xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/IntegerDivision.cpp (revision 9729f076e4d93c5a37e78d427bfe0f1ab99bbcc6)
1 //===-- IntegerDivision.cpp - Expand integer division ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains an implementation of 32bit and 64bit scalar integer
10 // division for targets that don't have native support. It's largely derived
11 // from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
12 // but hand-tuned for targets that prefer less control flow.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/IntegerDivision.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Intrinsics.h"
21 #include <utility>
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "integer-division"
26 
27 /// Generate code to compute the remainder of two signed integers. Returns the
28 /// remainder, which will have the sign of the dividend. Builder's insert point
29 /// should be pointing where the caller wants code generated, e.g. at the srem
30 /// instruction. This will generate a urem in the process, and Builder's insert
31 /// point will be pointing at the uren (if present, i.e. not folded), ready to
32 /// be expanded if the user wishes
33 static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
34                                           IRBuilder<> &Builder) {
35   unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
36   ConstantInt *Shift;
37 
38   if (BitWidth == 64) {
39     Shift = Builder.getInt64(63);
40   } else {
41     assert(BitWidth == 32 && "Unexpected bit width");
42     Shift = Builder.getInt32(31);
43   }
44 
45   // Following instructions are generated for both i32 (shift 31) and
46   // i64 (shift 63).
47 
48   // ;   %dividend_sgn = ashr i32 %dividend, 31
49   // ;   %divisor_sgn  = ashr i32 %divisor, 31
50   // ;   %dvd_xor      = xor i32 %dividend, %dividend_sgn
51   // ;   %dvs_xor      = xor i32 %divisor, %divisor_sgn
52   // ;   %u_dividend   = sub i32 %dvd_xor, %dividend_sgn
53   // ;   %u_divisor    = sub i32 %dvs_xor, %divisor_sgn
54   // ;   %urem         = urem i32 %dividend, %divisor
55   // ;   %xored        = xor i32 %urem, %dividend_sgn
56   // ;   %srem         = sub i32 %xored, %dividend_sgn
57   Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
58   Value *DivisorSign  = Builder.CreateAShr(Divisor, Shift);
59   Value *DvdXor       = Builder.CreateXor(Dividend, DividendSign);
60   Value *DvsXor       = Builder.CreateXor(Divisor, DivisorSign);
61   Value *UDividend    = Builder.CreateSub(DvdXor, DividendSign);
62   Value *UDivisor     = Builder.CreateSub(DvsXor, DivisorSign);
63   Value *URem         = Builder.CreateURem(UDividend, UDivisor);
64   Value *Xored        = Builder.CreateXor(URem, DividendSign);
65   Value *SRem         = Builder.CreateSub(Xored, DividendSign);
66 
67   if (Instruction *URemInst = dyn_cast<Instruction>(URem))
68     Builder.SetInsertPoint(URemInst);
69 
70   return SRem;
71 }
72 
73 
74 /// Generate code to compute the remainder of two unsigned integers. Returns the
75 /// remainder. Builder's insert point should be pointing where the caller wants
76 /// code generated, e.g. at the urem instruction. This will generate a udiv in
77 /// the process, and Builder's insert point will be pointing at the udiv (if
78 /// present, i.e. not folded), ready to be expanded if the user wishes
79 static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
80                                              IRBuilder<> &Builder) {
81   // Remainder = Dividend - Quotient*Divisor
82 
83   // Following instructions are generated for both i32 and i64
84 
85   // ;   %quotient  = udiv i32 %dividend, %divisor
86   // ;   %product   = mul i32 %divisor, %quotient
87   // ;   %remainder = sub i32 %dividend, %product
88   Value *Quotient  = Builder.CreateUDiv(Dividend, Divisor);
89   Value *Product   = Builder.CreateMul(Divisor, Quotient);
90   Value *Remainder = Builder.CreateSub(Dividend, Product);
91 
92   if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
93     Builder.SetInsertPoint(UDiv);
94 
95   return Remainder;
96 }
97 
98 /// Generate code to divide two signed integers. Returns the quotient, rounded
99 /// towards 0. Builder's insert point should be pointing where the caller wants
100 /// code generated, e.g. at the sdiv instruction. This will generate a udiv in
101 /// the process, and Builder's insert point will be pointing at the udiv (if
102 /// present, i.e. not folded), ready to be expanded if the user wishes.
103 static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
104                                          IRBuilder<> &Builder) {
105   // Implementation taken from compiler-rt's __divsi3 and __divdi3
106 
107   unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
108   ConstantInt *Shift;
109 
110   if (BitWidth == 64) {
111     Shift = Builder.getInt64(63);
112   } else {
113     assert(BitWidth == 32 && "Unexpected bit width");
114     Shift = Builder.getInt32(31);
115   }
116 
117   // Following instructions are generated for both i32 (shift 31) and
118   // i64 (shift 63).
119 
120   // ;   %tmp    = ashr i32 %dividend, 31
121   // ;   %tmp1   = ashr i32 %divisor, 31
122   // ;   %tmp2   = xor i32 %tmp, %dividend
123   // ;   %u_dvnd = sub nsw i32 %tmp2, %tmp
124   // ;   %tmp3   = xor i32 %tmp1, %divisor
125   // ;   %u_dvsr = sub nsw i32 %tmp3, %tmp1
126   // ;   %q_sgn  = xor i32 %tmp1, %tmp
127   // ;   %q_mag  = udiv i32 %u_dvnd, %u_dvsr
128   // ;   %tmp4   = xor i32 %q_mag, %q_sgn
129   // ;   %q      = sub i32 %tmp4, %q_sgn
130   Value *Tmp    = Builder.CreateAShr(Dividend, Shift);
131   Value *Tmp1   = Builder.CreateAShr(Divisor, Shift);
132   Value *Tmp2   = Builder.CreateXor(Tmp, Dividend);
133   Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
134   Value *Tmp3   = Builder.CreateXor(Tmp1, Divisor);
135   Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
136   Value *Q_Sgn  = Builder.CreateXor(Tmp1, Tmp);
137   Value *Q_Mag  = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
138   Value *Tmp4   = Builder.CreateXor(Q_Mag, Q_Sgn);
139   Value *Q      = Builder.CreateSub(Tmp4, Q_Sgn);
140 
141   if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
142     Builder.SetInsertPoint(UDiv);
143 
144   return Q;
145 }
146 
147 /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
148 /// Returns the quotient, rounded towards 0. Builder's insert point should
149 /// point where the caller wants code generated, e.g. at the udiv instruction.
150 static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
151                                            IRBuilder<> &Builder) {
152   // The basic algorithm can be found in the compiler-rt project's
153   // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
154   // that's been hand-tuned to lessen the amount of control flow involved.
155 
156   // Some helper values
157   IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
158   unsigned BitWidth = DivTy->getBitWidth();
159 
160   ConstantInt *Zero;
161   ConstantInt *One;
162   ConstantInt *NegOne;
163   ConstantInt *MSB;
164 
165   if (BitWidth == 64) {
166     Zero      = Builder.getInt64(0);
167     One       = Builder.getInt64(1);
168     NegOne    = ConstantInt::getSigned(DivTy, -1);
169     MSB       = Builder.getInt64(63);
170   } else {
171     assert(BitWidth == 32 && "Unexpected bit width");
172     Zero      = Builder.getInt32(0);
173     One       = Builder.getInt32(1);
174     NegOne    = ConstantInt::getSigned(DivTy, -1);
175     MSB       = Builder.getInt32(31);
176   }
177 
178   ConstantInt *True = Builder.getTrue();
179 
180   BasicBlock *IBB = Builder.GetInsertBlock();
181   Function *F = IBB->getParent();
182   Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
183                                              DivTy);
184 
185   // Our CFG is going to look like:
186   // +---------------------+
187   // | special-cases       |
188   // |   ...               |
189   // +---------------------+
190   //  |       |
191   //  |   +----------+
192   //  |   |  bb1     |
193   //  |   |  ...     |
194   //  |   +----------+
195   //  |    |      |
196   //  |    |  +------------+
197   //  |    |  |  preheader |
198   //  |    |  |  ...       |
199   //  |    |  +------------+
200   //  |    |      |
201   //  |    |      |      +---+
202   //  |    |      |      |   |
203   //  |    |  +------------+ |
204   //  |    |  |  do-while  | |
205   //  |    |  |  ...       | |
206   //  |    |  +------------+ |
207   //  |    |      |      |   |
208   //  |   +-----------+  +---+
209   //  |   | loop-exit |
210   //  |   |  ...      |
211   //  |   +-----------+
212   //  |     |
213   // +-------+
214   // | ...   |
215   // | end   |
216   // +-------+
217   BasicBlock *SpecialCases = Builder.GetInsertBlock();
218   SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
219   BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
220                                                   "udiv-end");
221   BasicBlock *LoopExit  = BasicBlock::Create(Builder.getContext(),
222                                              "udiv-loop-exit", F, End);
223   BasicBlock *DoWhile   = BasicBlock::Create(Builder.getContext(),
224                                              "udiv-do-while", F, End);
225   BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
226                                              "udiv-preheader", F, End);
227   BasicBlock *BB1       = BasicBlock::Create(Builder.getContext(),
228                                              "udiv-bb1", F, End);
229 
230   // We'll be overwriting the terminator to insert our extra blocks
231   SpecialCases->getTerminator()->eraseFromParent();
232 
233   // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
234 
235   // First off, check for special cases: dividend or divisor is zero, divisor
236   // is greater than dividend, and divisor is 1.
237   // ; special-cases:
238   // ;   %ret0_1      = icmp eq i32 %divisor, 0
239   // ;   %ret0_2      = icmp eq i32 %dividend, 0
240   // ;   %ret0_3      = or i1 %ret0_1, %ret0_2
241   // ;   %tmp0        = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
242   // ;   %tmp1        = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
243   // ;   %sr          = sub nsw i32 %tmp0, %tmp1
244   // ;   %ret0_4      = icmp ugt i32 %sr, 31
245   // ;   %ret0        = or i1 %ret0_3, %ret0_4
246   // ;   %retDividend = icmp eq i32 %sr, 31
247   // ;   %retVal      = select i1 %ret0, i32 0, i32 %dividend
248   // ;   %earlyRet    = or i1 %ret0, %retDividend
249   // ;   br i1 %earlyRet, label %end, label %bb1
250   Builder.SetInsertPoint(SpecialCases);
251   Value *Ret0_1      = Builder.CreateICmpEQ(Divisor, Zero);
252   Value *Ret0_2      = Builder.CreateICmpEQ(Dividend, Zero);
253   Value *Ret0_3      = Builder.CreateOr(Ret0_1, Ret0_2);
254   Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
255   Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
256   Value *SR          = Builder.CreateSub(Tmp0, Tmp1);
257   Value *Ret0_4      = Builder.CreateICmpUGT(SR, MSB);
258   Value *Ret0        = Builder.CreateOr(Ret0_3, Ret0_4);
259   Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
260   Value *RetVal      = Builder.CreateSelect(Ret0, Zero, Dividend);
261   Value *EarlyRet    = Builder.CreateOr(Ret0, RetDividend);
262   Builder.CreateCondBr(EarlyRet, End, BB1);
263 
264   // ; bb1:                                             ; preds = %special-cases
265   // ;   %sr_1     = add i32 %sr, 1
266   // ;   %tmp2     = sub i32 31, %sr
267   // ;   %q        = shl i32 %dividend, %tmp2
268   // ;   %skipLoop = icmp eq i32 %sr_1, 0
269   // ;   br i1 %skipLoop, label %loop-exit, label %preheader
270   Builder.SetInsertPoint(BB1);
271   Value *SR_1     = Builder.CreateAdd(SR, One);
272   Value *Tmp2     = Builder.CreateSub(MSB, SR);
273   Value *Q        = Builder.CreateShl(Dividend, Tmp2);
274   Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
275   Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
276 
277   // ; preheader:                                           ; preds = %bb1
278   // ;   %tmp3 = lshr i32 %dividend, %sr_1
279   // ;   %tmp4 = add i32 %divisor, -1
280   // ;   br label %do-while
281   Builder.SetInsertPoint(Preheader);
282   Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
283   Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
284   Builder.CreateBr(DoWhile);
285 
286   // ; do-while:                                 ; preds = %do-while, %preheader
287   // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
288   // ;   %sr_3    = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
289   // ;   %r_1     = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
290   // ;   %q_2     = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
291   // ;   %tmp5  = shl i32 %r_1, 1
292   // ;   %tmp6  = lshr i32 %q_2, 31
293   // ;   %tmp7  = or i32 %tmp5, %tmp6
294   // ;   %tmp8  = shl i32 %q_2, 1
295   // ;   %q_1   = or i32 %carry_1, %tmp8
296   // ;   %tmp9  = sub i32 %tmp4, %tmp7
297   // ;   %tmp10 = ashr i32 %tmp9, 31
298   // ;   %carry = and i32 %tmp10, 1
299   // ;   %tmp11 = and i32 %tmp10, %divisor
300   // ;   %r     = sub i32 %tmp7, %tmp11
301   // ;   %sr_2  = add i32 %sr_3, -1
302   // ;   %tmp12 = icmp eq i32 %sr_2, 0
303   // ;   br i1 %tmp12, label %loop-exit, label %do-while
304   Builder.SetInsertPoint(DoWhile);
305   PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
306   PHINode *SR_3    = Builder.CreatePHI(DivTy, 2);
307   PHINode *R_1     = Builder.CreatePHI(DivTy, 2);
308   PHINode *Q_2     = Builder.CreatePHI(DivTy, 2);
309   Value *Tmp5  = Builder.CreateShl(R_1, One);
310   Value *Tmp6  = Builder.CreateLShr(Q_2, MSB);
311   Value *Tmp7  = Builder.CreateOr(Tmp5, Tmp6);
312   Value *Tmp8  = Builder.CreateShl(Q_2, One);
313   Value *Q_1   = Builder.CreateOr(Carry_1, Tmp8);
314   Value *Tmp9  = Builder.CreateSub(Tmp4, Tmp7);
315   Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
316   Value *Carry = Builder.CreateAnd(Tmp10, One);
317   Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
318   Value *R     = Builder.CreateSub(Tmp7, Tmp11);
319   Value *SR_2  = Builder.CreateAdd(SR_3, NegOne);
320   Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
321   Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
322 
323   // ; loop-exit:                                      ; preds = %do-while, %bb1
324   // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
325   // ;   %q_3     = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
326   // ;   %tmp13 = shl i32 %q_3, 1
327   // ;   %q_4   = or i32 %carry_2, %tmp13
328   // ;   br label %end
329   Builder.SetInsertPoint(LoopExit);
330   PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
331   PHINode *Q_3     = Builder.CreatePHI(DivTy, 2);
332   Value *Tmp13 = Builder.CreateShl(Q_3, One);
333   Value *Q_4   = Builder.CreateOr(Carry_2, Tmp13);
334   Builder.CreateBr(End);
335 
336   // ; end:                                 ; preds = %loop-exit, %special-cases
337   // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
338   // ;   ret i32 %q_5
339   Builder.SetInsertPoint(End, End->begin());
340   PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
341 
342   // Populate the Phis, since all values have now been created. Our Phis were:
343   // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
344   Carry_1->addIncoming(Zero, Preheader);
345   Carry_1->addIncoming(Carry, DoWhile);
346   // ;   %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
347   SR_3->addIncoming(SR_1, Preheader);
348   SR_3->addIncoming(SR_2, DoWhile);
349   // ;   %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
350   R_1->addIncoming(Tmp3, Preheader);
351   R_1->addIncoming(R, DoWhile);
352   // ;   %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
353   Q_2->addIncoming(Q, Preheader);
354   Q_2->addIncoming(Q_1, DoWhile);
355   // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
356   Carry_2->addIncoming(Zero, BB1);
357   Carry_2->addIncoming(Carry, DoWhile);
358   // ;   %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
359   Q_3->addIncoming(Q, BB1);
360   Q_3->addIncoming(Q_1, DoWhile);
361   // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
362   Q_5->addIncoming(Q_4, LoopExit);
363   Q_5->addIncoming(RetVal, SpecialCases);
364 
365   return Q_5;
366 }
367 
368 /// Generate code to calculate the remainder of two integers, replacing Rem with
369 /// the generated code. This currently generates code using the udiv expansion,
370 /// but future work includes generating more specialized code, e.g. when more
371 /// information about the operands are known. Implements both 32bit and 64bit
372 /// scalar division.
373 ///
374 /// Replace Rem with generated code.
375 bool llvm::expandRemainder(BinaryOperator *Rem) {
376   assert((Rem->getOpcode() == Instruction::SRem ||
377           Rem->getOpcode() == Instruction::URem) &&
378          "Trying to expand remainder from a non-remainder function");
379 
380   IRBuilder<> Builder(Rem);
381 
382   assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
383   assert((Rem->getType()->getIntegerBitWidth() == 32 ||
384           Rem->getType()->getIntegerBitWidth() == 64) &&
385          "Div of bitwidth other than 32 or 64 not supported");
386 
387   // First prepare the sign if it's a signed remainder
388   if (Rem->getOpcode() == Instruction::SRem) {
389     Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
390                                                    Rem->getOperand(1), Builder);
391 
392     // Check whether this is the insert point while Rem is still valid.
393     bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
394     Rem->replaceAllUsesWith(Remainder);
395     Rem->dropAllReferences();
396     Rem->eraseFromParent();
397 
398     // If we didn't actually generate an urem instruction, we're done
399     // This happens for example if the input were constant. In this case the
400     // Builder insertion point was unchanged
401     if (IsInsertPoint)
402       return true;
403 
404     BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
405     Rem = BO;
406   }
407 
408   Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
409                                                     Rem->getOperand(1),
410                                                     Builder);
411 
412   Rem->replaceAllUsesWith(Remainder);
413   Rem->dropAllReferences();
414   Rem->eraseFromParent();
415 
416   // Expand the udiv
417   if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
418     assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
419     expandDivision(UDiv);
420   }
421 
422   return true;
423 }
424 
425 
426 /// Generate code to divide two integers, replacing Div with the generated
427 /// code. This currently generates code similarly to compiler-rt's
428 /// implementations, but future work includes generating more specialized code
429 /// when more information about the operands are known. Implements both
430 /// 32bit and 64bit scalar division.
431 ///
432 /// Replace Div with generated code.
433 bool llvm::expandDivision(BinaryOperator *Div) {
434   assert((Div->getOpcode() == Instruction::SDiv ||
435           Div->getOpcode() == Instruction::UDiv) &&
436          "Trying to expand division from a non-division function");
437 
438   IRBuilder<> Builder(Div);
439 
440   assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
441   assert((Div->getType()->getIntegerBitWidth() == 32 ||
442           Div->getType()->getIntegerBitWidth() == 64) &&
443          "Div of bitwidth other than 32 or 64 not supported");
444 
445   // First prepare the sign if it's a signed division
446   if (Div->getOpcode() == Instruction::SDiv) {
447     // Lower the code to unsigned division, and reset Div to point to the udiv.
448     Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
449                                                  Div->getOperand(1), Builder);
450 
451     // Check whether this is the insert point while Div is still valid.
452     bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
453     Div->replaceAllUsesWith(Quotient);
454     Div->dropAllReferences();
455     Div->eraseFromParent();
456 
457     // If we didn't actually generate an udiv instruction, we're done
458     // This happens for example if the input were constant. In this case the
459     // Builder insertion point was unchanged
460     if (IsInsertPoint)
461       return true;
462 
463     BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
464     Div = BO;
465   }
466 
467   // Insert the unsigned division code
468   Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
469                                                  Div->getOperand(1),
470                                                  Builder);
471   Div->replaceAllUsesWith(Quotient);
472   Div->dropAllReferences();
473   Div->eraseFromParent();
474 
475   return true;
476 }
477 
478 /// Generate code to compute the remainder of two integers of bitwidth up to
479 /// 32 bits. Uses the above routines and extends the inputs/truncates the
480 /// outputs to operate in 32 bits; that is, these routines are good for targets
481 /// that have no or very little suppport for smaller than 32 bit integer
482 /// arithmetic.
483 ///
484 /// Replace Rem with emulation code.
485 bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
486   assert((Rem->getOpcode() == Instruction::SRem ||
487           Rem->getOpcode() == Instruction::URem) &&
488           "Trying to expand remainder from a non-remainder function");
489 
490   Type *RemTy = Rem->getType();
491   assert(!RemTy->isVectorTy() && "Div over vectors not supported");
492 
493   unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
494 
495   assert(RemTyBitWidth <= 32 &&
496          "Div of bitwidth greater than 32 not supported");
497 
498   if (RemTyBitWidth == 32)
499     return expandRemainder(Rem);
500 
501   // If bitwidth smaller than 32 extend inputs, extend output and proceed
502   // with 32 bit division.
503   IRBuilder<> Builder(Rem);
504 
505   Value *ExtDividend;
506   Value *ExtDivisor;
507   Value *ExtRem;
508   Value *Trunc;
509   Type *Int32Ty = Builder.getInt32Ty();
510 
511   if (Rem->getOpcode() == Instruction::SRem) {
512     ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
513     ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
514     ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
515   } else {
516     ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
517     ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
518     ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
519   }
520   Trunc = Builder.CreateTrunc(ExtRem, RemTy);
521 
522   Rem->replaceAllUsesWith(Trunc);
523   Rem->dropAllReferences();
524   Rem->eraseFromParent();
525 
526   return expandRemainder(cast<BinaryOperator>(ExtRem));
527 }
528 
529 /// Generate code to compute the remainder of two integers of bitwidth up to
530 /// 64 bits. Uses the above routines and extends the inputs/truncates the
531 /// outputs to operate in 64 bits.
532 ///
533 /// Replace Rem with emulation code.
534 bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
535   assert((Rem->getOpcode() == Instruction::SRem ||
536           Rem->getOpcode() == Instruction::URem) &&
537           "Trying to expand remainder from a non-remainder function");
538 
539   Type *RemTy = Rem->getType();
540   assert(!RemTy->isVectorTy() && "Div over vectors not supported");
541 
542   unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
543 
544   assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");
545 
546   if (RemTyBitWidth == 64)
547     return expandRemainder(Rem);
548 
549   // If bitwidth smaller than 64 extend inputs, extend output and proceed
550   // with 64 bit division.
551   IRBuilder<> Builder(Rem);
552 
553   Value *ExtDividend;
554   Value *ExtDivisor;
555   Value *ExtRem;
556   Value *Trunc;
557   Type *Int64Ty = Builder.getInt64Ty();
558 
559   if (Rem->getOpcode() == Instruction::SRem) {
560     ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
561     ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
562     ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
563   } else {
564     ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
565     ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
566     ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
567   }
568   Trunc = Builder.CreateTrunc(ExtRem, RemTy);
569 
570   Rem->replaceAllUsesWith(Trunc);
571   Rem->dropAllReferences();
572   Rem->eraseFromParent();
573 
574   return expandRemainder(cast<BinaryOperator>(ExtRem));
575 }
576 
577 /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
578 /// above routines and extends the inputs/truncates the outputs to operate
579 /// in 32 bits; that is, these routines are good for targets that have no
580 /// or very little support for smaller than 32 bit integer arithmetic.
581 ///
582 /// Replace Div with emulation code.
583 bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
584   assert((Div->getOpcode() == Instruction::SDiv ||
585           Div->getOpcode() == Instruction::UDiv) &&
586           "Trying to expand division from a non-division function");
587 
588   Type *DivTy = Div->getType();
589   assert(!DivTy->isVectorTy() && "Div over vectors not supported");
590 
591   unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
592 
593   assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
594 
595   if (DivTyBitWidth == 32)
596     return expandDivision(Div);
597 
598   // If bitwidth smaller than 32 extend inputs, extend output and proceed
599   // with 32 bit division.
600   IRBuilder<> Builder(Div);
601 
602   Value *ExtDividend;
603   Value *ExtDivisor;
604   Value *ExtDiv;
605   Value *Trunc;
606   Type *Int32Ty = Builder.getInt32Ty();
607 
608   if (Div->getOpcode() == Instruction::SDiv) {
609     ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
610     ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
611     ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
612   } else {
613     ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
614     ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
615     ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
616   }
617   Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
618 
619   Div->replaceAllUsesWith(Trunc);
620   Div->dropAllReferences();
621   Div->eraseFromParent();
622 
623   return expandDivision(cast<BinaryOperator>(ExtDiv));
624 }
625 
626 /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
627 /// above routines and extends the inputs/truncates the outputs to operate
628 /// in 64 bits.
629 ///
630 /// Replace Div with emulation code.
631 bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
632   assert((Div->getOpcode() == Instruction::SDiv ||
633           Div->getOpcode() == Instruction::UDiv) &&
634           "Trying to expand division from a non-division function");
635 
636   Type *DivTy = Div->getType();
637   assert(!DivTy->isVectorTy() && "Div over vectors not supported");
638 
639   unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
640 
641   assert(DivTyBitWidth <= 64 &&
642          "Div of bitwidth greater than 64 not supported");
643 
644   if (DivTyBitWidth == 64)
645     return expandDivision(Div);
646 
647   // If bitwidth smaller than 64 extend inputs, extend output and proceed
648   // with 64 bit division.
649   IRBuilder<> Builder(Div);
650 
651   Value *ExtDividend;
652   Value *ExtDivisor;
653   Value *ExtDiv;
654   Value *Trunc;
655   Type *Int64Ty = Builder.getInt64Ty();
656 
657   if (Div->getOpcode() == Instruction::SDiv) {
658     ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
659     ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
660     ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
661   } else {
662     ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
663     ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
664     ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
665   }
666   Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
667 
668   Div->replaceAllUsesWith(Trunc);
669   Div->dropAllReferences();
670   Div->eraseFromParent();
671 
672   return expandDivision(cast<BinaryOperator>(ExtDiv));
673 }
674