xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/IndirectCallVisitor.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/MemoryProfileInfo.h"
29 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
30 #include "llvm/Analysis/ObjCARCUtil.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/AttributeMask.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/EHPersonalities.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/IRBuilder.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ProfDataUtils.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <limits>
76 #include <optional>
77 #include <string>
78 #include <utility>
79 #include <vector>
80 
81 #define DEBUG_TYPE "inline-function"
82 
83 using namespace llvm;
84 using namespace llvm::memprof;
85 using ProfileCount = Function::ProfileCount;
86 
87 static cl::opt<bool>
88 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
89   cl::Hidden,
90   cl::desc("Convert noalias attributes to metadata during inlining."));
91 
92 static cl::opt<bool>
93     UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
94                         cl::init(true),
95                         cl::desc("Use the llvm.experimental.noalias.scope.decl "
96                                  "intrinsic during inlining."));
97 
98 // Disabled by default, because the added alignment assumptions may increase
99 // compile-time and block optimizations. This option is not suitable for use
100 // with frontends that emit comprehensive parameter alignment annotations.
101 static cl::opt<bool>
102 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
103   cl::init(false), cl::Hidden,
104   cl::desc("Convert align attributes to assumptions during inlining."));
105 
106 static cl::opt<unsigned> InlinerAttributeWindow(
107     "max-inst-checked-for-throw-during-inlining", cl::Hidden,
108     cl::desc("the maximum number of instructions analyzed for may throw during "
109              "attribute inference in inlined body"),
110     cl::init(4));
111 
112 namespace {
113 
114   /// A class for recording information about inlining a landing pad.
115   class LandingPadInliningInfo {
116     /// Destination of the invoke's unwind.
117     BasicBlock *OuterResumeDest;
118 
119     /// Destination for the callee's resume.
120     BasicBlock *InnerResumeDest = nullptr;
121 
122     /// LandingPadInst associated with the invoke.
123     LandingPadInst *CallerLPad = nullptr;
124 
125     /// PHI for EH values from landingpad insts.
126     PHINode *InnerEHValuesPHI = nullptr;
127 
128     SmallVector<Value*, 8> UnwindDestPHIValues;
129 
130   public:
131     LandingPadInliningInfo(InvokeInst *II)
132         : OuterResumeDest(II->getUnwindDest()) {
133       // If there are PHI nodes in the unwind destination block, we need to keep
134       // track of which values came into them from the invoke before removing
135       // the edge from this block.
136       BasicBlock *InvokeBB = II->getParent();
137       BasicBlock::iterator I = OuterResumeDest->begin();
138       for (; isa<PHINode>(I); ++I) {
139         // Save the value to use for this edge.
140         PHINode *PHI = cast<PHINode>(I);
141         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
142       }
143 
144       CallerLPad = cast<LandingPadInst>(I);
145     }
146 
147     /// The outer unwind destination is the target of
148     /// unwind edges introduced for calls within the inlined function.
149     BasicBlock *getOuterResumeDest() const {
150       return OuterResumeDest;
151     }
152 
153     BasicBlock *getInnerResumeDest();
154 
155     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
156 
157     /// Forward the 'resume' instruction to the caller's landing pad block.
158     /// When the landing pad block has only one predecessor, this is
159     /// a simple branch. When there is more than one predecessor, we need to
160     /// split the landing pad block after the landingpad instruction and jump
161     /// to there.
162     void forwardResume(ResumeInst *RI,
163                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
164 
165     /// Add incoming-PHI values to the unwind destination block for the given
166     /// basic block, using the values for the original invoke's source block.
167     void addIncomingPHIValuesFor(BasicBlock *BB) const {
168       addIncomingPHIValuesForInto(BB, OuterResumeDest);
169     }
170 
171     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
172       BasicBlock::iterator I = dest->begin();
173       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
174         PHINode *phi = cast<PHINode>(I);
175         phi->addIncoming(UnwindDestPHIValues[i], src);
176       }
177     }
178   };
179 
180 } // end anonymous namespace
181 
182 /// Get or create a target for the branch from ResumeInsts.
183 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
184   if (InnerResumeDest) return InnerResumeDest;
185 
186   // Split the landing pad.
187   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
188   InnerResumeDest =
189     OuterResumeDest->splitBasicBlock(SplitPoint,
190                                      OuterResumeDest->getName() + ".body");
191 
192   // The number of incoming edges we expect to the inner landing pad.
193   const unsigned PHICapacity = 2;
194 
195   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
196   BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
197   BasicBlock::iterator I = OuterResumeDest->begin();
198   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
199     PHINode *OuterPHI = cast<PHINode>(I);
200     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
201                                         OuterPHI->getName() + ".lpad-body");
202     InnerPHI->insertBefore(InsertPoint);
203     OuterPHI->replaceAllUsesWith(InnerPHI);
204     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
205   }
206 
207   // Create a PHI for the exception values.
208   InnerEHValuesPHI =
209       PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body");
210   InnerEHValuesPHI->insertBefore(InsertPoint);
211   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
212   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
213 
214   // All done.
215   return InnerResumeDest;
216 }
217 
218 /// Forward the 'resume' instruction to the caller's landing pad block.
219 /// When the landing pad block has only one predecessor, this is a simple
220 /// branch. When there is more than one predecessor, we need to split the
221 /// landing pad block after the landingpad instruction and jump to there.
222 void LandingPadInliningInfo::forwardResume(
223     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
224   BasicBlock *Dest = getInnerResumeDest();
225   BasicBlock *Src = RI->getParent();
226 
227   BranchInst::Create(Dest, Src);
228 
229   // Update the PHIs in the destination. They were inserted in an order which
230   // makes this work.
231   addIncomingPHIValuesForInto(Src, Dest);
232 
233   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
234   RI->eraseFromParent();
235 }
236 
237 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
238 static Value *getParentPad(Value *EHPad) {
239   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
240     return FPI->getParentPad();
241   return cast<CatchSwitchInst>(EHPad)->getParentPad();
242 }
243 
244 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
245 
246 /// Helper for getUnwindDestToken that does the descendant-ward part of
247 /// the search.
248 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
249                                        UnwindDestMemoTy &MemoMap) {
250   SmallVector<Instruction *, 8> Worklist(1, EHPad);
251 
252   while (!Worklist.empty()) {
253     Instruction *CurrentPad = Worklist.pop_back_val();
254     // We only put pads on the worklist that aren't in the MemoMap.  When
255     // we find an unwind dest for a pad we may update its ancestors, but
256     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
257     // so they should never get updated while queued on the worklist.
258     assert(!MemoMap.count(CurrentPad));
259     Value *UnwindDestToken = nullptr;
260     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
261       if (CatchSwitch->hasUnwindDest()) {
262         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
263       } else {
264         // Catchswitch doesn't have a 'nounwind' variant, and one might be
265         // annotated as "unwinds to caller" when really it's nounwind (see
266         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
267         // parent's unwind dest from this.  We can check its catchpads'
268         // descendants, since they might include a cleanuppad with an
269         // "unwinds to caller" cleanupret, which can be trusted.
270         for (auto HI = CatchSwitch->handler_begin(),
271                   HE = CatchSwitch->handler_end();
272              HI != HE && !UnwindDestToken; ++HI) {
273           BasicBlock *HandlerBlock = *HI;
274           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
275           for (User *Child : CatchPad->users()) {
276             // Intentionally ignore invokes here -- since the catchswitch is
277             // marked "unwind to caller", it would be a verifier error if it
278             // contained an invoke which unwinds out of it, so any invoke we'd
279             // encounter must unwind to some child of the catch.
280             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
281               continue;
282 
283             Instruction *ChildPad = cast<Instruction>(Child);
284             auto Memo = MemoMap.find(ChildPad);
285             if (Memo == MemoMap.end()) {
286               // Haven't figured out this child pad yet; queue it.
287               Worklist.push_back(ChildPad);
288               continue;
289             }
290             // We've already checked this child, but might have found that
291             // it offers no proof either way.
292             Value *ChildUnwindDestToken = Memo->second;
293             if (!ChildUnwindDestToken)
294               continue;
295             // We already know the child's unwind dest, which can either
296             // be ConstantTokenNone to indicate unwind to caller, or can
297             // be another child of the catchpad.  Only the former indicates
298             // the unwind dest of the catchswitch.
299             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
300               UnwindDestToken = ChildUnwindDestToken;
301               break;
302             }
303             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
304           }
305         }
306       }
307     } else {
308       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
309       for (User *U : CleanupPad->users()) {
310         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
311           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
312             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
313           else
314             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
315           break;
316         }
317         Value *ChildUnwindDestToken;
318         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
319           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
320         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
321           Instruction *ChildPad = cast<Instruction>(U);
322           auto Memo = MemoMap.find(ChildPad);
323           if (Memo == MemoMap.end()) {
324             // Haven't resolved this child yet; queue it and keep searching.
325             Worklist.push_back(ChildPad);
326             continue;
327           }
328           // We've checked this child, but still need to ignore it if it
329           // had no proof either way.
330           ChildUnwindDestToken = Memo->second;
331           if (!ChildUnwindDestToken)
332             continue;
333         } else {
334           // Not a relevant user of the cleanuppad
335           continue;
336         }
337         // In a well-formed program, the child/invoke must either unwind to
338         // an(other) child of the cleanup, or exit the cleanup.  In the
339         // first case, continue searching.
340         if (isa<Instruction>(ChildUnwindDestToken) &&
341             getParentPad(ChildUnwindDestToken) == CleanupPad)
342           continue;
343         UnwindDestToken = ChildUnwindDestToken;
344         break;
345       }
346     }
347     // If we haven't found an unwind dest for CurrentPad, we may have queued its
348     // children, so move on to the next in the worklist.
349     if (!UnwindDestToken)
350       continue;
351 
352     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
353     // any ancestors of CurrentPad up to but not including UnwindDestToken's
354     // parent pad.  Record this in the memo map, and check to see if the
355     // original EHPad being queried is one of the ones exited.
356     Value *UnwindParent;
357     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
358       UnwindParent = getParentPad(UnwindPad);
359     else
360       UnwindParent = nullptr;
361     bool ExitedOriginalPad = false;
362     for (Instruction *ExitedPad = CurrentPad;
363          ExitedPad && ExitedPad != UnwindParent;
364          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
365       // Skip over catchpads since they just follow their catchswitches.
366       if (isa<CatchPadInst>(ExitedPad))
367         continue;
368       MemoMap[ExitedPad] = UnwindDestToken;
369       ExitedOriginalPad |= (ExitedPad == EHPad);
370     }
371 
372     if (ExitedOriginalPad)
373       return UnwindDestToken;
374 
375     // Continue the search.
376   }
377 
378   // No definitive information is contained within this funclet.
379   return nullptr;
380 }
381 
382 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
383 /// return that pad instruction.  If it unwinds to caller, return
384 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
385 /// return nullptr.
386 ///
387 /// This routine gets invoked for calls in funclets in inlinees when inlining
388 /// an invoke.  Since many funclets don't have calls inside them, it's queried
389 /// on-demand rather than building a map of pads to unwind dests up front.
390 /// Determining a funclet's unwind dest may require recursively searching its
391 /// descendants, and also ancestors and cousins if the descendants don't provide
392 /// an answer.  Since most funclets will have their unwind dest immediately
393 /// available as the unwind dest of a catchswitch or cleanupret, this routine
394 /// searches top-down from the given pad and then up. To avoid worst-case
395 /// quadratic run-time given that approach, it uses a memo map to avoid
396 /// re-processing funclet trees.  The callers that rewrite the IR as they go
397 /// take advantage of this, for correctness, by checking/forcing rewritten
398 /// pads' entries to match the original callee view.
399 static Value *getUnwindDestToken(Instruction *EHPad,
400                                  UnwindDestMemoTy &MemoMap) {
401   // Catchpads unwind to the same place as their catchswitch;
402   // redirct any queries on catchpads so the code below can
403   // deal with just catchswitches and cleanuppads.
404   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
405     EHPad = CPI->getCatchSwitch();
406 
407   // Check if we've already determined the unwind dest for this pad.
408   auto Memo = MemoMap.find(EHPad);
409   if (Memo != MemoMap.end())
410     return Memo->second;
411 
412   // Search EHPad and, if necessary, its descendants.
413   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
414   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
415   if (UnwindDestToken)
416     return UnwindDestToken;
417 
418   // No information is available for this EHPad from itself or any of its
419   // descendants.  An unwind all the way out to a pad in the caller would
420   // need also to agree with the unwind dest of the parent funclet, so
421   // search up the chain to try to find a funclet with information.  Put
422   // null entries in the memo map to avoid re-processing as we go up.
423   MemoMap[EHPad] = nullptr;
424 #ifndef NDEBUG
425   SmallPtrSet<Instruction *, 4> TempMemos;
426   TempMemos.insert(EHPad);
427 #endif
428   Instruction *LastUselessPad = EHPad;
429   Value *AncestorToken;
430   for (AncestorToken = getParentPad(EHPad);
431        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
432        AncestorToken = getParentPad(AncestorToken)) {
433     // Skip over catchpads since they just follow their catchswitches.
434     if (isa<CatchPadInst>(AncestorPad))
435       continue;
436     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
437     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
438     // call to getUnwindDestToken, that would mean that AncestorPad had no
439     // information in itself, its descendants, or its ancestors.  If that
440     // were the case, then we should also have recorded the lack of information
441     // for the descendant that we're coming from.  So assert that we don't
442     // find a null entry in the MemoMap for AncestorPad.
443     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
444     auto AncestorMemo = MemoMap.find(AncestorPad);
445     if (AncestorMemo == MemoMap.end()) {
446       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
447     } else {
448       UnwindDestToken = AncestorMemo->second;
449     }
450     if (UnwindDestToken)
451       break;
452     LastUselessPad = AncestorPad;
453     MemoMap[LastUselessPad] = nullptr;
454 #ifndef NDEBUG
455     TempMemos.insert(LastUselessPad);
456 #endif
457   }
458 
459   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
460   // returned nullptr (and likewise for EHPad and any of its ancestors up to
461   // LastUselessPad), so LastUselessPad has no information from below.  Since
462   // getUnwindDestTokenHelper must investigate all downward paths through
463   // no-information nodes to prove that a node has no information like this,
464   // and since any time it finds information it records it in the MemoMap for
465   // not just the immediately-containing funclet but also any ancestors also
466   // exited, it must be the case that, walking downward from LastUselessPad,
467   // visiting just those nodes which have not been mapped to an unwind dest
468   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
469   // they are just used to keep getUnwindDestTokenHelper from repeating work),
470   // any node visited must have been exhaustively searched with no information
471   // for it found.
472   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
473   while (!Worklist.empty()) {
474     Instruction *UselessPad = Worklist.pop_back_val();
475     auto Memo = MemoMap.find(UselessPad);
476     if (Memo != MemoMap.end() && Memo->second) {
477       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
478       // that it is a funclet that does have information about unwinding to
479       // a particular destination; its parent was a useless pad.
480       // Since its parent has no information, the unwind edge must not escape
481       // the parent, and must target a sibling of this pad.  This local unwind
482       // gives us no information about EHPad.  Leave it and the subtree rooted
483       // at it alone.
484       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
485       continue;
486     }
487     // We know we don't have information for UselesPad.  If it has an entry in
488     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
489     // added on this invocation of getUnwindDestToken; if a previous invocation
490     // recorded nullptr, it would have had to prove that the ancestors of
491     // UselessPad, which include LastUselessPad, had no information, and that
492     // in turn would have required proving that the descendants of
493     // LastUselesPad, which include EHPad, have no information about
494     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
495     // the MemoMap on that invocation, which isn't the case if we got here.
496     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
497     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
498     // information that we'd be contradicting by making a map entry for it
499     // (which is something that getUnwindDestTokenHelper must have proved for
500     // us to get here).  Just assert on is direct users here; the checks in
501     // this downward walk at its descendants will verify that they don't have
502     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
503     // unwind edges or unwind to a sibling).
504     MemoMap[UselessPad] = UnwindDestToken;
505     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
506       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
507       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
508         auto *CatchPad = HandlerBlock->getFirstNonPHI();
509         for (User *U : CatchPad->users()) {
510           assert(
511               (!isa<InvokeInst>(U) ||
512                (getParentPad(
513                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
514                 CatchPad)) &&
515               "Expected useless pad");
516           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
517             Worklist.push_back(cast<Instruction>(U));
518         }
519       }
520     } else {
521       assert(isa<CleanupPadInst>(UselessPad));
522       for (User *U : UselessPad->users()) {
523         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
524         assert((!isa<InvokeInst>(U) ||
525                 (getParentPad(
526                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
527                  UselessPad)) &&
528                "Expected useless pad");
529         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
530           Worklist.push_back(cast<Instruction>(U));
531       }
532     }
533   }
534 
535   return UnwindDestToken;
536 }
537 
538 /// When we inline a basic block into an invoke,
539 /// we have to turn all of the calls that can throw into invokes.
540 /// This function analyze BB to see if there are any calls, and if so,
541 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
542 /// nodes in that block with the values specified in InvokeDestPHIValues.
543 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
544     BasicBlock *BB, BasicBlock *UnwindEdge,
545     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
546   for (Instruction &I : llvm::make_early_inc_range(*BB)) {
547     // We only need to check for function calls: inlined invoke
548     // instructions require no special handling.
549     CallInst *CI = dyn_cast<CallInst>(&I);
550 
551     if (!CI || CI->doesNotThrow())
552       continue;
553 
554     // We do not need to (and in fact, cannot) convert possibly throwing calls
555     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
556     // invokes.  The caller's "segment" of the deoptimization continuation
557     // attached to the newly inlined @llvm.experimental_deoptimize
558     // (resp. @llvm.experimental.guard) call should contain the exception
559     // handling logic, if any.
560     if (auto *F = CI->getCalledFunction())
561       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
562           F->getIntrinsicID() == Intrinsic::experimental_guard)
563         continue;
564 
565     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
566       // This call is nested inside a funclet.  If that funclet has an unwind
567       // destination within the inlinee, then unwinding out of this call would
568       // be UB.  Rewriting this call to an invoke which targets the inlined
569       // invoke's unwind dest would give the call's parent funclet multiple
570       // unwind destinations, which is something that subsequent EH table
571       // generation can't handle and that the veirifer rejects.  So when we
572       // see such a call, leave it as a call.
573       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
574       Value *UnwindDestToken =
575           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
576       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
577         continue;
578 #ifndef NDEBUG
579       Instruction *MemoKey;
580       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
581         MemoKey = CatchPad->getCatchSwitch();
582       else
583         MemoKey = FuncletPad;
584       assert(FuncletUnwindMap->count(MemoKey) &&
585              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
586              "must get memoized to avoid confusing later searches");
587 #endif // NDEBUG
588     }
589 
590     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
591     return BB;
592   }
593   return nullptr;
594 }
595 
596 /// If we inlined an invoke site, we need to convert calls
597 /// in the body of the inlined function into invokes.
598 ///
599 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
600 /// block of the inlined code (the last block is the end of the function),
601 /// and InlineCodeInfo is information about the code that got inlined.
602 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
603                                     ClonedCodeInfo &InlinedCodeInfo) {
604   BasicBlock *InvokeDest = II->getUnwindDest();
605 
606   Function *Caller = FirstNewBlock->getParent();
607 
608   // The inlined code is currently at the end of the function, scan from the
609   // start of the inlined code to its end, checking for stuff we need to
610   // rewrite.
611   LandingPadInliningInfo Invoke(II);
612 
613   // Get all of the inlined landing pad instructions.
614   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
615   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
616        I != E; ++I)
617     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
618       InlinedLPads.insert(II->getLandingPadInst());
619 
620   // Append the clauses from the outer landing pad instruction into the inlined
621   // landing pad instructions.
622   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
623   for (LandingPadInst *InlinedLPad : InlinedLPads) {
624     unsigned OuterNum = OuterLPad->getNumClauses();
625     InlinedLPad->reserveClauses(OuterNum);
626     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
627       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
628     if (OuterLPad->isCleanup())
629       InlinedLPad->setCleanup(true);
630   }
631 
632   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
633        BB != E; ++BB) {
634     if (InlinedCodeInfo.ContainsCalls)
635       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
636               &*BB, Invoke.getOuterResumeDest()))
637         // Update any PHI nodes in the exceptional block to indicate that there
638         // is now a new entry in them.
639         Invoke.addIncomingPHIValuesFor(NewBB);
640 
641     // Forward any resumes that are remaining here.
642     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
643       Invoke.forwardResume(RI, InlinedLPads);
644   }
645 
646   // Now that everything is happy, we have one final detail.  The PHI nodes in
647   // the exception destination block still have entries due to the original
648   // invoke instruction. Eliminate these entries (which might even delete the
649   // PHI node) now.
650   InvokeDest->removePredecessor(II->getParent());
651 }
652 
653 /// If we inlined an invoke site, we need to convert calls
654 /// in the body of the inlined function into invokes.
655 ///
656 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
657 /// block of the inlined code (the last block is the end of the function),
658 /// and InlineCodeInfo is information about the code that got inlined.
659 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
660                                ClonedCodeInfo &InlinedCodeInfo) {
661   BasicBlock *UnwindDest = II->getUnwindDest();
662   Function *Caller = FirstNewBlock->getParent();
663 
664   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
665 
666   // If there are PHI nodes in the unwind destination block, we need to keep
667   // track of which values came into them from the invoke before removing the
668   // edge from this block.
669   SmallVector<Value *, 8> UnwindDestPHIValues;
670   BasicBlock *InvokeBB = II->getParent();
671   for (PHINode &PHI : UnwindDest->phis()) {
672     // Save the value to use for this edge.
673     UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB));
674   }
675 
676   // Add incoming-PHI values to the unwind destination block for the given basic
677   // block, using the values for the original invoke's source block.
678   auto UpdatePHINodes = [&](BasicBlock *Src) {
679     BasicBlock::iterator I = UnwindDest->begin();
680     for (Value *V : UnwindDestPHIValues) {
681       PHINode *PHI = cast<PHINode>(I);
682       PHI->addIncoming(V, Src);
683       ++I;
684     }
685   };
686 
687   // This connects all the instructions which 'unwind to caller' to the invoke
688   // destination.
689   UnwindDestMemoTy FuncletUnwindMap;
690   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
691        BB != E; ++BB) {
692     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
693       if (CRI->unwindsToCaller()) {
694         auto *CleanupPad = CRI->getCleanupPad();
695         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI->getIterator());
696         CRI->eraseFromParent();
697         UpdatePHINodes(&*BB);
698         // Finding a cleanupret with an unwind destination would confuse
699         // subsequent calls to getUnwindDestToken, so map the cleanuppad
700         // to short-circuit any such calls and recognize this as an "unwind
701         // to caller" cleanup.
702         assert(!FuncletUnwindMap.count(CleanupPad) ||
703                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
704         FuncletUnwindMap[CleanupPad] =
705             ConstantTokenNone::get(Caller->getContext());
706       }
707     }
708 
709     Instruction *I = BB->getFirstNonPHI();
710     if (!I->isEHPad())
711       continue;
712 
713     Instruction *Replacement = nullptr;
714     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
715       if (CatchSwitch->unwindsToCaller()) {
716         Value *UnwindDestToken;
717         if (auto *ParentPad =
718                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
719           // This catchswitch is nested inside another funclet.  If that
720           // funclet has an unwind destination within the inlinee, then
721           // unwinding out of this catchswitch would be UB.  Rewriting this
722           // catchswitch to unwind to the inlined invoke's unwind dest would
723           // give the parent funclet multiple unwind destinations, which is
724           // something that subsequent EH table generation can't handle and
725           // that the veirifer rejects.  So when we see such a call, leave it
726           // as "unwind to caller".
727           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
728           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
729             continue;
730         } else {
731           // This catchswitch has no parent to inherit constraints from, and
732           // none of its descendants can have an unwind edge that exits it and
733           // targets another funclet in the inlinee.  It may or may not have a
734           // descendant that definitively has an unwind to caller.  In either
735           // case, we'll have to assume that any unwinds out of it may need to
736           // be routed to the caller, so treat it as though it has a definitive
737           // unwind to caller.
738           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
739         }
740         auto *NewCatchSwitch = CatchSwitchInst::Create(
741             CatchSwitch->getParentPad(), UnwindDest,
742             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
743             CatchSwitch->getIterator());
744         for (BasicBlock *PadBB : CatchSwitch->handlers())
745           NewCatchSwitch->addHandler(PadBB);
746         // Propagate info for the old catchswitch over to the new one in
747         // the unwind map.  This also serves to short-circuit any subsequent
748         // checks for the unwind dest of this catchswitch, which would get
749         // confused if they found the outer handler in the callee.
750         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
751         Replacement = NewCatchSwitch;
752       }
753     } else if (!isa<FuncletPadInst>(I)) {
754       llvm_unreachable("unexpected EHPad!");
755     }
756 
757     if (Replacement) {
758       Replacement->takeName(I);
759       I->replaceAllUsesWith(Replacement);
760       I->eraseFromParent();
761       UpdatePHINodes(&*BB);
762     }
763   }
764 
765   if (InlinedCodeInfo.ContainsCalls)
766     for (Function::iterator BB = FirstNewBlock->getIterator(),
767                             E = Caller->end();
768          BB != E; ++BB)
769       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
770               &*BB, UnwindDest, &FuncletUnwindMap))
771         // Update any PHI nodes in the exceptional block to indicate that there
772         // is now a new entry in them.
773         UpdatePHINodes(NewBB);
774 
775   // Now that everything is happy, we have one final detail.  The PHI nodes in
776   // the exception destination block still have entries due to the original
777   // invoke instruction. Eliminate these entries (which might even delete the
778   // PHI node) now.
779   UnwindDest->removePredecessor(InvokeBB);
780 }
781 
782 static bool haveCommonPrefix(MDNode *MIBStackContext,
783                              MDNode *CallsiteStackContext) {
784   assert(MIBStackContext->getNumOperands() > 0 &&
785          CallsiteStackContext->getNumOperands() > 0);
786   // Because of the context trimming performed during matching, the callsite
787   // context could have more stack ids than the MIB. We match up to the end of
788   // the shortest stack context.
789   for (auto MIBStackIter = MIBStackContext->op_begin(),
790             CallsiteStackIter = CallsiteStackContext->op_begin();
791        MIBStackIter != MIBStackContext->op_end() &&
792        CallsiteStackIter != CallsiteStackContext->op_end();
793        MIBStackIter++, CallsiteStackIter++) {
794     auto *Val1 = mdconst::dyn_extract<ConstantInt>(*MIBStackIter);
795     auto *Val2 = mdconst::dyn_extract<ConstantInt>(*CallsiteStackIter);
796     assert(Val1 && Val2);
797     if (Val1->getZExtValue() != Val2->getZExtValue())
798       return false;
799   }
800   return true;
801 }
802 
803 static void removeMemProfMetadata(CallBase *Call) {
804   Call->setMetadata(LLVMContext::MD_memprof, nullptr);
805 }
806 
807 static void removeCallsiteMetadata(CallBase *Call) {
808   Call->setMetadata(LLVMContext::MD_callsite, nullptr);
809 }
810 
811 static void updateMemprofMetadata(CallBase *CI,
812                                   const std::vector<Metadata *> &MIBList) {
813   assert(!MIBList.empty());
814   // Remove existing memprof, which will either be replaced or may not be needed
815   // if we are able to use a single allocation type function attribute.
816   removeMemProfMetadata(CI);
817   CallStackTrie CallStack;
818   for (Metadata *MIB : MIBList)
819     CallStack.addCallStack(cast<MDNode>(MIB));
820   bool MemprofMDAttached = CallStack.buildAndAttachMIBMetadata(CI);
821   assert(MemprofMDAttached == CI->hasMetadata(LLVMContext::MD_memprof));
822   if (!MemprofMDAttached)
823     // If we used a function attribute remove the callsite metadata as well.
824     removeCallsiteMetadata(CI);
825 }
826 
827 // Update the metadata on the inlined copy ClonedCall of a call OrigCall in the
828 // inlined callee body, based on the callsite metadata InlinedCallsiteMD from
829 // the call that was inlined.
830 static void propagateMemProfHelper(const CallBase *OrigCall,
831                                    CallBase *ClonedCall,
832                                    MDNode *InlinedCallsiteMD) {
833   MDNode *OrigCallsiteMD = ClonedCall->getMetadata(LLVMContext::MD_callsite);
834   MDNode *ClonedCallsiteMD = nullptr;
835   // Check if the call originally had callsite metadata, and update it for the
836   // new call in the inlined body.
837   if (OrigCallsiteMD) {
838     // The cloned call's context is now the concatenation of the original call's
839     // callsite metadata and the callsite metadata on the call where it was
840     // inlined.
841     ClonedCallsiteMD = MDNode::concatenate(OrigCallsiteMD, InlinedCallsiteMD);
842     ClonedCall->setMetadata(LLVMContext::MD_callsite, ClonedCallsiteMD);
843   }
844 
845   // Update any memprof metadata on the cloned call.
846   MDNode *OrigMemProfMD = ClonedCall->getMetadata(LLVMContext::MD_memprof);
847   if (!OrigMemProfMD)
848     return;
849   // We currently expect that allocations with memprof metadata also have
850   // callsite metadata for the allocation's part of the context.
851   assert(OrigCallsiteMD);
852 
853   // New call's MIB list.
854   std::vector<Metadata *> NewMIBList;
855 
856   // For each MIB metadata, check if its call stack context starts with the
857   // new clone's callsite metadata. If so, that MIB goes onto the cloned call in
858   // the inlined body. If not, it stays on the out-of-line original call.
859   for (auto &MIBOp : OrigMemProfMD->operands()) {
860     MDNode *MIB = dyn_cast<MDNode>(MIBOp);
861     // Stack is first operand of MIB.
862     MDNode *StackMD = getMIBStackNode(MIB);
863     assert(StackMD);
864     // See if the new cloned callsite context matches this profiled context.
865     if (haveCommonPrefix(StackMD, ClonedCallsiteMD))
866       // Add it to the cloned call's MIB list.
867       NewMIBList.push_back(MIB);
868   }
869   if (NewMIBList.empty()) {
870     removeMemProfMetadata(ClonedCall);
871     removeCallsiteMetadata(ClonedCall);
872     return;
873   }
874   if (NewMIBList.size() < OrigMemProfMD->getNumOperands())
875     updateMemprofMetadata(ClonedCall, NewMIBList);
876 }
877 
878 // Update memprof related metadata (!memprof and !callsite) based on the
879 // inlining of Callee into the callsite at CB. The updates include merging the
880 // inlined callee's callsite metadata with that of the inlined call,
881 // and moving the subset of any memprof contexts to the inlined callee
882 // allocations if they match the new inlined call stack.
883 static void
884 propagateMemProfMetadata(Function *Callee, CallBase &CB,
885                          bool ContainsMemProfMetadata,
886                          const ValueMap<const Value *, WeakTrackingVH> &VMap) {
887   MDNode *CallsiteMD = CB.getMetadata(LLVMContext::MD_callsite);
888   // Only need to update if the inlined callsite had callsite metadata, or if
889   // there was any memprof metadata inlined.
890   if (!CallsiteMD && !ContainsMemProfMetadata)
891     return;
892 
893   // Propagate metadata onto the cloned calls in the inlined callee.
894   for (const auto &Entry : VMap) {
895     // See if this is a call that has been inlined and remapped, and not
896     // simplified away in the process.
897     auto *OrigCall = dyn_cast_or_null<CallBase>(Entry.first);
898     auto *ClonedCall = dyn_cast_or_null<CallBase>(Entry.second);
899     if (!OrigCall || !ClonedCall)
900       continue;
901     // If the inlined callsite did not have any callsite metadata, then it isn't
902     // involved in any profiled call contexts, and we can remove any memprof
903     // metadata on the cloned call.
904     if (!CallsiteMD) {
905       removeMemProfMetadata(ClonedCall);
906       removeCallsiteMetadata(ClonedCall);
907       continue;
908     }
909     propagateMemProfHelper(OrigCall, ClonedCall, CallsiteMD);
910   }
911 }
912 
913 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
914 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
915 /// be propagated to all memory-accessing cloned instructions.
916 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
917                                       Function::iterator FEnd) {
918   MDNode *MemParallelLoopAccess =
919       CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
920   MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
921   MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
922   MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
923   if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
924     return;
925 
926   for (BasicBlock &BB : make_range(FStart, FEnd)) {
927     for (Instruction &I : BB) {
928       // This metadata is only relevant for instructions that access memory.
929       if (!I.mayReadOrWriteMemory())
930         continue;
931 
932       if (MemParallelLoopAccess) {
933         // TODO: This probably should not overwrite MemParalleLoopAccess.
934         MemParallelLoopAccess = MDNode::concatenate(
935             I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
936             MemParallelLoopAccess);
937         I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
938                       MemParallelLoopAccess);
939       }
940 
941       if (AccessGroup)
942         I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
943             I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
944 
945       if (AliasScope)
946         I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
947             I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
948 
949       if (NoAlias)
950         I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
951             I.getMetadata(LLVMContext::MD_noalias), NoAlias));
952     }
953   }
954 }
955 
956 /// Bundle operands of the inlined function must be added to inlined call sites.
957 static void PropagateOperandBundles(Function::iterator InlinedBB,
958                                     Instruction *CallSiteEHPad) {
959   for (Instruction &II : llvm::make_early_inc_range(*InlinedBB)) {
960     CallBase *I = dyn_cast<CallBase>(&II);
961     if (!I)
962       continue;
963     // Skip call sites which already have a "funclet" bundle.
964     if (I->getOperandBundle(LLVMContext::OB_funclet))
965       continue;
966     // Skip call sites which are nounwind intrinsics (as long as they don't
967     // lower into regular function calls in the course of IR transformations).
968     auto *CalledFn =
969         dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
970     if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow() &&
971         !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
972       continue;
973 
974     SmallVector<OperandBundleDef, 1> OpBundles;
975     I->getOperandBundlesAsDefs(OpBundles);
976     OpBundles.emplace_back("funclet", CallSiteEHPad);
977 
978     Instruction *NewInst = CallBase::Create(I, OpBundles, I->getIterator());
979     NewInst->takeName(I);
980     I->replaceAllUsesWith(NewInst);
981     I->eraseFromParent();
982   }
983 }
984 
985 namespace {
986 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
987 /// using scoped alias metadata is inlined, the aliasing relationships may not
988 /// hold between the two version. It is necessary to create a deep clone of the
989 /// metadata, putting the two versions in separate scope domains.
990 class ScopedAliasMetadataDeepCloner {
991   using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
992   SetVector<const MDNode *> MD;
993   MetadataMap MDMap;
994   void addRecursiveMetadataUses();
995 
996 public:
997   ScopedAliasMetadataDeepCloner(const Function *F);
998 
999   /// Create a new clone of the scoped alias metadata, which will be used by
1000   /// subsequent remap() calls.
1001   void clone();
1002 
1003   /// Remap instructions in the given range from the original to the cloned
1004   /// metadata.
1005   void remap(Function::iterator FStart, Function::iterator FEnd);
1006 };
1007 } // namespace
1008 
1009 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
1010     const Function *F) {
1011   for (const BasicBlock &BB : *F) {
1012     for (const Instruction &I : BB) {
1013       if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
1014         MD.insert(M);
1015       if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
1016         MD.insert(M);
1017 
1018       // We also need to clone the metadata in noalias intrinsics.
1019       if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1020         MD.insert(Decl->getScopeList());
1021     }
1022   }
1023   addRecursiveMetadataUses();
1024 }
1025 
1026 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
1027   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
1028   while (!Queue.empty()) {
1029     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
1030     for (const Metadata *Op : M->operands())
1031       if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
1032         if (MD.insert(OpMD))
1033           Queue.push_back(OpMD);
1034   }
1035 }
1036 
1037 void ScopedAliasMetadataDeepCloner::clone() {
1038   assert(MDMap.empty() && "clone() already called ?");
1039 
1040   SmallVector<TempMDTuple, 16> DummyNodes;
1041   for (const MDNode *I : MD) {
1042     DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), std::nullopt));
1043     MDMap[I].reset(DummyNodes.back().get());
1044   }
1045 
1046   // Create new metadata nodes to replace the dummy nodes, replacing old
1047   // metadata references with either a dummy node or an already-created new
1048   // node.
1049   SmallVector<Metadata *, 4> NewOps;
1050   for (const MDNode *I : MD) {
1051     for (const Metadata *Op : I->operands()) {
1052       if (const MDNode *M = dyn_cast<MDNode>(Op))
1053         NewOps.push_back(MDMap[M]);
1054       else
1055         NewOps.push_back(const_cast<Metadata *>(Op));
1056     }
1057 
1058     MDNode *NewM = MDNode::get(I->getContext(), NewOps);
1059     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
1060     assert(TempM->isTemporary() && "Expected temporary node");
1061 
1062     TempM->replaceAllUsesWith(NewM);
1063     NewOps.clear();
1064   }
1065 }
1066 
1067 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
1068                                           Function::iterator FEnd) {
1069   if (MDMap.empty())
1070     return; // Nothing to do.
1071 
1072   for (BasicBlock &BB : make_range(FStart, FEnd)) {
1073     for (Instruction &I : BB) {
1074       // TODO: The null checks for the MDMap.lookup() results should no longer
1075       // be necessary.
1076       if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
1077         if (MDNode *MNew = MDMap.lookup(M))
1078           I.setMetadata(LLVMContext::MD_alias_scope, MNew);
1079 
1080       if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
1081         if (MDNode *MNew = MDMap.lookup(M))
1082           I.setMetadata(LLVMContext::MD_noalias, MNew);
1083 
1084       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1085         if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
1086           Decl->setScopeList(MNew);
1087     }
1088   }
1089 }
1090 
1091 /// If the inlined function has noalias arguments,
1092 /// then add new alias scopes for each noalias argument, tag the mapped noalias
1093 /// parameters with noalias metadata specifying the new scope, and tag all
1094 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
1095 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
1096                                   const DataLayout &DL, AAResults *CalleeAAR,
1097                                   ClonedCodeInfo &InlinedFunctionInfo) {
1098   if (!EnableNoAliasConversion)
1099     return;
1100 
1101   const Function *CalledFunc = CB.getCalledFunction();
1102   SmallVector<const Argument *, 4> NoAliasArgs;
1103 
1104   for (const Argument &Arg : CalledFunc->args())
1105     if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
1106       NoAliasArgs.push_back(&Arg);
1107 
1108   if (NoAliasArgs.empty())
1109     return;
1110 
1111   // To do a good job, if a noalias variable is captured, we need to know if
1112   // the capture point dominates the particular use we're considering.
1113   DominatorTree DT;
1114   DT.recalculate(const_cast<Function&>(*CalledFunc));
1115 
1116   // noalias indicates that pointer values based on the argument do not alias
1117   // pointer values which are not based on it. So we add a new "scope" for each
1118   // noalias function argument. Accesses using pointers based on that argument
1119   // become part of that alias scope, accesses using pointers not based on that
1120   // argument are tagged as noalias with that scope.
1121 
1122   DenseMap<const Argument *, MDNode *> NewScopes;
1123   MDBuilder MDB(CalledFunc->getContext());
1124 
1125   // Create a new scope domain for this function.
1126   MDNode *NewDomain =
1127     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
1128   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
1129     const Argument *A = NoAliasArgs[i];
1130 
1131     std::string Name = std::string(CalledFunc->getName());
1132     if (A->hasName()) {
1133       Name += ": %";
1134       Name += A->getName();
1135     } else {
1136       Name += ": argument ";
1137       Name += utostr(i);
1138     }
1139 
1140     // Note: We always create a new anonymous root here. This is true regardless
1141     // of the linkage of the callee because the aliasing "scope" is not just a
1142     // property of the callee, but also all control dependencies in the caller.
1143     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
1144     NewScopes.insert(std::make_pair(A, NewScope));
1145 
1146     if (UseNoAliasIntrinsic) {
1147       // Introduce a llvm.experimental.noalias.scope.decl for the noalias
1148       // argument.
1149       MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
1150       auto *NoAliasDecl =
1151           IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
1152       // Ignore the result for now. The result will be used when the
1153       // llvm.noalias intrinsic is introduced.
1154       (void)NoAliasDecl;
1155     }
1156   }
1157 
1158   // Iterate over all new instructions in the map; for all memory-access
1159   // instructions, add the alias scope metadata.
1160   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1161        VMI != VMIE; ++VMI) {
1162     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1163       if (!VMI->second)
1164         continue;
1165 
1166       Instruction *NI = dyn_cast<Instruction>(VMI->second);
1167       if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
1168         continue;
1169 
1170       bool IsArgMemOnlyCall = false, IsFuncCall = false;
1171       SmallVector<const Value *, 2> PtrArgs;
1172 
1173       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1174         PtrArgs.push_back(LI->getPointerOperand());
1175       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1176         PtrArgs.push_back(SI->getPointerOperand());
1177       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1178         PtrArgs.push_back(VAAI->getPointerOperand());
1179       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1180         PtrArgs.push_back(CXI->getPointerOperand());
1181       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1182         PtrArgs.push_back(RMWI->getPointerOperand());
1183       else if (const auto *Call = dyn_cast<CallBase>(I)) {
1184         // If we know that the call does not access memory, then we'll still
1185         // know that about the inlined clone of this call site, and we don't
1186         // need to add metadata.
1187         if (Call->doesNotAccessMemory())
1188           continue;
1189 
1190         IsFuncCall = true;
1191         if (CalleeAAR) {
1192           MemoryEffects ME = CalleeAAR->getMemoryEffects(Call);
1193 
1194           // We'll retain this knowledge without additional metadata.
1195           if (ME.onlyAccessesInaccessibleMem())
1196             continue;
1197 
1198           if (ME.onlyAccessesArgPointees())
1199             IsArgMemOnlyCall = true;
1200         }
1201 
1202         for (Value *Arg : Call->args()) {
1203           // Only care about pointer arguments. If a noalias argument is
1204           // accessed through a non-pointer argument, it must be captured
1205           // first (e.g. via ptrtoint), and we protect against captures below.
1206           if (!Arg->getType()->isPointerTy())
1207             continue;
1208 
1209           PtrArgs.push_back(Arg);
1210         }
1211       }
1212 
1213       // If we found no pointers, then this instruction is not suitable for
1214       // pairing with an instruction to receive aliasing metadata.
1215       // However, if this is a call, this we might just alias with none of the
1216       // noalias arguments.
1217       if (PtrArgs.empty() && !IsFuncCall)
1218         continue;
1219 
1220       // It is possible that there is only one underlying object, but you
1221       // need to go through several PHIs to see it, and thus could be
1222       // repeated in the Objects list.
1223       SmallPtrSet<const Value *, 4> ObjSet;
1224       SmallVector<Metadata *, 4> Scopes, NoAliases;
1225 
1226       for (const Value *V : PtrArgs) {
1227         SmallVector<const Value *, 4> Objects;
1228         getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1229 
1230         for (const Value *O : Objects)
1231           ObjSet.insert(O);
1232       }
1233 
1234       // Figure out if we're derived from anything that is not a noalias
1235       // argument.
1236       bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false,
1237            UsesUnknownObject = false;
1238       for (const Value *V : ObjSet) {
1239         // Is this value a constant that cannot be derived from any pointer
1240         // value (we need to exclude constant expressions, for example, that
1241         // are formed from arithmetic on global symbols).
1242         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1243                              isa<ConstantPointerNull>(V) ||
1244                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1245         if (IsNonPtrConst)
1246           continue;
1247 
1248         // If this is anything other than a noalias argument, then we cannot
1249         // completely describe the aliasing properties using alias.scope
1250         // metadata (and, thus, won't add any).
1251         if (const Argument *A = dyn_cast<Argument>(V)) {
1252           if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1253             UsesAliasingPtr = true;
1254         } else {
1255           UsesAliasingPtr = true;
1256         }
1257 
1258         if (isEscapeSource(V)) {
1259           // An escape source can only alias with a noalias argument if it has
1260           // been captured beforehand.
1261           RequiresNoCaptureBefore = true;
1262         } else if (!isa<Argument>(V) && !isIdentifiedObject(V)) {
1263           // If this is neither an escape source, nor some identified object
1264           // (which cannot directly alias a noalias argument), nor some other
1265           // argument (which, by definition, also cannot alias a noalias
1266           // argument), conservatively do not make any assumptions.
1267           UsesUnknownObject = true;
1268         }
1269       }
1270 
1271       // Nothing we can do if the used underlying object cannot be reliably
1272       // determined.
1273       if (UsesUnknownObject)
1274         continue;
1275 
1276       // A function call can always get captured noalias pointers (via other
1277       // parameters, globals, etc.).
1278       if (IsFuncCall && !IsArgMemOnlyCall)
1279         RequiresNoCaptureBefore = true;
1280 
1281       // First, we want to figure out all of the sets with which we definitely
1282       // don't alias. Iterate over all noalias set, and add those for which:
1283       //   1. The noalias argument is not in the set of objects from which we
1284       //      definitely derive.
1285       //   2. The noalias argument has not yet been captured.
1286       // An arbitrary function that might load pointers could see captured
1287       // noalias arguments via other noalias arguments or globals, and so we
1288       // must always check for prior capture.
1289       for (const Argument *A : NoAliasArgs) {
1290         if (ObjSet.contains(A))
1291           continue; // May be based on a noalias argument.
1292 
1293         // It might be tempting to skip the PointerMayBeCapturedBefore check if
1294         // A->hasNoCaptureAttr() is true, but this is incorrect because
1295         // nocapture only guarantees that no copies outlive the function, not
1296         // that the value cannot be locally captured.
1297         if (!RequiresNoCaptureBefore ||
1298             !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false,
1299                                         /* StoreCaptures */ false, I, &DT))
1300           NoAliases.push_back(NewScopes[A]);
1301       }
1302 
1303       if (!NoAliases.empty())
1304         NI->setMetadata(LLVMContext::MD_noalias,
1305                         MDNode::concatenate(
1306                             NI->getMetadata(LLVMContext::MD_noalias),
1307                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1308 
1309       // Next, we want to figure out all of the sets to which we might belong.
1310       // We might belong to a set if the noalias argument is in the set of
1311       // underlying objects. If there is some non-noalias argument in our list
1312       // of underlying objects, then we cannot add a scope because the fact
1313       // that some access does not alias with any set of our noalias arguments
1314       // cannot itself guarantee that it does not alias with this access
1315       // (because there is some pointer of unknown origin involved and the
1316       // other access might also depend on this pointer). We also cannot add
1317       // scopes to arbitrary functions unless we know they don't access any
1318       // non-parameter pointer-values.
1319       bool CanAddScopes = !UsesAliasingPtr;
1320       if (CanAddScopes && IsFuncCall)
1321         CanAddScopes = IsArgMemOnlyCall;
1322 
1323       if (CanAddScopes)
1324         for (const Argument *A : NoAliasArgs) {
1325           if (ObjSet.count(A))
1326             Scopes.push_back(NewScopes[A]);
1327         }
1328 
1329       if (!Scopes.empty())
1330         NI->setMetadata(
1331             LLVMContext::MD_alias_scope,
1332             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1333                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1334     }
1335   }
1336 }
1337 
1338 static bool MayContainThrowingOrExitingCallAfterCB(CallBase *Begin,
1339                                                    ReturnInst *End) {
1340 
1341   assert(Begin->getParent() == End->getParent() &&
1342          "Expected to be in same basic block!");
1343   auto BeginIt = Begin->getIterator();
1344   assert(BeginIt != End->getIterator() && "Non-empty BB has empty iterator");
1345   return !llvm::isGuaranteedToTransferExecutionToSuccessor(
1346       ++BeginIt, End->getIterator(), InlinerAttributeWindow + 1);
1347 }
1348 
1349 // Add attributes from CB params and Fn attributes that can always be propagated
1350 // to the corresponding argument / inner callbases.
1351 static void AddParamAndFnBasicAttributes(const CallBase &CB,
1352                                          ValueToValueMapTy &VMap,
1353                                          ClonedCodeInfo &InlinedFunctionInfo) {
1354   auto *CalledFunction = CB.getCalledFunction();
1355   auto &Context = CalledFunction->getContext();
1356 
1357   // Collect valid attributes for all params.
1358   SmallVector<AttrBuilder> ValidParamAttrs;
1359   bool HasAttrToPropagate = false;
1360 
1361   for (unsigned I = 0, E = CB.arg_size(); I < E; ++I) {
1362     ValidParamAttrs.emplace_back(AttrBuilder{CB.getContext()});
1363     // Access attributes can be propagated to any param with the same underlying
1364     // object as the argument.
1365     if (CB.paramHasAttr(I, Attribute::ReadNone))
1366       ValidParamAttrs.back().addAttribute(Attribute::ReadNone);
1367     if (CB.paramHasAttr(I, Attribute::ReadOnly))
1368       ValidParamAttrs.back().addAttribute(Attribute::ReadOnly);
1369     HasAttrToPropagate |= ValidParamAttrs.back().hasAttributes();
1370   }
1371 
1372   // Won't be able to propagate anything.
1373   if (!HasAttrToPropagate)
1374     return;
1375 
1376   for (BasicBlock &BB : *CalledFunction) {
1377     for (Instruction &Ins : BB) {
1378       const auto *InnerCB = dyn_cast<CallBase>(&Ins);
1379       if (!InnerCB)
1380         continue;
1381       auto *NewInnerCB = dyn_cast_or_null<CallBase>(VMap.lookup(InnerCB));
1382       if (!NewInnerCB)
1383         continue;
1384       // The InnerCB might have be simplified during the inlining
1385       // process which can make propagation incorrect.
1386       if (InlinedFunctionInfo.isSimplified(InnerCB, NewInnerCB))
1387         continue;
1388 
1389       AttributeList AL = NewInnerCB->getAttributes();
1390       for (unsigned I = 0, E = InnerCB->arg_size(); I < E; ++I) {
1391         // Check if the underlying value for the parameter is an argument.
1392         const Value *UnderlyingV =
1393             getUnderlyingObject(InnerCB->getArgOperand(I));
1394         const Argument *Arg = dyn_cast<Argument>(UnderlyingV);
1395         if (!Arg)
1396           continue;
1397 
1398         if (NewInnerCB->paramHasAttr(I, Attribute::ByVal))
1399           // It's unsound to propagate memory attributes to byval arguments.
1400           // Even if CalledFunction doesn't e.g. write to the argument,
1401           // the call to NewInnerCB may write to its by-value copy.
1402           continue;
1403 
1404         unsigned ArgNo = Arg->getArgNo();
1405         // If so, propagate its access attributes.
1406         AL = AL.addParamAttributes(Context, I, ValidParamAttrs[ArgNo]);
1407         // We can have conflicting attributes from the inner callsite and
1408         // to-be-inlined callsite. In that case, choose the most
1409         // restrictive.
1410 
1411         // readonly + writeonly means we can never deref so make readnone.
1412         if (AL.hasParamAttr(I, Attribute::ReadOnly) &&
1413             AL.hasParamAttr(I, Attribute::WriteOnly))
1414           AL = AL.addParamAttribute(Context, I, Attribute::ReadNone);
1415 
1416         // If have readnone, need to clear readonly/writeonly
1417         if (AL.hasParamAttr(I, Attribute::ReadNone)) {
1418           AL = AL.removeParamAttribute(Context, I, Attribute::ReadOnly);
1419           AL = AL.removeParamAttribute(Context, I, Attribute::WriteOnly);
1420         }
1421 
1422         // Writable cannot exist in conjunction w/ readonly/readnone
1423         if (AL.hasParamAttr(I, Attribute::ReadOnly) ||
1424             AL.hasParamAttr(I, Attribute::ReadNone))
1425           AL = AL.removeParamAttribute(Context, I, Attribute::Writable);
1426       }
1427       NewInnerCB->setAttributes(AL);
1428     }
1429   }
1430 }
1431 
1432 // Only allow these white listed attributes to be propagated back to the
1433 // callee. This is because other attributes may only be valid on the call
1434 // itself, i.e. attributes such as signext and zeroext.
1435 
1436 // Attributes that are always okay to propagate as if they are violated its
1437 // immediate UB.
1438 static AttrBuilder IdentifyValidUBGeneratingAttributes(CallBase &CB) {
1439   AttrBuilder Valid(CB.getContext());
1440   if (auto DerefBytes = CB.getRetDereferenceableBytes())
1441     Valid.addDereferenceableAttr(DerefBytes);
1442   if (auto DerefOrNullBytes = CB.getRetDereferenceableOrNullBytes())
1443     Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1444   if (CB.hasRetAttr(Attribute::NoAlias))
1445     Valid.addAttribute(Attribute::NoAlias);
1446   if (CB.hasRetAttr(Attribute::NoUndef))
1447     Valid.addAttribute(Attribute::NoUndef);
1448   return Valid;
1449 }
1450 
1451 // Attributes that need additional checks as propagating them may change
1452 // behavior or cause new UB.
1453 static AttrBuilder IdentifyValidPoisonGeneratingAttributes(CallBase &CB) {
1454   AttrBuilder Valid(CB.getContext());
1455   if (CB.hasRetAttr(Attribute::NonNull))
1456     Valid.addAttribute(Attribute::NonNull);
1457   if (CB.hasRetAttr(Attribute::Alignment))
1458     Valid.addAlignmentAttr(CB.getRetAlign());
1459   if (std::optional<ConstantRange> Range = CB.getRange())
1460     Valid.addRangeAttr(*Range);
1461   return Valid;
1462 }
1463 
1464 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap,
1465                                 ClonedCodeInfo &InlinedFunctionInfo) {
1466   AttrBuilder ValidUB = IdentifyValidUBGeneratingAttributes(CB);
1467   AttrBuilder ValidPG = IdentifyValidPoisonGeneratingAttributes(CB);
1468   if (!ValidUB.hasAttributes() && !ValidPG.hasAttributes())
1469     return;
1470   auto *CalledFunction = CB.getCalledFunction();
1471   auto &Context = CalledFunction->getContext();
1472 
1473   for (auto &BB : *CalledFunction) {
1474     auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1475     if (!RI || !isa<CallBase>(RI->getOperand(0)))
1476       continue;
1477     auto *RetVal = cast<CallBase>(RI->getOperand(0));
1478     // Check that the cloned RetVal exists and is a call, otherwise we cannot
1479     // add the attributes on the cloned RetVal. Simplification during inlining
1480     // could have transformed the cloned instruction.
1481     auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1482     if (!NewRetVal)
1483       continue;
1484 
1485     // The RetVal might have be simplified during the inlining
1486     // process which can make propagation incorrect.
1487     if (InlinedFunctionInfo.isSimplified(RetVal, NewRetVal))
1488       continue;
1489     // Backward propagation of attributes to the returned value may be incorrect
1490     // if it is control flow dependent.
1491     // Consider:
1492     // @callee {
1493     //  %rv = call @foo()
1494     //  %rv2 = call @bar()
1495     //  if (%rv2 != null)
1496     //    return %rv2
1497     //  if (%rv == null)
1498     //    exit()
1499     //  return %rv
1500     // }
1501     // caller() {
1502     //   %val = call nonnull @callee()
1503     // }
1504     // Here we cannot add the nonnull attribute on either foo or bar. So, we
1505     // limit the check to both RetVal and RI are in the same basic block and
1506     // there are no throwing/exiting instructions between these instructions.
1507     if (RI->getParent() != RetVal->getParent() ||
1508         MayContainThrowingOrExitingCallAfterCB(RetVal, RI))
1509       continue;
1510     // Add to the existing attributes of NewRetVal, i.e. the cloned call
1511     // instruction.
1512     // NB! When we have the same attribute already existing on NewRetVal, but
1513     // with a differing value, the AttributeList's merge API honours the already
1514     // existing attribute value (i.e. attributes such as dereferenceable,
1515     // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1516     AttributeList AL = NewRetVal->getAttributes();
1517     if (ValidUB.getDereferenceableBytes() < AL.getRetDereferenceableBytes())
1518       ValidUB.removeAttribute(Attribute::Dereferenceable);
1519     if (ValidUB.getDereferenceableOrNullBytes() <
1520         AL.getRetDereferenceableOrNullBytes())
1521       ValidUB.removeAttribute(Attribute::DereferenceableOrNull);
1522     AttributeList NewAL = AL.addRetAttributes(Context, ValidUB);
1523     // Attributes that may generate poison returns are a bit tricky. If we
1524     // propagate them, other uses of the callsite might have their behavior
1525     // change or cause UB (if they have noundef) b.c of the new potential
1526     // poison.
1527     // Take the following three cases:
1528     //
1529     // 1)
1530     // define nonnull ptr @foo() {
1531     //   %p = call ptr @bar()
1532     //   call void @use(ptr %p) willreturn nounwind
1533     //   ret ptr %p
1534     // }
1535     //
1536     // 2)
1537     // define noundef nonnull ptr @foo() {
1538     //   %p = call ptr @bar()
1539     //   call void @use(ptr %p) willreturn nounwind
1540     //   ret ptr %p
1541     // }
1542     //
1543     // 3)
1544     // define nonnull ptr @foo() {
1545     //   %p = call noundef ptr @bar()
1546     //   ret ptr %p
1547     // }
1548     //
1549     // In case 1, we can't propagate nonnull because poison value in @use may
1550     // change behavior or trigger UB.
1551     // In case 2, we don't need to be concerned about propagating nonnull, as
1552     // any new poison at @use will trigger UB anyways.
1553     // In case 3, we can never propagate nonnull because it may create UB due to
1554     // the noundef on @bar.
1555     if (ValidPG.getAlignment().valueOrOne() < AL.getRetAlignment().valueOrOne())
1556       ValidPG.removeAttribute(Attribute::Alignment);
1557     if (ValidPG.hasAttributes()) {
1558       Attribute CBRange = ValidPG.getAttribute(Attribute::Range);
1559       if (CBRange.isValid()) {
1560         Attribute NewRange = AL.getRetAttr(Attribute::Range);
1561         if (NewRange.isValid()) {
1562           ValidPG.addRangeAttr(
1563               CBRange.getRange().intersectWith(NewRange.getRange()));
1564         }
1565       }
1566       // Three checks.
1567       // If the callsite has `noundef`, then a poison due to violating the
1568       // return attribute will create UB anyways so we can always propagate.
1569       // Otherwise, if the return value (callee to be inlined) has `noundef`, we
1570       // can't propagate as a new poison return will cause UB.
1571       // Finally, check if the return value has no uses whose behavior may
1572       // change/may cause UB if we potentially return poison. At the moment this
1573       // is implemented overly conservatively with a single-use check.
1574       // TODO: Update the single-use check to iterate through uses and only bail
1575       // if we have a potentially dangerous use.
1576 
1577       if (CB.hasRetAttr(Attribute::NoUndef) ||
1578           (RetVal->hasOneUse() && !RetVal->hasRetAttr(Attribute::NoUndef)))
1579         NewAL = NewAL.addRetAttributes(Context, ValidPG);
1580     }
1581     NewRetVal->setAttributes(NewAL);
1582   }
1583 }
1584 
1585 /// If the inlined function has non-byval align arguments, then
1586 /// add @llvm.assume-based alignment assumptions to preserve this information.
1587 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1588   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1589     return;
1590 
1591   AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1592   auto &DL = CB.getDataLayout();
1593 
1594   // To avoid inserting redundant assumptions, we should check for assumptions
1595   // already in the caller. To do this, we might need a DT of the caller.
1596   DominatorTree DT;
1597   bool DTCalculated = false;
1598 
1599   Function *CalledFunc = CB.getCalledFunction();
1600   for (Argument &Arg : CalledFunc->args()) {
1601     if (!Arg.getType()->isPointerTy() || Arg.hasPassPointeeByValueCopyAttr() ||
1602         Arg.hasNUses(0))
1603       continue;
1604     MaybeAlign Alignment = Arg.getParamAlign();
1605     if (!Alignment)
1606       continue;
1607 
1608     if (!DTCalculated) {
1609       DT.recalculate(*CB.getCaller());
1610       DTCalculated = true;
1611     }
1612     // If we can already prove the asserted alignment in the context of the
1613     // caller, then don't bother inserting the assumption.
1614     Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1615     if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= *Alignment)
1616       continue;
1617 
1618     CallInst *NewAsmp = IRBuilder<>(&CB).CreateAlignmentAssumption(
1619         DL, ArgVal, Alignment->value());
1620     AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1621   }
1622 }
1623 
1624 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
1625                                     Module *M, BasicBlock *InsertBlock,
1626                                     InlineFunctionInfo &IFI,
1627                                     Function *CalledFunc) {
1628   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1629 
1630   Value *Size =
1631       Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
1632 
1633   // Always generate a memcpy of alignment 1 here because we don't know
1634   // the alignment of the src pointer.  Other optimizations can infer
1635   // better alignment.
1636   CallInst *CI = Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1637                                       /*SrcAlign*/ Align(1), Size);
1638 
1639   // The verifier requires that all calls of debug-info-bearing functions
1640   // from debug-info-bearing functions have a debug location (for inlining
1641   // purposes). Assign a dummy location to satisfy the constraint.
1642   if (!CI->getDebugLoc() && InsertBlock->getParent()->getSubprogram())
1643     if (DISubprogram *SP = CalledFunc->getSubprogram())
1644       CI->setDebugLoc(DILocation::get(SP->getContext(), 0, 0, SP));
1645 }
1646 
1647 /// When inlining a call site that has a byval argument,
1648 /// we have to make the implicit memcpy explicit by adding it.
1649 static Value *HandleByValArgument(Type *ByValType, Value *Arg,
1650                                   Instruction *TheCall,
1651                                   const Function *CalledFunc,
1652                                   InlineFunctionInfo &IFI,
1653                                   MaybeAlign ByValAlignment) {
1654   Function *Caller = TheCall->getFunction();
1655   const DataLayout &DL = Caller->getDataLayout();
1656 
1657   // If the called function is readonly, then it could not mutate the caller's
1658   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1659   // temporary.
1660   if (CalledFunc->onlyReadsMemory()) {
1661     // If the byval argument has a specified alignment that is greater than the
1662     // passed in pointer, then we either have to round up the input pointer or
1663     // give up on this transformation.
1664     if (ByValAlignment.valueOrOne() == 1)
1665       return Arg;
1666 
1667     AssumptionCache *AC =
1668         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1669 
1670     // If the pointer is already known to be sufficiently aligned, or if we can
1671     // round it up to a larger alignment, then we don't need a temporary.
1672     if (getOrEnforceKnownAlignment(Arg, *ByValAlignment, DL, TheCall, AC) >=
1673         *ByValAlignment)
1674       return Arg;
1675 
1676     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1677     // for code quality, but rarely happens and is required for correctness.
1678   }
1679 
1680   // Create the alloca.  If we have DataLayout, use nice alignment.
1681   Align Alignment = DL.getPrefTypeAlign(ByValType);
1682 
1683   // If the byval had an alignment specified, we *must* use at least that
1684   // alignment, as it is required by the byval argument (and uses of the
1685   // pointer inside the callee).
1686   if (ByValAlignment)
1687     Alignment = std::max(Alignment, *ByValAlignment);
1688 
1689   AllocaInst *NewAlloca =
1690       new AllocaInst(ByValType, Arg->getType()->getPointerAddressSpace(),
1691                      nullptr, Alignment, Arg->getName());
1692   NewAlloca->insertBefore(Caller->begin()->begin());
1693   IFI.StaticAllocas.push_back(NewAlloca);
1694 
1695   // Uses of the argument in the function should use our new alloca
1696   // instead.
1697   return NewAlloca;
1698 }
1699 
1700 // Check whether this Value is used by a lifetime intrinsic.
1701 static bool isUsedByLifetimeMarker(Value *V) {
1702   for (User *U : V->users())
1703     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1704       if (II->isLifetimeStartOrEnd())
1705         return true;
1706   return false;
1707 }
1708 
1709 // Check whether the given alloca already has
1710 // lifetime.start or lifetime.end intrinsics.
1711 static bool hasLifetimeMarkers(AllocaInst *AI) {
1712   Type *Ty = AI->getType();
1713   Type *Int8PtrTy =
1714       PointerType::get(Ty->getContext(), Ty->getPointerAddressSpace());
1715   if (Ty == Int8PtrTy)
1716     return isUsedByLifetimeMarker(AI);
1717 
1718   // Do a scan to find all the casts to i8*.
1719   for (User *U : AI->users()) {
1720     if (U->getType() != Int8PtrTy) continue;
1721     if (U->stripPointerCasts() != AI) continue;
1722     if (isUsedByLifetimeMarker(U))
1723       return true;
1724   }
1725   return false;
1726 }
1727 
1728 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1729 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1730 /// cannot be static.
1731 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1732   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1733 }
1734 
1735 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1736 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1737 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1738                                LLVMContext &Ctx,
1739                                DenseMap<const MDNode *, MDNode *> &IANodes) {
1740   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1741   return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1742                          OrigDL.getScope(), IA);
1743 }
1744 
1745 /// Update inlined instructions' line numbers to
1746 /// to encode location where these instructions are inlined.
1747 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1748                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1749   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1750   if (!TheCallDL)
1751     return;
1752 
1753   auto &Ctx = Fn->getContext();
1754   DILocation *InlinedAtNode = TheCallDL;
1755 
1756   // Create a unique call site, not to be confused with any other call from the
1757   // same location.
1758   InlinedAtNode = DILocation::getDistinct(
1759       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1760       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1761 
1762   // Cache the inlined-at nodes as they're built so they are reused, without
1763   // this every instruction's inlined-at chain would become distinct from each
1764   // other.
1765   DenseMap<const MDNode *, MDNode *> IANodes;
1766 
1767   // Check if we are not generating inline line tables and want to use
1768   // the call site location instead.
1769   bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1770 
1771   // Helper-util for updating the metadata attached to an instruction.
1772   auto UpdateInst = [&](Instruction &I) {
1773     // Loop metadata needs to be updated so that the start and end locs
1774     // reference inlined-at locations.
1775     auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1776                               &IANodes](Metadata *MD) -> Metadata * {
1777       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1778         return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1779       return MD;
1780     };
1781     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1782 
1783     if (!NoInlineLineTables)
1784       if (DebugLoc DL = I.getDebugLoc()) {
1785         DebugLoc IDL =
1786             inlineDebugLoc(DL, InlinedAtNode, I.getContext(), IANodes);
1787         I.setDebugLoc(IDL);
1788         return;
1789       }
1790 
1791     if (CalleeHasDebugInfo && !NoInlineLineTables)
1792       return;
1793 
1794     // If the inlined instruction has no line number, or if inline info
1795     // is not being generated, make it look as if it originates from the call
1796     // location. This is important for ((__always_inline, __nodebug__))
1797     // functions which must use caller location for all instructions in their
1798     // function body.
1799 
1800     // Don't update static allocas, as they may get moved later.
1801     if (auto *AI = dyn_cast<AllocaInst>(&I))
1802       if (allocaWouldBeStaticInEntry(AI))
1803         return;
1804 
1805     // Do not force a debug loc for pseudo probes, since they do not need to
1806     // be debuggable, and also they are expected to have a zero/null dwarf
1807     // discriminator at this point which could be violated otherwise.
1808     if (isa<PseudoProbeInst>(I))
1809       return;
1810 
1811     I.setDebugLoc(TheCallDL);
1812   };
1813 
1814   // Helper-util for updating debug-info records attached to instructions.
1815   auto UpdateDVR = [&](DbgRecord *DVR) {
1816     assert(DVR->getDebugLoc() && "Debug Value must have debug loc");
1817     if (NoInlineLineTables) {
1818       DVR->setDebugLoc(TheCallDL);
1819       return;
1820     }
1821     DebugLoc DL = DVR->getDebugLoc();
1822     DebugLoc IDL =
1823         inlineDebugLoc(DL, InlinedAtNode,
1824                        DVR->getMarker()->getParent()->getContext(), IANodes);
1825     DVR->setDebugLoc(IDL);
1826   };
1827 
1828   // Iterate over all instructions, updating metadata and debug-info records.
1829   for (; FI != Fn->end(); ++FI) {
1830     for (Instruction &I : *FI) {
1831       UpdateInst(I);
1832       for (DbgRecord &DVR : I.getDbgRecordRange()) {
1833         UpdateDVR(&DVR);
1834       }
1835     }
1836 
1837     // Remove debug info intrinsics if we're not keeping inline info.
1838     if (NoInlineLineTables) {
1839       BasicBlock::iterator BI = FI->begin();
1840       while (BI != FI->end()) {
1841         if (isa<DbgInfoIntrinsic>(BI)) {
1842           BI = BI->eraseFromParent();
1843           continue;
1844         } else {
1845           BI->dropDbgRecords();
1846         }
1847         ++BI;
1848       }
1849     }
1850   }
1851 }
1852 
1853 #undef DEBUG_TYPE
1854 #define DEBUG_TYPE "assignment-tracking"
1855 /// Find Alloca and linked DbgAssignIntrinsic for locals escaped by \p CB.
1856 static at::StorageToVarsMap collectEscapedLocals(const DataLayout &DL,
1857                                                  const CallBase &CB) {
1858   at::StorageToVarsMap EscapedLocals;
1859   SmallPtrSet<const Value *, 4> SeenBases;
1860 
1861   LLVM_DEBUG(
1862       errs() << "# Finding caller local variables escaped by callee\n");
1863   for (const Value *Arg : CB.args()) {
1864     LLVM_DEBUG(errs() << "INSPECT: " << *Arg << "\n");
1865     if (!Arg->getType()->isPointerTy()) {
1866       LLVM_DEBUG(errs() << " | SKIP: Not a pointer\n");
1867       continue;
1868     }
1869 
1870     const Instruction *I = dyn_cast<Instruction>(Arg);
1871     if (!I) {
1872       LLVM_DEBUG(errs() << " | SKIP: Not result of instruction\n");
1873       continue;
1874     }
1875 
1876     // Walk back to the base storage.
1877     assert(Arg->getType()->isPtrOrPtrVectorTy());
1878     APInt TmpOffset(DL.getIndexTypeSizeInBits(Arg->getType()), 0, false);
1879     const AllocaInst *Base = dyn_cast<AllocaInst>(
1880         Arg->stripAndAccumulateConstantOffsets(DL, TmpOffset, true));
1881     if (!Base) {
1882       LLVM_DEBUG(errs() << " | SKIP: Couldn't walk back to base storage\n");
1883       continue;
1884     }
1885 
1886     assert(Base);
1887     LLVM_DEBUG(errs() << " | BASE: " << *Base << "\n");
1888     // We only need to process each base address once - skip any duplicates.
1889     if (!SeenBases.insert(Base).second)
1890       continue;
1891 
1892     // Find all local variables associated with the backing storage.
1893     auto CollectAssignsForStorage = [&](auto *DbgAssign) {
1894       // Skip variables from inlined functions - they are not local variables.
1895       if (DbgAssign->getDebugLoc().getInlinedAt())
1896         return;
1897       LLVM_DEBUG(errs() << " > DEF : " << *DbgAssign << "\n");
1898       EscapedLocals[Base].insert(at::VarRecord(DbgAssign));
1899     };
1900     for_each(at::getAssignmentMarkers(Base), CollectAssignsForStorage);
1901     for_each(at::getDVRAssignmentMarkers(Base), CollectAssignsForStorage);
1902   }
1903   return EscapedLocals;
1904 }
1905 
1906 static void trackInlinedStores(Function::iterator Start, Function::iterator End,
1907                                const CallBase &CB) {
1908   LLVM_DEBUG(errs() << "trackInlinedStores into "
1909                     << Start->getParent()->getName() << " from "
1910                     << CB.getCalledFunction()->getName() << "\n");
1911   std::unique_ptr<DataLayout> DL = std::make_unique<DataLayout>(CB.getModule());
1912   at::trackAssignments(Start, End, collectEscapedLocals(*DL, CB), *DL);
1913 }
1914 
1915 /// Update inlined instructions' DIAssignID metadata. We need to do this
1916 /// otherwise a function inlined more than once into the same function
1917 /// will cause DIAssignID to be shared by many instructions.
1918 static void fixupAssignments(Function::iterator Start, Function::iterator End) {
1919   DenseMap<DIAssignID *, DIAssignID *> Map;
1920   // Loop over all the inlined instructions. If we find a DIAssignID
1921   // attachment or use, replace it with a new version.
1922   for (auto BBI = Start; BBI != End; ++BBI) {
1923     for (Instruction &I : *BBI)
1924       at::remapAssignID(Map, I);
1925   }
1926 }
1927 #undef DEBUG_TYPE
1928 #define DEBUG_TYPE "inline-function"
1929 
1930 /// Update the block frequencies of the caller after a callee has been inlined.
1931 ///
1932 /// Each block cloned into the caller has its block frequency scaled by the
1933 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1934 /// callee's entry block gets the same frequency as the callsite block and the
1935 /// relative frequencies of all cloned blocks remain the same after cloning.
1936 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1937                             const ValueToValueMapTy &VMap,
1938                             BlockFrequencyInfo *CallerBFI,
1939                             BlockFrequencyInfo *CalleeBFI,
1940                             const BasicBlock &CalleeEntryBlock) {
1941   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1942   for (auto Entry : VMap) {
1943     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1944       continue;
1945     auto *OrigBB = cast<BasicBlock>(Entry.first);
1946     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1947     BlockFrequency Freq = CalleeBFI->getBlockFreq(OrigBB);
1948     if (!ClonedBBs.insert(ClonedBB).second) {
1949       // Multiple blocks in the callee might get mapped to one cloned block in
1950       // the caller since we prune the callee as we clone it. When that happens,
1951       // we want to use the maximum among the original blocks' frequencies.
1952       BlockFrequency NewFreq = CallerBFI->getBlockFreq(ClonedBB);
1953       if (NewFreq > Freq)
1954         Freq = NewFreq;
1955     }
1956     CallerBFI->setBlockFreq(ClonedBB, Freq);
1957   }
1958   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1959   CallerBFI->setBlockFreqAndScale(
1960       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock), ClonedBBs);
1961 }
1962 
1963 /// Update the branch metadata for cloned call instructions.
1964 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1965                               const ProfileCount &CalleeEntryCount,
1966                               const CallBase &TheCall, ProfileSummaryInfo *PSI,
1967                               BlockFrequencyInfo *CallerBFI) {
1968   if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
1969     return;
1970   auto CallSiteCount =
1971       PSI ? PSI->getProfileCount(TheCall, CallerBFI) : std::nullopt;
1972   int64_t CallCount =
1973       std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount());
1974   updateProfileCallee(Callee, -CallCount, &VMap);
1975 }
1976 
1977 void llvm::updateProfileCallee(
1978     Function *Callee, int64_t EntryDelta,
1979     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1980   auto CalleeCount = Callee->getEntryCount();
1981   if (!CalleeCount)
1982     return;
1983 
1984   const uint64_t PriorEntryCount = CalleeCount->getCount();
1985 
1986   // Since CallSiteCount is an estimate, it could exceed the original callee
1987   // count and has to be set to 0 so guard against underflow.
1988   const uint64_t NewEntryCount =
1989       (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
1990           ? 0
1991           : PriorEntryCount + EntryDelta;
1992 
1993   auto updateVTableProfWeight = [](CallBase *CB, const uint64_t NewEntryCount,
1994                                    const uint64_t PriorEntryCount) {
1995     Instruction *VPtr = PGOIndirectCallVisitor::tryGetVTableInstruction(CB);
1996     if (VPtr)
1997       scaleProfData(*VPtr, NewEntryCount, PriorEntryCount);
1998   };
1999 
2000   // During inlining ?
2001   if (VMap) {
2002     uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
2003     for (auto Entry : *VMap) {
2004       if (isa<CallInst>(Entry.first))
2005         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) {
2006           CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
2007           updateVTableProfWeight(CI, CloneEntryCount, PriorEntryCount);
2008         }
2009 
2010       if (isa<InvokeInst>(Entry.first))
2011         if (auto *II = dyn_cast_or_null<InvokeInst>(Entry.second)) {
2012           II->updateProfWeight(CloneEntryCount, PriorEntryCount);
2013           updateVTableProfWeight(II, CloneEntryCount, PriorEntryCount);
2014         }
2015     }
2016   }
2017 
2018   if (EntryDelta) {
2019     Callee->setEntryCount(NewEntryCount);
2020 
2021     for (BasicBlock &BB : *Callee)
2022       // No need to update the callsite if it is pruned during inlining.
2023       if (!VMap || VMap->count(&BB))
2024         for (Instruction &I : BB) {
2025           if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2026             CI->updateProfWeight(NewEntryCount, PriorEntryCount);
2027             updateVTableProfWeight(CI, NewEntryCount, PriorEntryCount);
2028           }
2029           if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
2030             II->updateProfWeight(NewEntryCount, PriorEntryCount);
2031             updateVTableProfWeight(II, NewEntryCount, PriorEntryCount);
2032           }
2033         }
2034   }
2035 }
2036 
2037 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
2038 /// result is implicitly consumed by a call to retainRV or claimRV immediately
2039 /// after the call. This function inlines the retainRV/claimRV calls.
2040 ///
2041 /// There are three cases to consider:
2042 ///
2043 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
2044 ///    object in the callee return block, the autoreleaseRV call and the
2045 ///    retainRV/claimRV call in the caller cancel out. If the call in the caller
2046 ///    is a claimRV call, a call to objc_release is emitted.
2047 ///
2048 /// 2. If there is a call in the callee return block that doesn't have operand
2049 ///    bundle "clang.arc.attachedcall", the operand bundle on the original call
2050 ///    is transferred to the call in the callee.
2051 ///
2052 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
2053 ///    a retainRV call.
2054 static void
2055 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
2056                            const SmallVectorImpl<ReturnInst *> &Returns) {
2057   Module *Mod = CB.getModule();
2058   assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
2059   bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
2060        IsUnsafeClaimRV = !IsRetainRV;
2061 
2062   for (auto *RI : Returns) {
2063     Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
2064     bool InsertRetainCall = IsRetainRV;
2065     IRBuilder<> Builder(RI->getContext());
2066 
2067     // Walk backwards through the basic block looking for either a matching
2068     // autoreleaseRV call or an unannotated call.
2069     auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
2070                                       RI->getParent()->rend());
2071     for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
2072       // Ignore casts.
2073       if (isa<CastInst>(I))
2074         continue;
2075 
2076       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2077         if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
2078             !II->hasNUses(0) ||
2079             objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
2080           break;
2081 
2082         // If we've found a matching authoreleaseRV call:
2083         // - If claimRV is attached to the call, insert a call to objc_release
2084         //   and erase the autoreleaseRV call.
2085         // - If retainRV is attached to the call, just erase the autoreleaseRV
2086         //   call.
2087         if (IsUnsafeClaimRV) {
2088           Builder.SetInsertPoint(II);
2089           Function *IFn =
2090               Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
2091           Builder.CreateCall(IFn, RetOpnd, "");
2092         }
2093         II->eraseFromParent();
2094         InsertRetainCall = false;
2095         break;
2096       }
2097 
2098       auto *CI = dyn_cast<CallInst>(&I);
2099 
2100       if (!CI)
2101         break;
2102 
2103       if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
2104           objcarc::hasAttachedCallOpBundle(CI))
2105         break;
2106 
2107       // If we've found an unannotated call that defines RetOpnd, add a
2108       // "clang.arc.attachedcall" operand bundle.
2109       Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
2110       OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
2111       auto *NewCall = CallBase::addOperandBundle(
2112           CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI->getIterator());
2113       NewCall->copyMetadata(*CI);
2114       CI->replaceAllUsesWith(NewCall);
2115       CI->eraseFromParent();
2116       InsertRetainCall = false;
2117       break;
2118     }
2119 
2120     if (InsertRetainCall) {
2121       // The retainRV is attached to the call and we've failed to find a
2122       // matching autoreleaseRV or an annotated call in the callee. Emit a call
2123       // to objc_retain.
2124       Builder.SetInsertPoint(RI);
2125       Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
2126       Builder.CreateCall(IFn, RetOpnd, "");
2127     }
2128   }
2129 }
2130 
2131 /// This function inlines the called function into the basic block of the
2132 /// caller. This returns false if it is not possible to inline this call.
2133 /// The program is still in a well defined state if this occurs though.
2134 ///
2135 /// Note that this only does one level of inlining.  For example, if the
2136 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
2137 /// exists in the instruction stream.  Similarly this will inline a recursive
2138 /// function by one level.
2139 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
2140                                         bool MergeAttributes,
2141                                         AAResults *CalleeAAR,
2142                                         bool InsertLifetime,
2143                                         Function *ForwardVarArgsTo) {
2144   assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
2145 
2146   // FIXME: we don't inline callbr yet.
2147   if (isa<CallBrInst>(CB))
2148     return InlineResult::failure("We don't inline callbr yet.");
2149 
2150   // If IFI has any state in it, zap it before we fill it in.
2151   IFI.reset();
2152 
2153   Function *CalledFunc = CB.getCalledFunction();
2154   if (!CalledFunc ||               // Can't inline external function or indirect
2155       CalledFunc->isDeclaration()) // call!
2156     return InlineResult::failure("external or indirect");
2157 
2158   // The inliner does not know how to inline through calls with operand bundles
2159   // in general ...
2160   Value *ConvergenceControlToken = nullptr;
2161   if (CB.hasOperandBundles()) {
2162     for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
2163       auto OBUse = CB.getOperandBundleAt(i);
2164       uint32_t Tag = OBUse.getTagID();
2165       // ... but it knows how to inline through "deopt" operand bundles ...
2166       if (Tag == LLVMContext::OB_deopt)
2167         continue;
2168       // ... and "funclet" operand bundles.
2169       if (Tag == LLVMContext::OB_funclet)
2170         continue;
2171       if (Tag == LLVMContext::OB_clang_arc_attachedcall)
2172         continue;
2173       if (Tag == LLVMContext::OB_kcfi)
2174         continue;
2175       if (Tag == LLVMContext::OB_convergencectrl) {
2176         ConvergenceControlToken = OBUse.Inputs[0].get();
2177         continue;
2178       }
2179 
2180       return InlineResult::failure("unsupported operand bundle");
2181     }
2182   }
2183 
2184   // FIXME: The check below is redundant and incomplete. According to spec, if a
2185   // convergent call is missing a token, then the caller is using uncontrolled
2186   // convergence. If the callee has an entry intrinsic, then the callee is using
2187   // controlled convergence, and the call cannot be inlined. A proper
2188   // implemenation of this check requires a whole new analysis that identifies
2189   // convergence in every function. For now, we skip that and just do this one
2190   // cursory check. The underlying assumption is that in a compiler flow that
2191   // fully implements convergence control tokens, there is no mixing of
2192   // controlled and uncontrolled convergent operations in the whole program.
2193   if (CB.isConvergent()) {
2194     auto *I = CalledFunc->getEntryBlock().getFirstNonPHI();
2195     if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) {
2196       if (IntrinsicCall->getIntrinsicID() ==
2197           Intrinsic::experimental_convergence_entry) {
2198         if (!ConvergenceControlToken) {
2199           return InlineResult::failure(
2200               "convergent call needs convergencectrl operand");
2201         }
2202       }
2203     }
2204   }
2205 
2206   // If the call to the callee cannot throw, set the 'nounwind' flag on any
2207   // calls that we inline.
2208   bool MarkNoUnwind = CB.doesNotThrow();
2209 
2210   BasicBlock *OrigBB = CB.getParent();
2211   Function *Caller = OrigBB->getParent();
2212 
2213   // GC poses two hazards to inlining, which only occur when the callee has GC:
2214   //  1. If the caller has no GC, then the callee's GC must be propagated to the
2215   //     caller.
2216   //  2. If the caller has a differing GC, it is invalid to inline.
2217   if (CalledFunc->hasGC()) {
2218     if (!Caller->hasGC())
2219       Caller->setGC(CalledFunc->getGC());
2220     else if (CalledFunc->getGC() != Caller->getGC())
2221       return InlineResult::failure("incompatible GC");
2222   }
2223 
2224   // Get the personality function from the callee if it contains a landing pad.
2225   Constant *CalledPersonality =
2226       CalledFunc->hasPersonalityFn()
2227           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
2228           : nullptr;
2229 
2230   // Find the personality function used by the landing pads of the caller. If it
2231   // exists, then check to see that it matches the personality function used in
2232   // the callee.
2233   Constant *CallerPersonality =
2234       Caller->hasPersonalityFn()
2235           ? Caller->getPersonalityFn()->stripPointerCasts()
2236           : nullptr;
2237   if (CalledPersonality) {
2238     if (!CallerPersonality)
2239       Caller->setPersonalityFn(CalledPersonality);
2240     // If the personality functions match, then we can perform the
2241     // inlining. Otherwise, we can't inline.
2242     // TODO: This isn't 100% true. Some personality functions are proper
2243     //       supersets of others and can be used in place of the other.
2244     else if (CalledPersonality != CallerPersonality)
2245       return InlineResult::failure("incompatible personality");
2246   }
2247 
2248   // We need to figure out which funclet the callsite was in so that we may
2249   // properly nest the callee.
2250   Instruction *CallSiteEHPad = nullptr;
2251   if (CallerPersonality) {
2252     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
2253     if (isScopedEHPersonality(Personality)) {
2254       std::optional<OperandBundleUse> ParentFunclet =
2255           CB.getOperandBundle(LLVMContext::OB_funclet);
2256       if (ParentFunclet)
2257         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
2258 
2259       // OK, the inlining site is legal.  What about the target function?
2260 
2261       if (CallSiteEHPad) {
2262         if (Personality == EHPersonality::MSVC_CXX) {
2263           // The MSVC personality cannot tolerate catches getting inlined into
2264           // cleanup funclets.
2265           if (isa<CleanupPadInst>(CallSiteEHPad)) {
2266             // Ok, the call site is within a cleanuppad.  Let's check the callee
2267             // for catchpads.
2268             for (const BasicBlock &CalledBB : *CalledFunc) {
2269               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
2270                 return InlineResult::failure("catch in cleanup funclet");
2271             }
2272           }
2273         } else if (isAsynchronousEHPersonality(Personality)) {
2274           // SEH is even less tolerant, there may not be any sort of exceptional
2275           // funclet in the callee.
2276           for (const BasicBlock &CalledBB : *CalledFunc) {
2277             if (CalledBB.isEHPad())
2278               return InlineResult::failure("SEH in cleanup funclet");
2279           }
2280         }
2281       }
2282     }
2283   }
2284 
2285   // Determine if we are dealing with a call in an EHPad which does not unwind
2286   // to caller.
2287   bool EHPadForCallUnwindsLocally = false;
2288   if (CallSiteEHPad && isa<CallInst>(CB)) {
2289     UnwindDestMemoTy FuncletUnwindMap;
2290     Value *CallSiteUnwindDestToken =
2291         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
2292 
2293     EHPadForCallUnwindsLocally =
2294         CallSiteUnwindDestToken &&
2295         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
2296   }
2297 
2298   // Get an iterator to the last basic block in the function, which will have
2299   // the new function inlined after it.
2300   Function::iterator LastBlock = --Caller->end();
2301 
2302   // Make sure to capture all of the return instructions from the cloned
2303   // function.
2304   SmallVector<ReturnInst*, 8> Returns;
2305   ClonedCodeInfo InlinedFunctionInfo;
2306   Function::iterator FirstNewBlock;
2307 
2308   { // Scope to destroy VMap after cloning.
2309     ValueToValueMapTy VMap;
2310     struct ByValInit {
2311       Value *Dst;
2312       Value *Src;
2313       Type *Ty;
2314     };
2315     // Keep a list of pair (dst, src) to emit byval initializations.
2316     SmallVector<ByValInit, 4> ByValInits;
2317 
2318     // When inlining a function that contains noalias scope metadata,
2319     // this metadata needs to be cloned so that the inlined blocks
2320     // have different "unique scopes" at every call site.
2321     // Track the metadata that must be cloned. Do this before other changes to
2322     // the function, so that we do not get in trouble when inlining caller ==
2323     // callee.
2324     ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
2325 
2326     auto &DL = Caller->getDataLayout();
2327 
2328     // Calculate the vector of arguments to pass into the function cloner, which
2329     // matches up the formal to the actual argument values.
2330     auto AI = CB.arg_begin();
2331     unsigned ArgNo = 0;
2332     for (Function::arg_iterator I = CalledFunc->arg_begin(),
2333          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
2334       Value *ActualArg = *AI;
2335 
2336       // When byval arguments actually inlined, we need to make the copy implied
2337       // by them explicit.  However, we don't do this if the callee is readonly
2338       // or readnone, because the copy would be unneeded: the callee doesn't
2339       // modify the struct.
2340       if (CB.isByValArgument(ArgNo)) {
2341         ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
2342                                         &CB, CalledFunc, IFI,
2343                                         CalledFunc->getParamAlign(ArgNo));
2344         if (ActualArg != *AI)
2345           ByValInits.push_back(
2346               {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
2347       }
2348 
2349       VMap[&*I] = ActualArg;
2350     }
2351 
2352     // TODO: Remove this when users have been updated to the assume bundles.
2353     // Add alignment assumptions if necessary. We do this before the inlined
2354     // instructions are actually cloned into the caller so that we can easily
2355     // check what will be known at the start of the inlined code.
2356     AddAlignmentAssumptions(CB, IFI);
2357 
2358     AssumptionCache *AC =
2359         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2360 
2361     /// Preserve all attributes on of the call and its parameters.
2362     salvageKnowledge(&CB, AC);
2363 
2364     // We want the inliner to prune the code as it copies.  We would LOVE to
2365     // have no dead or constant instructions leftover after inlining occurs
2366     // (which can happen, e.g., because an argument was constant), but we'll be
2367     // happy with whatever the cloner can do.
2368     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
2369                               /*ModuleLevelChanges=*/false, Returns, ".i",
2370                               &InlinedFunctionInfo);
2371     // Remember the first block that is newly cloned over.
2372     FirstNewBlock = LastBlock; ++FirstNewBlock;
2373 
2374     // Insert retainRV/clainRV runtime calls.
2375     objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
2376     if (RVCallKind != objcarc::ARCInstKind::None)
2377       inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
2378 
2379     // Updated caller/callee profiles only when requested. For sample loader
2380     // inlining, the context-sensitive inlinee profile doesn't need to be
2381     // subtracted from callee profile, and the inlined clone also doesn't need
2382     // to be scaled based on call site count.
2383     if (IFI.UpdateProfile) {
2384       if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
2385         // Update the BFI of blocks cloned into the caller.
2386         updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
2387                         CalledFunc->front());
2388 
2389       if (auto Profile = CalledFunc->getEntryCount())
2390         updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
2391                           IFI.CallerBFI);
2392     }
2393 
2394     // Inject byval arguments initialization.
2395     for (ByValInit &Init : ByValInits)
2396       HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
2397                               &*FirstNewBlock, IFI, CalledFunc);
2398 
2399     std::optional<OperandBundleUse> ParentDeopt =
2400         CB.getOperandBundle(LLVMContext::OB_deopt);
2401     if (ParentDeopt) {
2402       SmallVector<OperandBundleDef, 2> OpDefs;
2403 
2404       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
2405         CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
2406         if (!ICS)
2407           continue; // instruction was DCE'd or RAUW'ed to undef
2408 
2409         OpDefs.clear();
2410 
2411         OpDefs.reserve(ICS->getNumOperandBundles());
2412 
2413         for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
2414              ++COBi) {
2415           auto ChildOB = ICS->getOperandBundleAt(COBi);
2416           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
2417             // If the inlined call has other operand bundles, let them be
2418             OpDefs.emplace_back(ChildOB);
2419             continue;
2420           }
2421 
2422           // It may be useful to separate this logic (of handling operand
2423           // bundles) out to a separate "policy" component if this gets crowded.
2424           // Prepend the parent's deoptimization continuation to the newly
2425           // inlined call's deoptimization continuation.
2426           std::vector<Value *> MergedDeoptArgs;
2427           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2428                                   ChildOB.Inputs.size());
2429 
2430           llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2431           llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2432 
2433           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2434         }
2435 
2436         Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS->getIterator());
2437 
2438         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2439         // this even if the call returns void.
2440         ICS->replaceAllUsesWith(NewI);
2441 
2442         VH = nullptr;
2443         ICS->eraseFromParent();
2444       }
2445     }
2446 
2447     // For 'nodebug' functions, the associated DISubprogram is always null.
2448     // Conservatively avoid propagating the callsite debug location to
2449     // instructions inlined from a function whose DISubprogram is not null.
2450     fixupLineNumbers(Caller, FirstNewBlock, &CB,
2451                      CalledFunc->getSubprogram() != nullptr);
2452 
2453     if (isAssignmentTrackingEnabled(*Caller->getParent())) {
2454       // Interpret inlined stores to caller-local variables as assignments.
2455       trackInlinedStores(FirstNewBlock, Caller->end(), CB);
2456 
2457       // Update DIAssignID metadata attachments and uses so that they are
2458       // unique to this inlined instance.
2459       fixupAssignments(FirstNewBlock, Caller->end());
2460     }
2461 
2462     // Now clone the inlined noalias scope metadata.
2463     SAMetadataCloner.clone();
2464     SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2465 
2466     // Add noalias metadata if necessary.
2467     AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
2468 
2469     // Clone return attributes on the callsite into the calls within the inlined
2470     // function which feed into its return value.
2471     AddReturnAttributes(CB, VMap, InlinedFunctionInfo);
2472 
2473     // Clone attributes on the params of the callsite to calls within the
2474     // inlined function which use the same param.
2475     AddParamAndFnBasicAttributes(CB, VMap, InlinedFunctionInfo);
2476 
2477     propagateMemProfMetadata(CalledFunc, CB,
2478                              InlinedFunctionInfo.ContainsMemProfMetadata, VMap);
2479 
2480     // Propagate metadata on the callsite if necessary.
2481     PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2482 
2483     // Register any cloned assumptions.
2484     if (IFI.GetAssumptionCache)
2485       for (BasicBlock &NewBlock :
2486            make_range(FirstNewBlock->getIterator(), Caller->end()))
2487         for (Instruction &I : NewBlock)
2488           if (auto *II = dyn_cast<AssumeInst>(&I))
2489             IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2490   }
2491 
2492   if (ConvergenceControlToken) {
2493     auto *I = FirstNewBlock->getFirstNonPHI();
2494     if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) {
2495       if (IntrinsicCall->getIntrinsicID() ==
2496           Intrinsic::experimental_convergence_entry) {
2497         IntrinsicCall->replaceAllUsesWith(ConvergenceControlToken);
2498         IntrinsicCall->eraseFromParent();
2499       }
2500     }
2501   }
2502 
2503   // If there are any alloca instructions in the block that used to be the entry
2504   // block for the callee, move them to the entry block of the caller.  First
2505   // calculate which instruction they should be inserted before.  We insert the
2506   // instructions at the end of the current alloca list.
2507   {
2508     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2509     for (BasicBlock::iterator I = FirstNewBlock->begin(),
2510          E = FirstNewBlock->end(); I != E; ) {
2511       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2512       if (!AI) continue;
2513 
2514       // If the alloca is now dead, remove it.  This often occurs due to code
2515       // specialization.
2516       if (AI->use_empty()) {
2517         AI->eraseFromParent();
2518         continue;
2519       }
2520 
2521       if (!allocaWouldBeStaticInEntry(AI))
2522         continue;
2523 
2524       // Keep track of the static allocas that we inline into the caller.
2525       IFI.StaticAllocas.push_back(AI);
2526 
2527       // Scan for the block of allocas that we can move over, and move them
2528       // all at once.
2529       while (isa<AllocaInst>(I) &&
2530              !cast<AllocaInst>(I)->use_empty() &&
2531              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2532         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2533         ++I;
2534       }
2535 
2536       // Transfer all of the allocas over in a block.  Using splice means
2537       // that the instructions aren't removed from the symbol table, then
2538       // reinserted.
2539       I.setTailBit(true);
2540       Caller->getEntryBlock().splice(InsertPoint, &*FirstNewBlock,
2541                                      AI->getIterator(), I);
2542     }
2543   }
2544 
2545   SmallVector<Value*,4> VarArgsToForward;
2546   SmallVector<AttributeSet, 4> VarArgsAttrs;
2547   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2548        i < CB.arg_size(); i++) {
2549     VarArgsToForward.push_back(CB.getArgOperand(i));
2550     VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
2551   }
2552 
2553   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2554   if (InlinedFunctionInfo.ContainsCalls) {
2555     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2556     if (CallInst *CI = dyn_cast<CallInst>(&CB))
2557       CallSiteTailKind = CI->getTailCallKind();
2558 
2559     // For inlining purposes, the "notail" marker is the same as no marker.
2560     if (CallSiteTailKind == CallInst::TCK_NoTail)
2561       CallSiteTailKind = CallInst::TCK_None;
2562 
2563     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2564          ++BB) {
2565       for (Instruction &I : llvm::make_early_inc_range(*BB)) {
2566         CallInst *CI = dyn_cast<CallInst>(&I);
2567         if (!CI)
2568           continue;
2569 
2570         // Forward varargs from inlined call site to calls to the
2571         // ForwardVarArgsTo function, if requested, and to musttail calls.
2572         if (!VarArgsToForward.empty() &&
2573             ((ForwardVarArgsTo &&
2574               CI->getCalledFunction() == ForwardVarArgsTo) ||
2575              CI->isMustTailCall())) {
2576           // Collect attributes for non-vararg parameters.
2577           AttributeList Attrs = CI->getAttributes();
2578           SmallVector<AttributeSet, 8> ArgAttrs;
2579           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2580             for (unsigned ArgNo = 0;
2581                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2582               ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
2583           }
2584 
2585           // Add VarArg attributes.
2586           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2587           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
2588                                      Attrs.getRetAttrs(), ArgAttrs);
2589           // Add VarArgs to existing parameters.
2590           SmallVector<Value *, 6> Params(CI->args());
2591           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2592           CallInst *NewCI = CallInst::Create(
2593               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI->getIterator());
2594           NewCI->setDebugLoc(CI->getDebugLoc());
2595           NewCI->setAttributes(Attrs);
2596           NewCI->setCallingConv(CI->getCallingConv());
2597           CI->replaceAllUsesWith(NewCI);
2598           CI->eraseFromParent();
2599           CI = NewCI;
2600         }
2601 
2602         if (Function *F = CI->getCalledFunction())
2603           InlinedDeoptimizeCalls |=
2604               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2605 
2606         // We need to reduce the strength of any inlined tail calls.  For
2607         // musttail, we have to avoid introducing potential unbounded stack
2608         // growth.  For example, if functions 'f' and 'g' are mutually recursive
2609         // with musttail, we can inline 'g' into 'f' so long as we preserve
2610         // musttail on the cloned call to 'f'.  If either the inlined call site
2611         // or the cloned call site is *not* musttail, the program already has
2612         // one frame of stack growth, so it's safe to remove musttail.  Here is
2613         // a table of example transformations:
2614         //
2615         //    f -> musttail g -> musttail f  ==>  f -> musttail f
2616         //    f -> musttail g ->     tail f  ==>  f ->     tail f
2617         //    f ->          g -> musttail f  ==>  f ->          f
2618         //    f ->          g ->     tail f  ==>  f ->          f
2619         //
2620         // Inlined notail calls should remain notail calls.
2621         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2622         if (ChildTCK != CallInst::TCK_NoTail)
2623           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2624         CI->setTailCallKind(ChildTCK);
2625         InlinedMustTailCalls |= CI->isMustTailCall();
2626 
2627         // Call sites inlined through a 'nounwind' call site should be
2628         // 'nounwind' as well. However, avoid marking call sites explicitly
2629         // where possible. This helps expose more opportunities for CSE after
2630         // inlining, commonly when the callee is an intrinsic.
2631         if (MarkNoUnwind && !CI->doesNotThrow())
2632           CI->setDoesNotThrow();
2633       }
2634     }
2635   }
2636 
2637   // Leave lifetime markers for the static alloca's, scoping them to the
2638   // function we just inlined.
2639   // We need to insert lifetime intrinsics even at O0 to avoid invalid
2640   // access caused by multithreaded coroutines. The check
2641   // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2642   if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2643       !IFI.StaticAllocas.empty()) {
2644     IRBuilder<> builder(&*FirstNewBlock, FirstNewBlock->begin());
2645     for (AllocaInst *AI : IFI.StaticAllocas) {
2646       // Don't mark swifterror allocas. They can't have bitcast uses.
2647       if (AI->isSwiftError())
2648         continue;
2649 
2650       // If the alloca is already scoped to something smaller than the whole
2651       // function then there's no need to add redundant, less accurate markers.
2652       if (hasLifetimeMarkers(AI))
2653         continue;
2654 
2655       // Try to determine the size of the allocation.
2656       ConstantInt *AllocaSize = nullptr;
2657       if (ConstantInt *AIArraySize =
2658           dyn_cast<ConstantInt>(AI->getArraySize())) {
2659         auto &DL = Caller->getDataLayout();
2660         Type *AllocaType = AI->getAllocatedType();
2661         TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2662         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2663 
2664         // Don't add markers for zero-sized allocas.
2665         if (AllocaArraySize == 0)
2666           continue;
2667 
2668         // Check that array size doesn't saturate uint64_t and doesn't
2669         // overflow when it's multiplied by type size.
2670         if (!AllocaTypeSize.isScalable() &&
2671             AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2672             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2673                 AllocaTypeSize.getFixedValue()) {
2674           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2675                                         AllocaArraySize * AllocaTypeSize);
2676         }
2677       }
2678 
2679       builder.CreateLifetimeStart(AI, AllocaSize);
2680       for (ReturnInst *RI : Returns) {
2681         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2682         // call and a return.  The return kills all local allocas.
2683         if (InlinedMustTailCalls &&
2684             RI->getParent()->getTerminatingMustTailCall())
2685           continue;
2686         if (InlinedDeoptimizeCalls &&
2687             RI->getParent()->getTerminatingDeoptimizeCall())
2688           continue;
2689         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2690       }
2691     }
2692   }
2693 
2694   // If the inlined code contained dynamic alloca instructions, wrap the inlined
2695   // code with llvm.stacksave/llvm.stackrestore intrinsics.
2696   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2697     // Insert the llvm.stacksave.
2698     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2699                              .CreateStackSave("savedstack");
2700 
2701     // Insert a call to llvm.stackrestore before any return instructions in the
2702     // inlined function.
2703     for (ReturnInst *RI : Returns) {
2704       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2705       // call and a return.  The return will restore the stack pointer.
2706       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2707         continue;
2708       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2709         continue;
2710       IRBuilder<>(RI).CreateStackRestore(SavedPtr);
2711     }
2712   }
2713 
2714   // If we are inlining for an invoke instruction, we must make sure to rewrite
2715   // any call instructions into invoke instructions.  This is sensitive to which
2716   // funclet pads were top-level in the inlinee, so must be done before
2717   // rewriting the "parent pad" links.
2718   if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2719     BasicBlock *UnwindDest = II->getUnwindDest();
2720     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2721     if (isa<LandingPadInst>(FirstNonPHI)) {
2722       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2723     } else {
2724       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2725     }
2726   }
2727 
2728   // Update the lexical scopes of the new funclets and callsites.
2729   // Anything that had 'none' as its parent is now nested inside the callsite's
2730   // EHPad.
2731   if (CallSiteEHPad) {
2732     for (Function::iterator BB = FirstNewBlock->getIterator(),
2733                             E = Caller->end();
2734          BB != E; ++BB) {
2735       // Add bundle operands to inlined call sites.
2736       PropagateOperandBundles(BB, CallSiteEHPad);
2737 
2738       // It is problematic if the inlinee has a cleanupret which unwinds to
2739       // caller and we inline it into a call site which doesn't unwind but into
2740       // an EH pad that does.  Such an edge must be dynamically unreachable.
2741       // As such, we replace the cleanupret with unreachable.
2742       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2743         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2744           changeToUnreachable(CleanupRet);
2745 
2746       Instruction *I = BB->getFirstNonPHI();
2747       if (!I->isEHPad())
2748         continue;
2749 
2750       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2751         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2752           CatchSwitch->setParentPad(CallSiteEHPad);
2753       } else {
2754         auto *FPI = cast<FuncletPadInst>(I);
2755         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2756           FPI->setParentPad(CallSiteEHPad);
2757       }
2758     }
2759   }
2760 
2761   if (InlinedDeoptimizeCalls) {
2762     // We need to at least remove the deoptimizing returns from the Return set,
2763     // so that the control flow from those returns does not get merged into the
2764     // caller (but terminate it instead).  If the caller's return type does not
2765     // match the callee's return type, we also need to change the return type of
2766     // the intrinsic.
2767     if (Caller->getReturnType() == CB.getType()) {
2768       llvm::erase_if(Returns, [](ReturnInst *RI) {
2769         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2770       });
2771     } else {
2772       SmallVector<ReturnInst *, 8> NormalReturns;
2773       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2774           Caller->getParent(), Intrinsic::experimental_deoptimize,
2775           {Caller->getReturnType()});
2776 
2777       for (ReturnInst *RI : Returns) {
2778         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2779         if (!DeoptCall) {
2780           NormalReturns.push_back(RI);
2781           continue;
2782         }
2783 
2784         // The calling convention on the deoptimize call itself may be bogus,
2785         // since the code we're inlining may have undefined behavior (and may
2786         // never actually execute at runtime); but all
2787         // @llvm.experimental.deoptimize declarations have to have the same
2788         // calling convention in a well-formed module.
2789         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2790         NewDeoptIntrinsic->setCallingConv(CallingConv);
2791         auto *CurBB = RI->getParent();
2792         RI->eraseFromParent();
2793 
2794         SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2795 
2796         SmallVector<OperandBundleDef, 1> OpBundles;
2797         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2798         auto DeoptAttributes = DeoptCall->getAttributes();
2799         DeoptCall->eraseFromParent();
2800         assert(!OpBundles.empty() &&
2801                "Expected at least the deopt operand bundle");
2802 
2803         IRBuilder<> Builder(CurBB);
2804         CallInst *NewDeoptCall =
2805             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2806         NewDeoptCall->setCallingConv(CallingConv);
2807         NewDeoptCall->setAttributes(DeoptAttributes);
2808         if (NewDeoptCall->getType()->isVoidTy())
2809           Builder.CreateRetVoid();
2810         else
2811           Builder.CreateRet(NewDeoptCall);
2812         // Since the ret type is changed, remove the incompatible attributes.
2813         NewDeoptCall->removeRetAttrs(
2814             AttributeFuncs::typeIncompatible(NewDeoptCall->getType()));
2815       }
2816 
2817       // Leave behind the normal returns so we can merge control flow.
2818       std::swap(Returns, NormalReturns);
2819     }
2820   }
2821 
2822   // Handle any inlined musttail call sites.  In order for a new call site to be
2823   // musttail, the source of the clone and the inlined call site must have been
2824   // musttail.  Therefore it's safe to return without merging control into the
2825   // phi below.
2826   if (InlinedMustTailCalls) {
2827     // Check if we need to bitcast the result of any musttail calls.
2828     Type *NewRetTy = Caller->getReturnType();
2829     bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2830 
2831     // Handle the returns preceded by musttail calls separately.
2832     SmallVector<ReturnInst *, 8> NormalReturns;
2833     for (ReturnInst *RI : Returns) {
2834       CallInst *ReturnedMustTail =
2835           RI->getParent()->getTerminatingMustTailCall();
2836       if (!ReturnedMustTail) {
2837         NormalReturns.push_back(RI);
2838         continue;
2839       }
2840       if (!NeedBitCast)
2841         continue;
2842 
2843       // Delete the old return and any preceding bitcast.
2844       BasicBlock *CurBB = RI->getParent();
2845       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2846       RI->eraseFromParent();
2847       if (OldCast)
2848         OldCast->eraseFromParent();
2849 
2850       // Insert a new bitcast and return with the right type.
2851       IRBuilder<> Builder(CurBB);
2852       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2853     }
2854 
2855     // Leave behind the normal returns so we can merge control flow.
2856     std::swap(Returns, NormalReturns);
2857   }
2858 
2859   // Now that all of the transforms on the inlined code have taken place but
2860   // before we splice the inlined code into the CFG and lose track of which
2861   // blocks were actually inlined, collect the call sites. We only do this if
2862   // call graph updates weren't requested, as those provide value handle based
2863   // tracking of inlined call sites instead. Calls to intrinsics are not
2864   // collected because they are not inlineable.
2865   if (InlinedFunctionInfo.ContainsCalls) {
2866     // Otherwise just collect the raw call sites that were inlined.
2867     for (BasicBlock &NewBB :
2868          make_range(FirstNewBlock->getIterator(), Caller->end()))
2869       for (Instruction &I : NewBB)
2870         if (auto *CB = dyn_cast<CallBase>(&I))
2871           if (!(CB->getCalledFunction() &&
2872                 CB->getCalledFunction()->isIntrinsic()))
2873             IFI.InlinedCallSites.push_back(CB);
2874   }
2875 
2876   // If we cloned in _exactly one_ basic block, and if that block ends in a
2877   // return instruction, we splice the body of the inlined callee directly into
2878   // the calling basic block.
2879   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2880     // Move all of the instructions right before the call.
2881     OrigBB->splice(CB.getIterator(), &*FirstNewBlock, FirstNewBlock->begin(),
2882                    FirstNewBlock->end());
2883     // Remove the cloned basic block.
2884     Caller->back().eraseFromParent();
2885 
2886     // If the call site was an invoke instruction, add a branch to the normal
2887     // destination.
2888     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2889       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), CB.getIterator());
2890       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2891     }
2892 
2893     // If the return instruction returned a value, replace uses of the call with
2894     // uses of the returned value.
2895     if (!CB.use_empty()) {
2896       ReturnInst *R = Returns[0];
2897       if (&CB == R->getReturnValue())
2898         CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
2899       else
2900         CB.replaceAllUsesWith(R->getReturnValue());
2901     }
2902     // Since we are now done with the Call/Invoke, we can delete it.
2903     CB.eraseFromParent();
2904 
2905     // Since we are now done with the return instruction, delete it also.
2906     Returns[0]->eraseFromParent();
2907 
2908     if (MergeAttributes)
2909       AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
2910 
2911     // We are now done with the inlining.
2912     return InlineResult::success();
2913   }
2914 
2915   // Otherwise, we have the normal case, of more than one block to inline or
2916   // multiple return sites.
2917 
2918   // We want to clone the entire callee function into the hole between the
2919   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2920   // this is an invoke instruction or a call instruction.
2921   BasicBlock *AfterCallBB;
2922   BranchInst *CreatedBranchToNormalDest = nullptr;
2923   if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2924 
2925     // Add an unconditional branch to make this look like the CallInst case...
2926     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), CB.getIterator());
2927 
2928     // Split the basic block.  This guarantees that no PHI nodes will have to be
2929     // updated due to new incoming edges, and make the invoke case more
2930     // symmetric to the call case.
2931     AfterCallBB =
2932         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2933                                 CalledFunc->getName() + ".exit");
2934 
2935   } else { // It's a call
2936     // If this is a call instruction, we need to split the basic block that
2937     // the call lives in.
2938     //
2939     AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2940                                           CalledFunc->getName() + ".exit");
2941   }
2942 
2943   if (IFI.CallerBFI) {
2944     // Copy original BB's block frequency to AfterCallBB
2945     IFI.CallerBFI->setBlockFreq(AfterCallBB,
2946                                 IFI.CallerBFI->getBlockFreq(OrigBB));
2947   }
2948 
2949   // Change the branch that used to go to AfterCallBB to branch to the first
2950   // basic block of the inlined function.
2951   //
2952   Instruction *Br = OrigBB->getTerminator();
2953   assert(Br && Br->getOpcode() == Instruction::Br &&
2954          "splitBasicBlock broken!");
2955   Br->setOperand(0, &*FirstNewBlock);
2956 
2957   // Now that the function is correct, make it a little bit nicer.  In
2958   // particular, move the basic blocks inserted from the end of the function
2959   // into the space made by splitting the source basic block.
2960   Caller->splice(AfterCallBB->getIterator(), Caller, FirstNewBlock,
2961                  Caller->end());
2962 
2963   // Handle all of the return instructions that we just cloned in, and eliminate
2964   // any users of the original call/invoke instruction.
2965   Type *RTy = CalledFunc->getReturnType();
2966 
2967   PHINode *PHI = nullptr;
2968   if (Returns.size() > 1) {
2969     // The PHI node should go at the front of the new basic block to merge all
2970     // possible incoming values.
2971     if (!CB.use_empty()) {
2972       PHI = PHINode::Create(RTy, Returns.size(), CB.getName());
2973       PHI->insertBefore(AfterCallBB->begin());
2974       // Anything that used the result of the function call should now use the
2975       // PHI node as their operand.
2976       CB.replaceAllUsesWith(PHI);
2977     }
2978 
2979     // Loop over all of the return instructions adding entries to the PHI node
2980     // as appropriate.
2981     if (PHI) {
2982       for (ReturnInst *RI : Returns) {
2983         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2984                "Ret value not consistent in function!");
2985         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2986       }
2987     }
2988 
2989     // Add a branch to the merge points and remove return instructions.
2990     DebugLoc Loc;
2991     for (ReturnInst *RI : Returns) {
2992       BranchInst *BI = BranchInst::Create(AfterCallBB, RI->getIterator());
2993       Loc = RI->getDebugLoc();
2994       BI->setDebugLoc(Loc);
2995       RI->eraseFromParent();
2996     }
2997     // We need to set the debug location to *somewhere* inside the
2998     // inlined function. The line number may be nonsensical, but the
2999     // instruction will at least be associated with the right
3000     // function.
3001     if (CreatedBranchToNormalDest)
3002       CreatedBranchToNormalDest->setDebugLoc(Loc);
3003   } else if (!Returns.empty()) {
3004     // Otherwise, if there is exactly one return value, just replace anything
3005     // using the return value of the call with the computed value.
3006     if (!CB.use_empty()) {
3007       if (&CB == Returns[0]->getReturnValue())
3008         CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
3009       else
3010         CB.replaceAllUsesWith(Returns[0]->getReturnValue());
3011     }
3012 
3013     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
3014     BasicBlock *ReturnBB = Returns[0]->getParent();
3015     ReturnBB->replaceAllUsesWith(AfterCallBB);
3016 
3017     // Splice the code from the return block into the block that it will return
3018     // to, which contains the code that was after the call.
3019     AfterCallBB->splice(AfterCallBB->begin(), ReturnBB);
3020 
3021     if (CreatedBranchToNormalDest)
3022       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
3023 
3024     // Delete the return instruction now and empty ReturnBB now.
3025     Returns[0]->eraseFromParent();
3026     ReturnBB->eraseFromParent();
3027   } else if (!CB.use_empty()) {
3028     // No returns, but something is using the return value of the call.  Just
3029     // nuke the result.
3030     CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
3031   }
3032 
3033   // Since we are now done with the Call/Invoke, we can delete it.
3034   CB.eraseFromParent();
3035 
3036   // If we inlined any musttail calls and the original return is now
3037   // unreachable, delete it.  It can only contain a bitcast and ret.
3038   if (InlinedMustTailCalls && pred_empty(AfterCallBB))
3039     AfterCallBB->eraseFromParent();
3040 
3041   // We should always be able to fold the entry block of the function into the
3042   // single predecessor of the block...
3043   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
3044   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
3045 
3046   // Splice the code entry block into calling block, right before the
3047   // unconditional branch.
3048   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
3049   OrigBB->splice(Br->getIterator(), CalleeEntry);
3050 
3051   // Remove the unconditional branch.
3052   Br->eraseFromParent();
3053 
3054   // Now we can remove the CalleeEntry block, which is now empty.
3055   CalleeEntry->eraseFromParent();
3056 
3057   // If we inserted a phi node, check to see if it has a single value (e.g. all
3058   // the entries are the same or undef).  If so, remove the PHI so it doesn't
3059   // block other optimizations.
3060   if (PHI) {
3061     AssumptionCache *AC =
3062         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
3063     auto &DL = Caller->getDataLayout();
3064     if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
3065       PHI->replaceAllUsesWith(V);
3066       PHI->eraseFromParent();
3067     }
3068   }
3069 
3070   if (MergeAttributes)
3071     AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
3072 
3073   return InlineResult::success();
3074 }
3075