth(); 150 151 ConstantInt *Zero = ConstantInt::get(DivTy, 0); 152 ConstantInt *One = ConstantInt::get(DivTy, 1); 153 ConstantInt *NegOne = ConstantInt::getSigned(DivTy, -1); 154 ConstantInt *MSB = ConstantInt::get(DivTy, BitWidth - 1); 155 156 ConstantInt *True = Builder.getTrue(); 157 158 BasicBlock *IBB = Builder.GetInsertBlock(); 159 Function *F = IBB->getParent(); 160 Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, 161 DivTy); 162 163 // Our CFG is going to look like: 164 // +---------------------+ 165 // | special-cases | 166 // | ... | 167 // +---------------------+ 168 // | | 169 // | +----------+ 170 // | | bb1 | 171 // | | ... | 172 // | +----------+ 173 // | | | 174 // | | +------------+ 175 // | | | preheader | 176 // | | | ... | 177 // | | +------------+ 178 // | | | 179 // | | | +---+ 180 // | | | | | 181 // | | +------------+ | 182 // | | | do-while | | 183 // | | | ... | | 184 // | | +------------+ | 185 // | | | | | 186 // | +-----------+ +---+ 187 // | | loop-exit | 188 // | | ... | 189 // | +-----------+ 190 // | | 191 // +-------+ 192 // | ... | 193 // | end | 194 // +-------+ 195 BasicBlock *SpecialCases = Builder.GetInsertBlock(); 196 SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases")); 197 BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(), 198 "udiv-end"); 199 BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(), 200 "udiv-loop-exit", F, End); 201 BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(), 202 "udiv-do-while", F, End); 203 BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(), 204 "udiv-preheader", F, End); 205 BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(), 206 "udiv-bb1", F, End); 207 208 // We'll be overwriting the terminator to insert our extra blocks 209 SpecialCases->getTerminator()->eraseFromParent(); 210 211 // Same instructions are generated for both i32 (msb 31) and i64 (msb 63). 212 213 // First off, check for special cases: dividend or divisor is zero, divisor 214 // is greater than dividend, and divisor is 1. 215 // ; special-cases: 216 // ; %ret0_1 = icmp eq i32 %divisor, 0 217 // ; %ret0_2 = icmp eq i32 %dividend, 0 218 // ; %ret0_3 = or i1 %ret0_1, %ret0_2 219 // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true) 220 // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true) 221 // ; %sr = sub nsw i32 %tmp0, %tmp1 222 // ; %ret0_4 = icmp ugt i32 %sr, 31 223 // ; %ret0 = select i1 %ret0_3, i1 true, i1 %ret0_4 224 // ; %retDividend = icmp eq i32 %sr, 31 225 // ; %retVal = select i1 %ret0, i32 0, i32 %dividend 226 // ; %earlyRet = select i1 %ret0, i1 true, %retDividend 227 // ; br i1 %earlyRet, label %end, label %bb1 228 Builder.SetInsertPoint(SpecialCases); 229 Divisor = Builder.CreateFreeze(Divisor); 230 Dividend = Builder.CreateFreeze(Dividend); 231 Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero); 232 Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero); 233 Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2); 234 Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True}); 235 Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True}); 236 Value *SR = Builder.CreateSub(Tmp0, Tmp1); 237 Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB); 238 Value *Ret0 = Builder.CreateLogicalOr(Ret0_3, Ret0_4); 239 Value *RetDividend = Builder.CreateICmpEQ(SR, MSB); 240 Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend); 241 Value *EarlyRet = Builder.CreateLogicalOr(Ret0, RetDividend); 242 Builder.CreateCondBr(EarlyRet, End, BB1); 243 244 // ; bb1: ; preds = %special-cases 245 // ; %sr_1 = add i32 %sr, 1 246 // ; %tmp2 = sub i32 31, %sr 247 // ; %q = shl i32 %dividend, %tmp2 248 // ; %skipLoop = icmp eq i32 %sr_1, 0 249 // ; br i1 %skipLoop, label %loop-exit, label %preheader 250 Builder.SetInsertPoint(BB1); 251 Value *SR_1 = Builder.CreateAdd(SR, One); 252 Value *Tmp2 = Builder.CreateSub(MSB, SR); 253 Value *Q = Builder.CreateShl(Dividend, Tmp2); 254 Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero); 255 Builder.CreateCondBr(SkipLoop, LoopExit, Preheader); 256 257 // ; preheader: ; preds = %bb1 258 // ; %tmp3 = lshr i32 %dividend, %sr_1 259 // ; %tmp4 = add i32 %divisor, -1 260 // ; br label %do-while 261 Builder.SetInsertPoint(Preheader); 262 Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1); 263 Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne); 264 Builder.CreateBr(DoWhile); 265 266 // ; do-while: ; preds = %do-while, %preheader 267 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] 268 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] 269 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] 270 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] 271 // ; %tmp5 = shl i32 %r_1, 1 272 // ; %tmp6 = lshr i32 %q_2, 31 273 // ; %tmp7 = or i32 %tmp5, %tmp6 274 // ; %tmp8 = shl i32 %q_2, 1 275 // ; %q_1 = or i32 %carry_1, %tmp8 276 // ; %tmp9 = sub i32 %tmp4, %tmp7 277 // ; %tmp10 = ashr i32 %tmp9, 31 278 // ; %carry = and i32 %tmp10, 1 279 // ; %tmp11 = and i32 %tmp10, %divisor 280 // ; %r = sub i32 %tmp7, %tmp11 281 // ; %sr_2 = add i32 %sr_3, -1 282 // ; %tmp12 = icmp eq i32 %sr_2, 0 283 // ; br i1 %tmp12, label %loop-exit, label %do-while 284 Builder.SetInsertPoint(DoWhile); 285 PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2); 286 PHINode *SR_3 = Builder.CreatePHI(DivTy, 2); 287 PHINode *R_1 = Builder.CreatePHI(DivTy, 2); 288 PHINode *Q_2 = Builder.CreatePHI(DivTy, 2); 289 Value *Tmp5 = Builder.CreateShl(R_1, One); 290 Value *Tmp6 = Builder.CreateLShr(Q_2, MSB); 291 Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6); 292 Value *Tmp8 = Builder.CreateShl(Q_2, One); 293 Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8); 294 Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7); 295 Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB); 296 Value *Carry = Builder.CreateAnd(Tmp10, One); 297 Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor); 298 Value *R = Builder.CreateSub(Tmp7, Tmp11); 299 Value *SR_2 = Builder.CreateAdd(SR_3, NegOne); 300 Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero); 301 Builder.CreateCondBr(Tmp12, LoopExit, DoWhile); 302 303 // ; loop-exit: ; preds = %do-while, %bb1 304 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] 305 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] 306 // ; %tmp13 = shl i32 %q_3, 1 307 // ; %q_4 = or i32 %carry_2, %tmp13 308 // ; br label %end 309 Builder.SetInsertPoint(LoopExit); 310 PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2); 311 PHINode *Q_3 = Builder.CreatePHI(DivTy, 2); 312 Value *Tmp13 = Builder.CreateShl(Q_3, One); 313 Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13); 314 Builder.CreateBr(End); 315 316 // ; end: ; preds = %loop-exit, %special-cases 317 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] 318 // ; ret i32 %q_5 319 Builder.SetInsertPoint(End, End->begin()); 320 PHINode *Q_5 = Builder.CreatePHI(DivTy, 2); 321 322 // Populate the Phis, since all values have now been created. Our Phis were: 323 // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] 324 Carry_1->addIncoming(Zero, Preheader); 325 Carry_1->addIncoming(Carry, DoWhile); 326 // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] 327 SR_3->addIncoming(SR_1, Preheader); 328 SR_3->addIncoming(SR_2, DoWhile); 329 // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] 330 R_1->addIncoming(Tmp3, Preheader); 331 R_1->addIncoming(R, DoWhile); 332 // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] 333 Q_2->addIncoming(Q, Preheader); 334 Q_2->addIncoming(Q_1, DoWhile); 335 // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] 336 Carry_2->addIncoming(Zero, BB1); 337 Carry_2->addIncoming(Carry, DoWhile); 338 // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] 339 Q_3->addIncoming(Q, BB1); 340 Q_3->addIncoming(Q_1, DoWhile); 341 // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] 342 Q_5->addIncoming(Q_4, LoopExit); 343 Q_5->addIncoming(RetVal, SpecialCases); 344 345 return Q_5; 346 } 347 348 /// Generate code to calculate the remainder of two integers, replacing Rem with 349 /// the generated code. This currently generates code using the udiv expansion, 350 /// but future work includes generating more specialized code, e.g. when more 351 /// information about the operands are known. 352 /// 353 /// Replace Rem with generated code. 354 bool llvm::expandRemainder(BinaryOperator *Rem) { 355 assert((Rem->getOpcode() == Instruction::SRem || 356 Rem->getOpcode() == Instruction::URem) && 357 "Trying to expand remainder from a non-remainder function"); 358 359 IRBuilder<> Builder(Rem); 360 361 assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported"); 362 363 // First prepare the sign if it's a signed remainder 364 if (Rem->getOpcode() == Instruction::SRem) { 365 Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0), 366 Rem->getOperand(1), Builder); 367 368 // Check whether this is the insert point while Rem is still valid. 369 bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint(); 370 Rem->replaceAllUsesWith(Remainder); 371 Rem->dropAllReferences(); 372 Rem->eraseFromParent(); 373 374 // If we didn't actually generate an urem instruction, we're done 375 // This happens for example if the input were constant. In this case the 376 // Builder insertion point was unchanged 377 if (IsInsertPoint) 378 return true; 379 380 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); 381 Rem = BO; 382 } 383 384 Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0), 385 Rem->getOperand(1), 386 Builder); 387 388 Rem->replaceAllUsesWith(Remainder); 389 Rem->dropAllReferences(); 390 Rem->eraseFromParent(); 391 392 // Expand the udiv 393 if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) { 394 assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?"); 395 expandDivision(UDiv); 396 } 397 398 return true; 399 } 400 401 /// Generate code to divide two integers, replacing Div with the generated 402 /// code. This currently generates code similarly to compiler-rt's 403 /// implementations, but future work includes generating more specialized code 404 /// when more information about the operands are known. 405 /// 406 /// Replace Div with generated code. 407 bool llvm::expandDivision(BinaryOperator *Div) { 408 assert((Div->getOpcode() == Instruction::SDiv || 409 Div->getOpcode() == Instruction::UDiv) && 410 "Trying to expand division from a non-division function"); 411 412 IRBuilder<> Builder(Div); 413 414 assert(!Div->getType()->isVectorTy() && "Div over vectors not supported"); 415 416 // First prepare the sign if it's a signed division 417 if (Div->getOpcode() == Instruction::SDiv) { 418 // Lower the code to unsigned division, and reset Div to point to the udiv. 419 Value *Quotient = generateSignedDivisionCode(Div->getOperand(0), 420 Div->getOperand(1), Builder); 421 422 // Check whether this is the insert point while Div is still valid. 423 bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint(); 424 Div->replaceAllUsesWith(Quotient); 425 Div->dropAllReferences(); 426 Div->eraseFromParent(); 427 428 // If we didn't actually generate an udiv instruction, we're done 429 // This happens for example if the input were constant. In this case the 430 // Builder insertion point was unchanged 431 if (IsInsertPoint) 432 return true; 433 434 BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); 435 Div = BO; 436 } 437 438 // Insert the unsigned division code 439 Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0), 440 Div->getOperand(1), 441 Builder); 442 Div->replaceAllUsesWith(Quotient); 443 Div->dropAllReferences(); 444 Div->eraseFromParent(); 445 446 return true; 447 } 448 449 /// Generate code to compute the remainder of two integers of bitwidth up to 450 /// 32 bits. Uses the above routines and extends the inputs/truncates the 451 /// outputs to operate in 32 bits; that is, these routines are good for targets 452 /// that have no or very little suppport for smaller than 32 bit integer 453 /// arithmetic. 454 /// 455 /// Replace Rem with emulation code. 456 bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) { 457 assert((Rem->getOpcode() == Instruction::SRem || 458 Rem->getOpcode() == Instruction::URem) && 459 "Trying to expand remainder from a non-remainder function"); 460 461 Type *RemTy = Rem->getType(); 462 assert(!RemTy->isVectorTy() && "Div over vectors not supported"); 463 464 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); 465 466 assert(RemTyBitWidth <= 32 && 467 "Div of bitwidth greater than 32 not supported"); 468 469 if (RemTyBitWidth == 32) 470 return expandRemainder(Rem); 471 472 // If bitwidth smaller than 32 extend inputs, extend output and proceed 473 // with 32 bit division. 474 IRBuilder<> Builder(Rem); 475 476 Value *ExtDividend; 477 Value *ExtDivisor; 478 Value *ExtRem; 479 Value *Trunc; 480 Type *Int32Ty = Builder.getInt32Ty(); 481 482 if (Rem->getOpcode() == Instruction::SRem) { 483 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty); 484 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty); 485 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); 486 } else { 487 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty); 488 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty); 489 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); 490 } 491 Trunc = Builder.CreateTrunc(ExtRem, RemTy); 492 493 Rem->replaceAllUsesWith(Trunc); 494 Rem->dropAllReferences(); 495 Rem->eraseFromParent(); 496 497 return expandRemainder(cast<BinaryOperator>(ExtRem)); 498 } 499 500 /// Generate code to compute the remainder of two integers of bitwidth up to 501 /// 64 bits. Uses the above routines and extends the inputs/truncates the 502 /// outputs to operate in 64 bits. 503 /// 504 /// Replace Rem with emulation code. 505 bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) { 506 assert((Rem->getOpcode() == Instruction::SRem || 507 Rem->getOpcode() == Instruction::URem) && 508 "Trying to expand remainder from a non-remainder function"); 509 510 Type *RemTy = Rem->getType(); 511 assert(!RemTy->isVectorTy() && "Div over vectors not supported"); 512 513 unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); 514 515 if (RemTyBitWidth >= 64) 516 return expandRemainder(Rem); 517 518 // If bitwidth smaller than 64 extend inputs, extend output and proceed 519 // with 64 bit division. 520 IRBuilder<> Builder(Rem); 521 522 Value *ExtDividend; 523 Value *ExtDivisor; 524 Value *ExtRem; 525 Value *Trunc; 526 Type *Int64Ty = Builder.getInt64Ty(); 527 528 if (Rem->getOpcode() == Instruction::SRem) { 529 ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty); 530 ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty); 531 ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); 532 } else { 533 ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty); 534 ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty); 535 ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); 536 } 537 Trunc = Builder.CreateTrunc(ExtRem, RemTy); 538 539 Rem->replaceAllUsesWith(Trunc); 540 Rem->dropAllReferences(); 541 Rem->eraseFromParent(); 542 543 return expandRemainder(cast<BinaryOperator>(ExtRem)); 544 } 545 546 /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the 547 /// above routines and extends the inputs/truncates the outputs to operate 548 /// in 32 bits; that is, these routines are good for targets that have no 549 /// or very little support for smaller than 32 bit integer arithmetic. 550 /// 551 /// Replace Div with emulation code. 552 bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) { 553 assert((Div->getOpcode() == Instruction::SDiv || 554 Div->getOpcode() == Instruction::UDiv) && 555 "Trying to expand division from a non-division function"); 556 557 Type *DivTy = Div->getType(); 558 assert(!DivTy->isVectorTy() && "Div over vectors not supported"); 559 560 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); 561 562 assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported"); 563 564 if (DivTyBitWidth == 32) 565 return expandDivision(Div); 566 567 // If bitwidth smaller than 32 extend inputs, extend output and proceed 568 // with 32 bit division. 569 IRBuilder<> Builder(Div); 570 571 Value *ExtDividend; 572 Value *ExtDivisor; 573 Value *ExtDiv; 574 Value *Trunc; 575 Type *Int32Ty = Builder.getInt32Ty(); 576 577 if (Div->getOpcode() == Instruction::SDiv) { 578 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty); 579 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty); 580 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); 581 } else { 582 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty); 583 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty); 584 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); 585 } 586 Trunc = Builder.CreateTrunc(ExtDiv, DivTy); 587 588 Div->replaceAllUsesWith(Trunc); 589 Div->dropAllReferences(); 590 Div->eraseFromParent(); 591 592 return expandDivision(cast<BinaryOperator>(ExtDiv)); 593 } 594 595 /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the 596 /// above routines and extends the inputs/truncates the outputs to operate 597 /// in 64 bits. 598 /// 599 /// Replace Div with emulation code. 600 bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) { 601 assert((Div->getOpcode() == Instruction::SDiv || 602 Div->getOpcode() == Instruction::UDiv) && 603 "Trying to expand division from a non-division function"); 604 605 Type *DivTy = Div->getType(); 606 assert(!DivTy->isVectorTy() && "Div over vectors not supported"); 607 608 unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); 609 610 if (DivTyBitWidth >= 64) 611 return expandDivision(Div); 612 613 // If bitwidth smaller than 64 extend inputs, extend output and proceed 614 // with 64 bit division. 615 IRBuilder<> Builder(Div); 616 617 Value *ExtDividend; 618 Value *ExtDivisor; 619 Value *ExtDiv; 620 Value *Trunc; 621 Type *Int64Ty = Builder.getInt64Ty(); 622 623 if (Div->getOpcode() == Instruction::SDiv) { 624 ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty); 625 ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty); 626 ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); 627 } else { 628 ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty); 629 ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty); 630 ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); 631 } 632 Trunc = Builder.CreateTrunc(ExtDiv, DivTy); 633 634 Div->replaceAllUsesWith(Trunc); 635 Div->dropAllReferences(); 636 Div->eraseFromParent(); 637 638 return expandDivision(cast<BinaryOperator>(ExtDiv)); 639 } 640