1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inlining of a function into a call site, resolving 10 // parameters and the return value as appropriate. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/CallGraph.h" 27 #include "llvm/Analysis/CaptureTracking.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Transforms/Utils/Cloning.h" 64 #include "llvm/Transforms/Utils/ValueMapper.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <limits> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 using ProfileCount = Function::ProfileCount; 76 77 static cl::opt<bool> 78 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 79 cl::Hidden, 80 cl::desc("Convert noalias attributes to metadata during inlining.")); 81 82 static cl::opt<bool> 83 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 84 cl::init(true), cl::Hidden, 85 cl::desc("Convert align attributes to assumptions during inlining.")); 86 87 llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI, 88 AAResults *CalleeAAR, 89 bool InsertLifetime) { 90 return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime); 91 } 92 93 namespace { 94 95 /// A class for recording information about inlining a landing pad. 96 class LandingPadInliningInfo { 97 /// Destination of the invoke's unwind. 98 BasicBlock *OuterResumeDest; 99 100 /// Destination for the callee's resume. 101 BasicBlock *InnerResumeDest = nullptr; 102 103 /// LandingPadInst associated with the invoke. 104 LandingPadInst *CallerLPad = nullptr; 105 106 /// PHI for EH values from landingpad insts. 107 PHINode *InnerEHValuesPHI = nullptr; 108 109 SmallVector<Value*, 8> UnwindDestPHIValues; 110 111 public: 112 LandingPadInliningInfo(InvokeInst *II) 113 : OuterResumeDest(II->getUnwindDest()) { 114 // If there are PHI nodes in the unwind destination block, we need to keep 115 // track of which values came into them from the invoke before removing 116 // the edge from this block. 117 BasicBlock *InvokeBB = II->getParent(); 118 BasicBlock::iterator I = OuterResumeDest->begin(); 119 for (; isa<PHINode>(I); ++I) { 120 // Save the value to use for this edge. 121 PHINode *PHI = cast<PHINode>(I); 122 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 123 } 124 125 CallerLPad = cast<LandingPadInst>(I); 126 } 127 128 /// The outer unwind destination is the target of 129 /// unwind edges introduced for calls within the inlined function. 130 BasicBlock *getOuterResumeDest() const { 131 return OuterResumeDest; 132 } 133 134 BasicBlock *getInnerResumeDest(); 135 136 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 137 138 /// Forward the 'resume' instruction to the caller's landing pad block. 139 /// When the landing pad block has only one predecessor, this is 140 /// a simple branch. When there is more than one predecessor, we need to 141 /// split the landing pad block after the landingpad instruction and jump 142 /// to there. 143 void forwardResume(ResumeInst *RI, 144 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 145 146 /// Add incoming-PHI values to the unwind destination block for the given 147 /// basic block, using the values for the original invoke's source block. 148 void addIncomingPHIValuesFor(BasicBlock *BB) const { 149 addIncomingPHIValuesForInto(BB, OuterResumeDest); 150 } 151 152 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 153 BasicBlock::iterator I = dest->begin(); 154 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 155 PHINode *phi = cast<PHINode>(I); 156 phi->addIncoming(UnwindDestPHIValues[i], src); 157 } 158 } 159 }; 160 161 } // end anonymous namespace 162 163 /// Get or create a target for the branch from ResumeInsts. 164 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 165 if (InnerResumeDest) return InnerResumeDest; 166 167 // Split the landing pad. 168 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 169 InnerResumeDest = 170 OuterResumeDest->splitBasicBlock(SplitPoint, 171 OuterResumeDest->getName() + ".body"); 172 173 // The number of incoming edges we expect to the inner landing pad. 174 const unsigned PHICapacity = 2; 175 176 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 177 Instruction *InsertPoint = &InnerResumeDest->front(); 178 BasicBlock::iterator I = OuterResumeDest->begin(); 179 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 180 PHINode *OuterPHI = cast<PHINode>(I); 181 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 182 OuterPHI->getName() + ".lpad-body", 183 InsertPoint); 184 OuterPHI->replaceAllUsesWith(InnerPHI); 185 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 186 } 187 188 // Create a PHI for the exception values. 189 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 190 "eh.lpad-body", InsertPoint); 191 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 192 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 193 194 // All done. 195 return InnerResumeDest; 196 } 197 198 /// Forward the 'resume' instruction to the caller's landing pad block. 199 /// When the landing pad block has only one predecessor, this is a simple 200 /// branch. When there is more than one predecessor, we need to split the 201 /// landing pad block after the landingpad instruction and jump to there. 202 void LandingPadInliningInfo::forwardResume( 203 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 204 BasicBlock *Dest = getInnerResumeDest(); 205 BasicBlock *Src = RI->getParent(); 206 207 BranchInst::Create(Dest, Src); 208 209 // Update the PHIs in the destination. They were inserted in an order which 210 // makes this work. 211 addIncomingPHIValuesForInto(Src, Dest); 212 213 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 214 RI->eraseFromParent(); 215 } 216 217 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 218 static Value *getParentPad(Value *EHPad) { 219 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 220 return FPI->getParentPad(); 221 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 222 } 223 224 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; 225 226 /// Helper for getUnwindDestToken that does the descendant-ward part of 227 /// the search. 228 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 229 UnwindDestMemoTy &MemoMap) { 230 SmallVector<Instruction *, 8> Worklist(1, EHPad); 231 232 while (!Worklist.empty()) { 233 Instruction *CurrentPad = Worklist.pop_back_val(); 234 // We only put pads on the worklist that aren't in the MemoMap. When 235 // we find an unwind dest for a pad we may update its ancestors, but 236 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 237 // so they should never get updated while queued on the worklist. 238 assert(!MemoMap.count(CurrentPad)); 239 Value *UnwindDestToken = nullptr; 240 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 241 if (CatchSwitch->hasUnwindDest()) { 242 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 243 } else { 244 // Catchswitch doesn't have a 'nounwind' variant, and one might be 245 // annotated as "unwinds to caller" when really it's nounwind (see 246 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 247 // parent's unwind dest from this. We can check its catchpads' 248 // descendants, since they might include a cleanuppad with an 249 // "unwinds to caller" cleanupret, which can be trusted. 250 for (auto HI = CatchSwitch->handler_begin(), 251 HE = CatchSwitch->handler_end(); 252 HI != HE && !UnwindDestToken; ++HI) { 253 BasicBlock *HandlerBlock = *HI; 254 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 255 for (User *Child : CatchPad->users()) { 256 // Intentionally ignore invokes here -- since the catchswitch is 257 // marked "unwind to caller", it would be a verifier error if it 258 // contained an invoke which unwinds out of it, so any invoke we'd 259 // encounter must unwind to some child of the catch. 260 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 261 continue; 262 263 Instruction *ChildPad = cast<Instruction>(Child); 264 auto Memo = MemoMap.find(ChildPad); 265 if (Memo == MemoMap.end()) { 266 // Haven't figured out this child pad yet; queue it. 267 Worklist.push_back(ChildPad); 268 continue; 269 } 270 // We've already checked this child, but might have found that 271 // it offers no proof either way. 272 Value *ChildUnwindDestToken = Memo->second; 273 if (!ChildUnwindDestToken) 274 continue; 275 // We already know the child's unwind dest, which can either 276 // be ConstantTokenNone to indicate unwind to caller, or can 277 // be another child of the catchpad. Only the former indicates 278 // the unwind dest of the catchswitch. 279 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 280 UnwindDestToken = ChildUnwindDestToken; 281 break; 282 } 283 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 284 } 285 } 286 } 287 } else { 288 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 289 for (User *U : CleanupPad->users()) { 290 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 291 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 292 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 293 else 294 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 295 break; 296 } 297 Value *ChildUnwindDestToken; 298 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 299 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 300 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 301 Instruction *ChildPad = cast<Instruction>(U); 302 auto Memo = MemoMap.find(ChildPad); 303 if (Memo == MemoMap.end()) { 304 // Haven't resolved this child yet; queue it and keep searching. 305 Worklist.push_back(ChildPad); 306 continue; 307 } 308 // We've checked this child, but still need to ignore it if it 309 // had no proof either way. 310 ChildUnwindDestToken = Memo->second; 311 if (!ChildUnwindDestToken) 312 continue; 313 } else { 314 // Not a relevant user of the cleanuppad 315 continue; 316 } 317 // In a well-formed program, the child/invoke must either unwind to 318 // an(other) child of the cleanup, or exit the cleanup. In the 319 // first case, continue searching. 320 if (isa<Instruction>(ChildUnwindDestToken) && 321 getParentPad(ChildUnwindDestToken) == CleanupPad) 322 continue; 323 UnwindDestToken = ChildUnwindDestToken; 324 break; 325 } 326 } 327 // If we haven't found an unwind dest for CurrentPad, we may have queued its 328 // children, so move on to the next in the worklist. 329 if (!UnwindDestToken) 330 continue; 331 332 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 333 // any ancestors of CurrentPad up to but not including UnwindDestToken's 334 // parent pad. Record this in the memo map, and check to see if the 335 // original EHPad being queried is one of the ones exited. 336 Value *UnwindParent; 337 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 338 UnwindParent = getParentPad(UnwindPad); 339 else 340 UnwindParent = nullptr; 341 bool ExitedOriginalPad = false; 342 for (Instruction *ExitedPad = CurrentPad; 343 ExitedPad && ExitedPad != UnwindParent; 344 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 345 // Skip over catchpads since they just follow their catchswitches. 346 if (isa<CatchPadInst>(ExitedPad)) 347 continue; 348 MemoMap[ExitedPad] = UnwindDestToken; 349 ExitedOriginalPad |= (ExitedPad == EHPad); 350 } 351 352 if (ExitedOriginalPad) 353 return UnwindDestToken; 354 355 // Continue the search. 356 } 357 358 // No definitive information is contained within this funclet. 359 return nullptr; 360 } 361 362 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 363 /// return that pad instruction. If it unwinds to caller, return 364 /// ConstantTokenNone. If it does not have a definitive unwind destination, 365 /// return nullptr. 366 /// 367 /// This routine gets invoked for calls in funclets in inlinees when inlining 368 /// an invoke. Since many funclets don't have calls inside them, it's queried 369 /// on-demand rather than building a map of pads to unwind dests up front. 370 /// Determining a funclet's unwind dest may require recursively searching its 371 /// descendants, and also ancestors and cousins if the descendants don't provide 372 /// an answer. Since most funclets will have their unwind dest immediately 373 /// available as the unwind dest of a catchswitch or cleanupret, this routine 374 /// searches top-down from the given pad and then up. To avoid worst-case 375 /// quadratic run-time given that approach, it uses a memo map to avoid 376 /// re-processing funclet trees. The callers that rewrite the IR as they go 377 /// take advantage of this, for correctness, by checking/forcing rewritten 378 /// pads' entries to match the original callee view. 379 static Value *getUnwindDestToken(Instruction *EHPad, 380 UnwindDestMemoTy &MemoMap) { 381 // Catchpads unwind to the same place as their catchswitch; 382 // redirct any queries on catchpads so the code below can 383 // deal with just catchswitches and cleanuppads. 384 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 385 EHPad = CPI->getCatchSwitch(); 386 387 // Check if we've already determined the unwind dest for this pad. 388 auto Memo = MemoMap.find(EHPad); 389 if (Memo != MemoMap.end()) 390 return Memo->second; 391 392 // Search EHPad and, if necessary, its descendants. 393 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 394 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 395 if (UnwindDestToken) 396 return UnwindDestToken; 397 398 // No information is available for this EHPad from itself or any of its 399 // descendants. An unwind all the way out to a pad in the caller would 400 // need also to agree with the unwind dest of the parent funclet, so 401 // search up the chain to try to find a funclet with information. Put 402 // null entries in the memo map to avoid re-processing as we go up. 403 MemoMap[EHPad] = nullptr; 404 #ifndef NDEBUG 405 SmallPtrSet<Instruction *, 4> TempMemos; 406 TempMemos.insert(EHPad); 407 #endif 408 Instruction *LastUselessPad = EHPad; 409 Value *AncestorToken; 410 for (AncestorToken = getParentPad(EHPad); 411 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 412 AncestorToken = getParentPad(AncestorToken)) { 413 // Skip over catchpads since they just follow their catchswitches. 414 if (isa<CatchPadInst>(AncestorPad)) 415 continue; 416 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we 417 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this 418 // call to getUnwindDestToken, that would mean that AncestorPad had no 419 // information in itself, its descendants, or its ancestors. If that 420 // were the case, then we should also have recorded the lack of information 421 // for the descendant that we're coming from. So assert that we don't 422 // find a null entry in the MemoMap for AncestorPad. 423 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 424 auto AncestorMemo = MemoMap.find(AncestorPad); 425 if (AncestorMemo == MemoMap.end()) { 426 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 427 } else { 428 UnwindDestToken = AncestorMemo->second; 429 } 430 if (UnwindDestToken) 431 break; 432 LastUselessPad = AncestorPad; 433 MemoMap[LastUselessPad] = nullptr; 434 #ifndef NDEBUG 435 TempMemos.insert(LastUselessPad); 436 #endif 437 } 438 439 // We know that getUnwindDestTokenHelper was called on LastUselessPad and 440 // returned nullptr (and likewise for EHPad and any of its ancestors up to 441 // LastUselessPad), so LastUselessPad has no information from below. Since 442 // getUnwindDestTokenHelper must investigate all downward paths through 443 // no-information nodes to prove that a node has no information like this, 444 // and since any time it finds information it records it in the MemoMap for 445 // not just the immediately-containing funclet but also any ancestors also 446 // exited, it must be the case that, walking downward from LastUselessPad, 447 // visiting just those nodes which have not been mapped to an unwind dest 448 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since 449 // they are just used to keep getUnwindDestTokenHelper from repeating work), 450 // any node visited must have been exhaustively searched with no information 451 // for it found. 452 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 453 while (!Worklist.empty()) { 454 Instruction *UselessPad = Worklist.pop_back_val(); 455 auto Memo = MemoMap.find(UselessPad); 456 if (Memo != MemoMap.end() && Memo->second) { 457 // Here the name 'UselessPad' is a bit of a misnomer, because we've found 458 // that it is a funclet that does have information about unwinding to 459 // a particular destination; its parent was a useless pad. 460 // Since its parent has no information, the unwind edge must not escape 461 // the parent, and must target a sibling of this pad. This local unwind 462 // gives us no information about EHPad. Leave it and the subtree rooted 463 // at it alone. 464 assert(getParentPad(Memo->second) == getParentPad(UselessPad)); 465 continue; 466 } 467 // We know we don't have information for UselesPad. If it has an entry in 468 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos 469 // added on this invocation of getUnwindDestToken; if a previous invocation 470 // recorded nullptr, it would have had to prove that the ancestors of 471 // UselessPad, which include LastUselessPad, had no information, and that 472 // in turn would have required proving that the descendants of 473 // LastUselesPad, which include EHPad, have no information about 474 // LastUselessPad, which would imply that EHPad was mapped to nullptr in 475 // the MemoMap on that invocation, which isn't the case if we got here. 476 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); 477 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind 478 // information that we'd be contradicting by making a map entry for it 479 // (which is something that getUnwindDestTokenHelper must have proved for 480 // us to get here). Just assert on is direct users here; the checks in 481 // this downward walk at its descendants will verify that they don't have 482 // any unwind edges that exit 'UselessPad' either (i.e. they either have no 483 // unwind edges or unwind to a sibling). 484 MemoMap[UselessPad] = UnwindDestToken; 485 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 486 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); 487 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { 488 auto *CatchPad = HandlerBlock->getFirstNonPHI(); 489 for (User *U : CatchPad->users()) { 490 assert( 491 (!isa<InvokeInst>(U) || 492 (getParentPad( 493 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 494 CatchPad)) && 495 "Expected useless pad"); 496 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 497 Worklist.push_back(cast<Instruction>(U)); 498 } 499 } 500 } else { 501 assert(isa<CleanupPadInst>(UselessPad)); 502 for (User *U : UselessPad->users()) { 503 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); 504 assert((!isa<InvokeInst>(U) || 505 (getParentPad( 506 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == 507 UselessPad)) && 508 "Expected useless pad"); 509 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 510 Worklist.push_back(cast<Instruction>(U)); 511 } 512 } 513 } 514 515 return UnwindDestToken; 516 } 517 518 /// When we inline a basic block into an invoke, 519 /// we have to turn all of the calls that can throw into invokes. 520 /// This function analyze BB to see if there are any calls, and if so, 521 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 522 /// nodes in that block with the values specified in InvokeDestPHIValues. 523 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 524 BasicBlock *BB, BasicBlock *UnwindEdge, 525 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 526 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 527 Instruction *I = &*BBI++; 528 529 // We only need to check for function calls: inlined invoke 530 // instructions require no special handling. 531 CallInst *CI = dyn_cast<CallInst>(I); 532 533 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 534 continue; 535 536 // We do not need to (and in fact, cannot) convert possibly throwing calls 537 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into 538 // invokes. The caller's "segment" of the deoptimization continuation 539 // attached to the newly inlined @llvm.experimental_deoptimize 540 // (resp. @llvm.experimental.guard) call should contain the exception 541 // handling logic, if any. 542 if (auto *F = CI->getCalledFunction()) 543 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || 544 F->getIntrinsicID() == Intrinsic::experimental_guard) 545 continue; 546 547 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 548 // This call is nested inside a funclet. If that funclet has an unwind 549 // destination within the inlinee, then unwinding out of this call would 550 // be UB. Rewriting this call to an invoke which targets the inlined 551 // invoke's unwind dest would give the call's parent funclet multiple 552 // unwind destinations, which is something that subsequent EH table 553 // generation can't handle and that the veirifer rejects. So when we 554 // see such a call, leave it as a call. 555 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 556 Value *UnwindDestToken = 557 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 558 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 559 continue; 560 #ifndef NDEBUG 561 Instruction *MemoKey; 562 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 563 MemoKey = CatchPad->getCatchSwitch(); 564 else 565 MemoKey = FuncletPad; 566 assert(FuncletUnwindMap->count(MemoKey) && 567 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 568 "must get memoized to avoid confusing later searches"); 569 #endif // NDEBUG 570 } 571 572 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); 573 return BB; 574 } 575 return nullptr; 576 } 577 578 /// If we inlined an invoke site, we need to convert calls 579 /// in the body of the inlined function into invokes. 580 /// 581 /// II is the invoke instruction being inlined. FirstNewBlock is the first 582 /// block of the inlined code (the last block is the end of the function), 583 /// and InlineCodeInfo is information about the code that got inlined. 584 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 585 ClonedCodeInfo &InlinedCodeInfo) { 586 BasicBlock *InvokeDest = II->getUnwindDest(); 587 588 Function *Caller = FirstNewBlock->getParent(); 589 590 // The inlined code is currently at the end of the function, scan from the 591 // start of the inlined code to its end, checking for stuff we need to 592 // rewrite. 593 LandingPadInliningInfo Invoke(II); 594 595 // Get all of the inlined landing pad instructions. 596 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 597 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 598 I != E; ++I) 599 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 600 InlinedLPads.insert(II->getLandingPadInst()); 601 602 // Append the clauses from the outer landing pad instruction into the inlined 603 // landing pad instructions. 604 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 605 for (LandingPadInst *InlinedLPad : InlinedLPads) { 606 unsigned OuterNum = OuterLPad->getNumClauses(); 607 InlinedLPad->reserveClauses(OuterNum); 608 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 609 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 610 if (OuterLPad->isCleanup()) 611 InlinedLPad->setCleanup(true); 612 } 613 614 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 615 BB != E; ++BB) { 616 if (InlinedCodeInfo.ContainsCalls) 617 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 618 &*BB, Invoke.getOuterResumeDest())) 619 // Update any PHI nodes in the exceptional block to indicate that there 620 // is now a new entry in them. 621 Invoke.addIncomingPHIValuesFor(NewBB); 622 623 // Forward any resumes that are remaining here. 624 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 625 Invoke.forwardResume(RI, InlinedLPads); 626 } 627 628 // Now that everything is happy, we have one final detail. The PHI nodes in 629 // the exception destination block still have entries due to the original 630 // invoke instruction. Eliminate these entries (which might even delete the 631 // PHI node) now. 632 InvokeDest->removePredecessor(II->getParent()); 633 } 634 635 /// If we inlined an invoke site, we need to convert calls 636 /// in the body of the inlined function into invokes. 637 /// 638 /// II is the invoke instruction being inlined. FirstNewBlock is the first 639 /// block of the inlined code (the last block is the end of the function), 640 /// and InlineCodeInfo is information about the code that got inlined. 641 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 642 ClonedCodeInfo &InlinedCodeInfo) { 643 BasicBlock *UnwindDest = II->getUnwindDest(); 644 Function *Caller = FirstNewBlock->getParent(); 645 646 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 647 648 // If there are PHI nodes in the unwind destination block, we need to keep 649 // track of which values came into them from the invoke before removing the 650 // edge from this block. 651 SmallVector<Value *, 8> UnwindDestPHIValues; 652 BasicBlock *InvokeBB = II->getParent(); 653 for (Instruction &I : *UnwindDest) { 654 // Save the value to use for this edge. 655 PHINode *PHI = dyn_cast<PHINode>(&I); 656 if (!PHI) 657 break; 658 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 659 } 660 661 // Add incoming-PHI values to the unwind destination block for the given basic 662 // block, using the values for the original invoke's source block. 663 auto UpdatePHINodes = [&](BasicBlock *Src) { 664 BasicBlock::iterator I = UnwindDest->begin(); 665 for (Value *V : UnwindDestPHIValues) { 666 PHINode *PHI = cast<PHINode>(I); 667 PHI->addIncoming(V, Src); 668 ++I; 669 } 670 }; 671 672 // This connects all the instructions which 'unwind to caller' to the invoke 673 // destination. 674 UnwindDestMemoTy FuncletUnwindMap; 675 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 676 BB != E; ++BB) { 677 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 678 if (CRI->unwindsToCaller()) { 679 auto *CleanupPad = CRI->getCleanupPad(); 680 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 681 CRI->eraseFromParent(); 682 UpdatePHINodes(&*BB); 683 // Finding a cleanupret with an unwind destination would confuse 684 // subsequent calls to getUnwindDestToken, so map the cleanuppad 685 // to short-circuit any such calls and recognize this as an "unwind 686 // to caller" cleanup. 687 assert(!FuncletUnwindMap.count(CleanupPad) || 688 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 689 FuncletUnwindMap[CleanupPad] = 690 ConstantTokenNone::get(Caller->getContext()); 691 } 692 } 693 694 Instruction *I = BB->getFirstNonPHI(); 695 if (!I->isEHPad()) 696 continue; 697 698 Instruction *Replacement = nullptr; 699 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 700 if (CatchSwitch->unwindsToCaller()) { 701 Value *UnwindDestToken; 702 if (auto *ParentPad = 703 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 704 // This catchswitch is nested inside another funclet. If that 705 // funclet has an unwind destination within the inlinee, then 706 // unwinding out of this catchswitch would be UB. Rewriting this 707 // catchswitch to unwind to the inlined invoke's unwind dest would 708 // give the parent funclet multiple unwind destinations, which is 709 // something that subsequent EH table generation can't handle and 710 // that the veirifer rejects. So when we see such a call, leave it 711 // as "unwind to caller". 712 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 713 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 714 continue; 715 } else { 716 // This catchswitch has no parent to inherit constraints from, and 717 // none of its descendants can have an unwind edge that exits it and 718 // targets another funclet in the inlinee. It may or may not have a 719 // descendant that definitively has an unwind to caller. In either 720 // case, we'll have to assume that any unwinds out of it may need to 721 // be routed to the caller, so treat it as though it has a definitive 722 // unwind to caller. 723 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 724 } 725 auto *NewCatchSwitch = CatchSwitchInst::Create( 726 CatchSwitch->getParentPad(), UnwindDest, 727 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 728 CatchSwitch); 729 for (BasicBlock *PadBB : CatchSwitch->handlers()) 730 NewCatchSwitch->addHandler(PadBB); 731 // Propagate info for the old catchswitch over to the new one in 732 // the unwind map. This also serves to short-circuit any subsequent 733 // checks for the unwind dest of this catchswitch, which would get 734 // confused if they found the outer handler in the callee. 735 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 736 Replacement = NewCatchSwitch; 737 } 738 } else if (!isa<FuncletPadInst>(I)) { 739 llvm_unreachable("unexpected EHPad!"); 740 } 741 742 if (Replacement) { 743 Replacement->takeName(I); 744 I->replaceAllUsesWith(Replacement); 745 I->eraseFromParent(); 746 UpdatePHINodes(&*BB); 747 } 748 } 749 750 if (InlinedCodeInfo.ContainsCalls) 751 for (Function::iterator BB = FirstNewBlock->getIterator(), 752 E = Caller->end(); 753 BB != E; ++BB) 754 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 755 &*BB, UnwindDest, &FuncletUnwindMap)) 756 // Update any PHI nodes in the exceptional block to indicate that there 757 // is now a new entry in them. 758 UpdatePHINodes(NewBB); 759 760 // Now that everything is happy, we have one final detail. The PHI nodes in 761 // the exception destination block still have entries due to the original 762 // invoke instruction. Eliminate these entries (which might even delete the 763 // PHI node) now. 764 UnwindDest->removePredecessor(InvokeBB); 765 } 766 767 /// When inlining a call site that has !llvm.mem.parallel_loop_access or 768 /// llvm.access.group metadata, that metadata should be propagated to all 769 /// memory-accessing cloned instructions. 770 static void PropagateParallelLoopAccessMetadata(CallSite CS, 771 ValueToValueMapTy &VMap) { 772 MDNode *M = 773 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 774 MDNode *CallAccessGroup = 775 CS.getInstruction()->getMetadata(LLVMContext::MD_access_group); 776 if (!M && !CallAccessGroup) 777 return; 778 779 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 780 VMI != VMIE; ++VMI) { 781 if (!VMI->second) 782 continue; 783 784 Instruction *NI = dyn_cast<Instruction>(VMI->second); 785 if (!NI) 786 continue; 787 788 if (M) { 789 if (MDNode *PM = 790 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { 791 M = MDNode::concatenate(PM, M); 792 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 793 } else if (NI->mayReadOrWriteMemory()) { 794 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); 795 } 796 } 797 798 if (NI->mayReadOrWriteMemory()) { 799 MDNode *UnitedAccGroups = uniteAccessGroups( 800 NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); 801 NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); 802 } 803 } 804 } 805 806 /// When inlining a function that contains noalias scope metadata, 807 /// this metadata needs to be cloned so that the inlined blocks 808 /// have different "unique scopes" at every call site. Were this not done, then 809 /// aliasing scopes from a function inlined into a caller multiple times could 810 /// not be differentiated (and this would lead to miscompiles because the 811 /// non-aliasing property communicated by the metadata could have 812 /// call-site-specific control dependencies). 813 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 814 const Function *CalledFunc = CS.getCalledFunction(); 815 SetVector<const MDNode *> MD; 816 817 // Note: We could only clone the metadata if it is already used in the 818 // caller. I'm omitting that check here because it might confuse 819 // inter-procedural alias analysis passes. We can revisit this if it becomes 820 // an efficiency or overhead problem. 821 822 for (const BasicBlock &I : *CalledFunc) 823 for (const Instruction &J : I) { 824 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) 825 MD.insert(M); 826 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) 827 MD.insert(M); 828 } 829 830 if (MD.empty()) 831 return; 832 833 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 834 // the set. 835 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 836 while (!Queue.empty()) { 837 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 838 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 839 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 840 if (MD.insert(M1)) 841 Queue.push_back(M1); 842 } 843 844 // Now we have a complete set of all metadata in the chains used to specify 845 // the noalias scopes and the lists of those scopes. 846 SmallVector<TempMDTuple, 16> DummyNodes; 847 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 848 for (const MDNode *I : MD) { 849 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 850 MDMap[I].reset(DummyNodes.back().get()); 851 } 852 853 // Create new metadata nodes to replace the dummy nodes, replacing old 854 // metadata references with either a dummy node or an already-created new 855 // node. 856 for (const MDNode *I : MD) { 857 SmallVector<Metadata *, 4> NewOps; 858 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { 859 const Metadata *V = I->getOperand(i); 860 if (const MDNode *M = dyn_cast<MDNode>(V)) 861 NewOps.push_back(MDMap[M]); 862 else 863 NewOps.push_back(const_cast<Metadata *>(V)); 864 } 865 866 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 867 MDTuple *TempM = cast<MDTuple>(MDMap[I]); 868 assert(TempM->isTemporary() && "Expected temporary node"); 869 870 TempM->replaceAllUsesWith(NewM); 871 } 872 873 // Now replace the metadata in the new inlined instructions with the 874 // repacements from the map. 875 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 876 VMI != VMIE; ++VMI) { 877 if (!VMI->second) 878 continue; 879 880 Instruction *NI = dyn_cast<Instruction>(VMI->second); 881 if (!NI) 882 continue; 883 884 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 885 MDNode *NewMD = MDMap[M]; 886 // If the call site also had alias scope metadata (a list of scopes to 887 // which instructions inside it might belong), propagate those scopes to 888 // the inlined instructions. 889 if (MDNode *CSM = 890 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 891 NewMD = MDNode::concatenate(NewMD, CSM); 892 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 893 } else if (NI->mayReadOrWriteMemory()) { 894 if (MDNode *M = 895 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 896 NI->setMetadata(LLVMContext::MD_alias_scope, M); 897 } 898 899 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 900 MDNode *NewMD = MDMap[M]; 901 // If the call site also had noalias metadata (a list of scopes with 902 // which instructions inside it don't alias), propagate those scopes to 903 // the inlined instructions. 904 if (MDNode *CSM = 905 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 906 NewMD = MDNode::concatenate(NewMD, CSM); 907 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 908 } else if (NI->mayReadOrWriteMemory()) { 909 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 910 NI->setMetadata(LLVMContext::MD_noalias, M); 911 } 912 } 913 } 914 915 /// If the inlined function has noalias arguments, 916 /// then add new alias scopes for each noalias argument, tag the mapped noalias 917 /// parameters with noalias metadata specifying the new scope, and tag all 918 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 919 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 920 const DataLayout &DL, AAResults *CalleeAAR) { 921 if (!EnableNoAliasConversion) 922 return; 923 924 const Function *CalledFunc = CS.getCalledFunction(); 925 SmallVector<const Argument *, 4> NoAliasArgs; 926 927 for (const Argument &Arg : CalledFunc->args()) 928 if (Arg.hasNoAliasAttr() && !Arg.use_empty()) 929 NoAliasArgs.push_back(&Arg); 930 931 if (NoAliasArgs.empty()) 932 return; 933 934 // To do a good job, if a noalias variable is captured, we need to know if 935 // the capture point dominates the particular use we're considering. 936 DominatorTree DT; 937 DT.recalculate(const_cast<Function&>(*CalledFunc)); 938 939 // noalias indicates that pointer values based on the argument do not alias 940 // pointer values which are not based on it. So we add a new "scope" for each 941 // noalias function argument. Accesses using pointers based on that argument 942 // become part of that alias scope, accesses using pointers not based on that 943 // argument are tagged as noalias with that scope. 944 945 DenseMap<const Argument *, MDNode *> NewScopes; 946 MDBuilder MDB(CalledFunc->getContext()); 947 948 // Create a new scope domain for this function. 949 MDNode *NewDomain = 950 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 951 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 952 const Argument *A = NoAliasArgs[i]; 953 954 std::string Name = CalledFunc->getName(); 955 if (A->hasName()) { 956 Name += ": %"; 957 Name += A->getName(); 958 } else { 959 Name += ": argument "; 960 Name += utostr(i); 961 } 962 963 // Note: We always create a new anonymous root here. This is true regardless 964 // of the linkage of the callee because the aliasing "scope" is not just a 965 // property of the callee, but also all control dependencies in the caller. 966 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 967 NewScopes.insert(std::make_pair(A, NewScope)); 968 } 969 970 // Iterate over all new instructions in the map; for all memory-access 971 // instructions, add the alias scope metadata. 972 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 973 VMI != VMIE; ++VMI) { 974 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 975 if (!VMI->second) 976 continue; 977 978 Instruction *NI = dyn_cast<Instruction>(VMI->second); 979 if (!NI) 980 continue; 981 982 bool IsArgMemOnlyCall = false, IsFuncCall = false; 983 SmallVector<const Value *, 2> PtrArgs; 984 985 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 986 PtrArgs.push_back(LI->getPointerOperand()); 987 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 988 PtrArgs.push_back(SI->getPointerOperand()); 989 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 990 PtrArgs.push_back(VAAI->getPointerOperand()); 991 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 992 PtrArgs.push_back(CXI->getPointerOperand()); 993 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 994 PtrArgs.push_back(RMWI->getPointerOperand()); 995 else if (const auto *Call = dyn_cast<CallBase>(I)) { 996 // If we know that the call does not access memory, then we'll still 997 // know that about the inlined clone of this call site, and we don't 998 // need to add metadata. 999 if (Call->doesNotAccessMemory()) 1000 continue; 1001 1002 IsFuncCall = true; 1003 if (CalleeAAR) { 1004 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); 1005 if (MRB == FMRB_OnlyAccessesArgumentPointees || 1006 MRB == FMRB_OnlyReadsArgumentPointees) 1007 IsArgMemOnlyCall = true; 1008 } 1009 1010 for (Value *Arg : Call->args()) { 1011 // We need to check the underlying objects of all arguments, not just 1012 // the pointer arguments, because we might be passing pointers as 1013 // integers, etc. 1014 // However, if we know that the call only accesses pointer arguments, 1015 // then we only need to check the pointer arguments. 1016 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) 1017 continue; 1018 1019 PtrArgs.push_back(Arg); 1020 } 1021 } 1022 1023 // If we found no pointers, then this instruction is not suitable for 1024 // pairing with an instruction to receive aliasing metadata. 1025 // However, if this is a call, this we might just alias with none of the 1026 // noalias arguments. 1027 if (PtrArgs.empty() && !IsFuncCall) 1028 continue; 1029 1030 // It is possible that there is only one underlying object, but you 1031 // need to go through several PHIs to see it, and thus could be 1032 // repeated in the Objects list. 1033 SmallPtrSet<const Value *, 4> ObjSet; 1034 SmallVector<Metadata *, 4> Scopes, NoAliases; 1035 1036 SmallSetVector<const Argument *, 4> NAPtrArgs; 1037 for (const Value *V : PtrArgs) { 1038 SmallVector<const Value *, 4> Objects; 1039 GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); 1040 1041 for (const Value *O : Objects) 1042 ObjSet.insert(O); 1043 } 1044 1045 // Figure out if we're derived from anything that is not a noalias 1046 // argument. 1047 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 1048 for (const Value *V : ObjSet) { 1049 // Is this value a constant that cannot be derived from any pointer 1050 // value (we need to exclude constant expressions, for example, that 1051 // are formed from arithmetic on global symbols). 1052 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 1053 isa<ConstantPointerNull>(V) || 1054 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 1055 if (IsNonPtrConst) 1056 continue; 1057 1058 // If this is anything other than a noalias argument, then we cannot 1059 // completely describe the aliasing properties using alias.scope 1060 // metadata (and, thus, won't add any). 1061 if (const Argument *A = dyn_cast<Argument>(V)) { 1062 if (!A->hasNoAliasAttr()) 1063 UsesAliasingPtr = true; 1064 } else { 1065 UsesAliasingPtr = true; 1066 } 1067 1068 // If this is not some identified function-local object (which cannot 1069 // directly alias a noalias argument), or some other argument (which, 1070 // by definition, also cannot alias a noalias argument), then we could 1071 // alias a noalias argument that has been captured). 1072 if (!isa<Argument>(V) && 1073 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 1074 CanDeriveViaCapture = true; 1075 } 1076 1077 // A function call can always get captured noalias pointers (via other 1078 // parameters, globals, etc.). 1079 if (IsFuncCall && !IsArgMemOnlyCall) 1080 CanDeriveViaCapture = true; 1081 1082 // First, we want to figure out all of the sets with which we definitely 1083 // don't alias. Iterate over all noalias set, and add those for which: 1084 // 1. The noalias argument is not in the set of objects from which we 1085 // definitely derive. 1086 // 2. The noalias argument has not yet been captured. 1087 // An arbitrary function that might load pointers could see captured 1088 // noalias arguments via other noalias arguments or globals, and so we 1089 // must always check for prior capture. 1090 for (const Argument *A : NoAliasArgs) { 1091 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 1092 // It might be tempting to skip the 1093 // PointerMayBeCapturedBefore check if 1094 // A->hasNoCaptureAttr() is true, but this is 1095 // incorrect because nocapture only guarantees 1096 // that no copies outlive the function, not 1097 // that the value cannot be locally captured. 1098 !PointerMayBeCapturedBefore(A, 1099 /* ReturnCaptures */ false, 1100 /* StoreCaptures */ false, I, &DT))) 1101 NoAliases.push_back(NewScopes[A]); 1102 } 1103 1104 if (!NoAliases.empty()) 1105 NI->setMetadata(LLVMContext::MD_noalias, 1106 MDNode::concatenate( 1107 NI->getMetadata(LLVMContext::MD_noalias), 1108 MDNode::get(CalledFunc->getContext(), NoAliases))); 1109 1110 // Next, we want to figure out all of the sets to which we might belong. 1111 // We might belong to a set if the noalias argument is in the set of 1112 // underlying objects. If there is some non-noalias argument in our list 1113 // of underlying objects, then we cannot add a scope because the fact 1114 // that some access does not alias with any set of our noalias arguments 1115 // cannot itself guarantee that it does not alias with this access 1116 // (because there is some pointer of unknown origin involved and the 1117 // other access might also depend on this pointer). We also cannot add 1118 // scopes to arbitrary functions unless we know they don't access any 1119 // non-parameter pointer-values. 1120 bool CanAddScopes = !UsesAliasingPtr; 1121 if (CanAddScopes && IsFuncCall) 1122 CanAddScopes = IsArgMemOnlyCall; 1123 1124 if (CanAddScopes) 1125 for (const Argument *A : NoAliasArgs) { 1126 if (ObjSet.count(A)) 1127 Scopes.push_back(NewScopes[A]); 1128 } 1129 1130 if (!Scopes.empty()) 1131 NI->setMetadata( 1132 LLVMContext::MD_alias_scope, 1133 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1134 MDNode::get(CalledFunc->getContext(), Scopes))); 1135 } 1136 } 1137 } 1138 1139 /// If the inlined function has non-byval align arguments, then 1140 /// add @llvm.assume-based alignment assumptions to preserve this information. 1141 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1142 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) 1143 return; 1144 1145 AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); 1146 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1147 1148 // To avoid inserting redundant assumptions, we should check for assumptions 1149 // already in the caller. To do this, we might need a DT of the caller. 1150 DominatorTree DT; 1151 bool DTCalculated = false; 1152 1153 Function *CalledFunc = CS.getCalledFunction(); 1154 for (Argument &Arg : CalledFunc->args()) { 1155 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; 1156 if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { 1157 if (!DTCalculated) { 1158 DT.recalculate(*CS.getCaller()); 1159 DTCalculated = true; 1160 } 1161 1162 // If we can already prove the asserted alignment in the context of the 1163 // caller, then don't bother inserting the assumption. 1164 Value *ArgVal = CS.getArgument(Arg.getArgNo()); 1165 if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) 1166 continue; 1167 1168 CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) 1169 .CreateAlignmentAssumption(DL, ArgVal, Align); 1170 AC->registerAssumption(NewAsmp); 1171 } 1172 } 1173 } 1174 1175 /// Once we have cloned code over from a callee into the caller, 1176 /// update the specified callgraph to reflect the changes we made. 1177 /// Note that it's possible that not all code was copied over, so only 1178 /// some edges of the callgraph may remain. 1179 static void UpdateCallGraphAfterInlining(CallSite CS, 1180 Function::iterator FirstNewBlock, 1181 ValueToValueMapTy &VMap, 1182 InlineFunctionInfo &IFI) { 1183 CallGraph &CG = *IFI.CG; 1184 const Function *Caller = CS.getCaller(); 1185 const Function *Callee = CS.getCalledFunction(); 1186 CallGraphNode *CalleeNode = CG[Callee]; 1187 CallGraphNode *CallerNode = CG[Caller]; 1188 1189 // Since we inlined some uninlined call sites in the callee into the caller, 1190 // add edges from the caller to all of the callees of the callee. 1191 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1192 1193 // Consider the case where CalleeNode == CallerNode. 1194 CallGraphNode::CalledFunctionsVector CallCache; 1195 if (CalleeNode == CallerNode) { 1196 CallCache.assign(I, E); 1197 I = CallCache.begin(); 1198 E = CallCache.end(); 1199 } 1200 1201 for (; I != E; ++I) { 1202 const Value *OrigCall = I->first; 1203 1204 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1205 // Only copy the edge if the call was inlined! 1206 if (VMI == VMap.end() || VMI->second == nullptr) 1207 continue; 1208 1209 // If the call was inlined, but then constant folded, there is no edge to 1210 // add. Check for this case. 1211 auto *NewCall = dyn_cast<CallBase>(VMI->second); 1212 if (!NewCall) 1213 continue; 1214 1215 // We do not treat intrinsic calls like real function calls because we 1216 // expect them to become inline code; do not add an edge for an intrinsic. 1217 if (NewCall->getCalledFunction() && 1218 NewCall->getCalledFunction()->isIntrinsic()) 1219 continue; 1220 1221 // Remember that this call site got inlined for the client of 1222 // InlineFunction. 1223 IFI.InlinedCalls.push_back(NewCall); 1224 1225 // It's possible that inlining the callsite will cause it to go from an 1226 // indirect to a direct call by resolving a function pointer. If this 1227 // happens, set the callee of the new call site to a more precise 1228 // destination. This can also happen if the call graph node of the caller 1229 // was just unnecessarily imprecise. 1230 if (!I->second->getFunction()) 1231 if (Function *F = NewCall->getCalledFunction()) { 1232 // Indirect call site resolved to direct call. 1233 CallerNode->addCalledFunction(NewCall, CG[F]); 1234 1235 continue; 1236 } 1237 1238 CallerNode->addCalledFunction(NewCall, I->second); 1239 } 1240 1241 // Update the call graph by deleting the edge from Callee to Caller. We must 1242 // do this after the loop above in case Caller and Callee are the same. 1243 CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction())); 1244 } 1245 1246 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1247 BasicBlock *InsertBlock, 1248 InlineFunctionInfo &IFI) { 1249 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1250 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1251 1252 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1253 1254 // Always generate a memcpy of alignment 1 here because we don't know 1255 // the alignment of the src pointer. Other optimizations can infer 1256 // better alignment. 1257 Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size); 1258 } 1259 1260 /// When inlining a call site that has a byval argument, 1261 /// we have to make the implicit memcpy explicit by adding it. 1262 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1263 const Function *CalledFunc, 1264 InlineFunctionInfo &IFI, 1265 unsigned ByValAlignment) { 1266 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1267 Type *AggTy = ArgTy->getElementType(); 1268 1269 Function *Caller = TheCall->getFunction(); 1270 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1271 1272 // If the called function is readonly, then it could not mutate the caller's 1273 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1274 // temporary. 1275 if (CalledFunc->onlyReadsMemory()) { 1276 // If the byval argument has a specified alignment that is greater than the 1277 // passed in pointer, then we either have to round up the input pointer or 1278 // give up on this transformation. 1279 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1280 return Arg; 1281 1282 AssumptionCache *AC = 1283 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 1284 1285 // If the pointer is already known to be sufficiently aligned, or if we can 1286 // round it up to a larger alignment, then we don't need a temporary. 1287 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= 1288 ByValAlignment) 1289 return Arg; 1290 1291 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1292 // for code quality, but rarely happens and is required for correctness. 1293 } 1294 1295 // Create the alloca. If we have DataLayout, use nice alignment. 1296 unsigned Align = DL.getPrefTypeAlignment(AggTy); 1297 1298 // If the byval had an alignment specified, we *must* use at least that 1299 // alignment, as it is required by the byval argument (and uses of the 1300 // pointer inside the callee). 1301 Align = std::max(Align, ByValAlignment); 1302 1303 Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(), 1304 nullptr, Align, Arg->getName(), 1305 &*Caller->begin()->begin()); 1306 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1307 1308 // Uses of the argument in the function should use our new alloca 1309 // instead. 1310 return NewAlloca; 1311 } 1312 1313 // Check whether this Value is used by a lifetime intrinsic. 1314 static bool isUsedByLifetimeMarker(Value *V) { 1315 for (User *U : V->users()) 1316 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) 1317 if (II->isLifetimeStartOrEnd()) 1318 return true; 1319 return false; 1320 } 1321 1322 // Check whether the given alloca already has 1323 // lifetime.start or lifetime.end intrinsics. 1324 static bool hasLifetimeMarkers(AllocaInst *AI) { 1325 Type *Ty = AI->getType(); 1326 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1327 Ty->getPointerAddressSpace()); 1328 if (Ty == Int8PtrTy) 1329 return isUsedByLifetimeMarker(AI); 1330 1331 // Do a scan to find all the casts to i8*. 1332 for (User *U : AI->users()) { 1333 if (U->getType() != Int8PtrTy) continue; 1334 if (U->stripPointerCasts() != AI) continue; 1335 if (isUsedByLifetimeMarker(U)) 1336 return true; 1337 } 1338 return false; 1339 } 1340 1341 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry 1342 /// block. Allocas used in inalloca calls and allocas of dynamic array size 1343 /// cannot be static. 1344 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { 1345 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); 1346 } 1347 1348 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL 1349 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. 1350 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, 1351 LLVMContext &Ctx, 1352 DenseMap<const MDNode *, MDNode *> &IANodes) { 1353 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); 1354 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), 1355 IA); 1356 } 1357 1358 /// Returns the LoopID for a loop which has has been cloned from another 1359 /// function for inlining with the new inlined-at start and end locs. 1360 static MDNode *inlineLoopID(const MDNode *OrigLoopId, DILocation *InlinedAt, 1361 LLVMContext &Ctx, 1362 DenseMap<const MDNode *, MDNode *> &IANodes) { 1363 assert(OrigLoopId && OrigLoopId->getNumOperands() > 0 && 1364 "Loop ID needs at least one operand"); 1365 assert(OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId && 1366 "Loop ID should refer to itself"); 1367 1368 // Save space for the self-referential LoopID. 1369 SmallVector<Metadata *, 4> MDs = {nullptr}; 1370 1371 for (unsigned i = 1; i < OrigLoopId->getNumOperands(); ++i) { 1372 Metadata *MD = OrigLoopId->getOperand(i); 1373 // Update the DILocations to encode the inlined-at metadata. 1374 if (DILocation *DL = dyn_cast<DILocation>(MD)) 1375 MDs.push_back(inlineDebugLoc(DL, InlinedAt, Ctx, IANodes)); 1376 else 1377 MDs.push_back(MD); 1378 } 1379 1380 MDNode *NewLoopID = MDNode::getDistinct(Ctx, MDs); 1381 // Insert the self-referential LoopID. 1382 NewLoopID->replaceOperandWith(0, NewLoopID); 1383 return NewLoopID; 1384 } 1385 1386 /// Update inlined instructions' line numbers to 1387 /// to encode location where these instructions are inlined. 1388 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1389 Instruction *TheCall, bool CalleeHasDebugInfo) { 1390 const DebugLoc &TheCallDL = TheCall->getDebugLoc(); 1391 if (!TheCallDL) 1392 return; 1393 1394 auto &Ctx = Fn->getContext(); 1395 DILocation *InlinedAtNode = TheCallDL; 1396 1397 // Create a unique call site, not to be confused with any other call from the 1398 // same location. 1399 InlinedAtNode = DILocation::getDistinct( 1400 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1401 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1402 1403 // Cache the inlined-at nodes as they're built so they are reused, without 1404 // this every instruction's inlined-at chain would become distinct from each 1405 // other. 1406 DenseMap<const MDNode *, MDNode *> IANodes; 1407 1408 for (; FI != Fn->end(); ++FI) { 1409 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1410 BI != BE; ++BI) { 1411 // Loop metadata needs to be updated so that the start and end locs 1412 // reference inlined-at locations. 1413 if (MDNode *LoopID = BI->getMetadata(LLVMContext::MD_loop)) { 1414 MDNode *NewLoopID = 1415 inlineLoopID(LoopID, InlinedAtNode, BI->getContext(), IANodes); 1416 BI->setMetadata(LLVMContext::MD_loop, NewLoopID); 1417 } 1418 1419 if (DebugLoc DL = BI->getDebugLoc()) { 1420 DebugLoc IDL = 1421 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); 1422 BI->setDebugLoc(IDL); 1423 continue; 1424 } 1425 1426 if (CalleeHasDebugInfo) 1427 continue; 1428 1429 // If the inlined instruction has no line number, make it look as if it 1430 // originates from the call location. This is important for 1431 // ((__always_inline__, __nodebug__)) functions which must use caller 1432 // location for all instructions in their function body. 1433 1434 // Don't update static allocas, as they may get moved later. 1435 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1436 if (allocaWouldBeStaticInEntry(AI)) 1437 continue; 1438 1439 BI->setDebugLoc(TheCallDL); 1440 } 1441 } 1442 } 1443 1444 /// Update the block frequencies of the caller after a callee has been inlined. 1445 /// 1446 /// Each block cloned into the caller has its block frequency scaled by the 1447 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of 1448 /// callee's entry block gets the same frequency as the callsite block and the 1449 /// relative frequencies of all cloned blocks remain the same after cloning. 1450 static void updateCallerBFI(BasicBlock *CallSiteBlock, 1451 const ValueToValueMapTy &VMap, 1452 BlockFrequencyInfo *CallerBFI, 1453 BlockFrequencyInfo *CalleeBFI, 1454 const BasicBlock &CalleeEntryBlock) { 1455 SmallPtrSet<BasicBlock *, 16> ClonedBBs; 1456 for (auto const &Entry : VMap) { 1457 if (!isa<BasicBlock>(Entry.first) || !Entry.second) 1458 continue; 1459 auto *OrigBB = cast<BasicBlock>(Entry.first); 1460 auto *ClonedBB = cast<BasicBlock>(Entry.second); 1461 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); 1462 if (!ClonedBBs.insert(ClonedBB).second) { 1463 // Multiple blocks in the callee might get mapped to one cloned block in 1464 // the caller since we prune the callee as we clone it. When that happens, 1465 // we want to use the maximum among the original blocks' frequencies. 1466 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); 1467 if (NewFreq > Freq) 1468 Freq = NewFreq; 1469 } 1470 CallerBFI->setBlockFreq(ClonedBB, Freq); 1471 } 1472 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); 1473 CallerBFI->setBlockFreqAndScale( 1474 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), 1475 ClonedBBs); 1476 } 1477 1478 /// Update the branch metadata for cloned call instructions. 1479 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, 1480 const ProfileCount &CalleeEntryCount, 1481 const Instruction *TheCall, 1482 ProfileSummaryInfo *PSI, 1483 BlockFrequencyInfo *CallerBFI) { 1484 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || 1485 CalleeEntryCount.getCount() < 1) 1486 return; 1487 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; 1488 int64_t CallCount = 1489 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, 1490 CalleeEntryCount.getCount()); 1491 updateProfileCallee(Callee, -CallCount, &VMap); 1492 } 1493 1494 void llvm::updateProfileCallee( 1495 Function *Callee, int64_t entryDelta, 1496 const ValueMap<const Value *, WeakTrackingVH> *VMap) { 1497 auto CalleeCount = Callee->getEntryCount(); 1498 if (!CalleeCount.hasValue()) 1499 return; 1500 1501 uint64_t priorEntryCount = CalleeCount.getCount(); 1502 uint64_t newEntryCount; 1503 1504 // Since CallSiteCount is an estimate, it could exceed the original callee 1505 // count and has to be set to 0 so guard against underflow. 1506 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) 1507 newEntryCount = 0; 1508 else 1509 newEntryCount = priorEntryCount + entryDelta; 1510 1511 Callee->setEntryCount(newEntryCount); 1512 1513 // During inlining ? 1514 if (VMap) { 1515 uint64_t cloneEntryCount = priorEntryCount - newEntryCount; 1516 for (auto const &Entry : *VMap) 1517 if (isa<CallInst>(Entry.first)) 1518 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) 1519 CI->updateProfWeight(cloneEntryCount, priorEntryCount); 1520 } 1521 for (BasicBlock &BB : *Callee) 1522 // No need to update the callsite if it is pruned during inlining. 1523 if (!VMap || VMap->count(&BB)) 1524 for (Instruction &I : BB) 1525 if (CallInst *CI = dyn_cast<CallInst>(&I)) 1526 CI->updateProfWeight(newEntryCount, priorEntryCount); 1527 } 1528 1529 /// This function inlines the called function into the basic block of the 1530 /// caller. This returns false if it is not possible to inline this call. 1531 /// The program is still in a well defined state if this occurs though. 1532 /// 1533 /// Note that this only does one level of inlining. For example, if the 1534 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1535 /// exists in the instruction stream. Similarly this will inline a recursive 1536 /// function by one level. 1537 llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1538 AAResults *CalleeAAR, 1539 bool InsertLifetime, 1540 Function *ForwardVarArgsTo) { 1541 Instruction *TheCall = CS.getInstruction(); 1542 assert(TheCall->getParent() && TheCall->getFunction() 1543 && "Instruction not in function!"); 1544 1545 // FIXME: we don't inline callbr yet. 1546 if (isa<CallBrInst>(TheCall)) 1547 return false; 1548 1549 // If IFI has any state in it, zap it before we fill it in. 1550 IFI.reset(); 1551 1552 Function *CalledFunc = CS.getCalledFunction(); 1553 if (!CalledFunc || // Can't inline external function or indirect 1554 CalledFunc->isDeclaration()) // call! 1555 return "external or indirect"; 1556 1557 // The inliner does not know how to inline through calls with operand bundles 1558 // in general ... 1559 if (CS.hasOperandBundles()) { 1560 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1561 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1562 // ... but it knows how to inline through "deopt" operand bundles ... 1563 if (Tag == LLVMContext::OB_deopt) 1564 continue; 1565 // ... and "funclet" operand bundles. 1566 if (Tag == LLVMContext::OB_funclet) 1567 continue; 1568 1569 return "unsupported operand bundle"; 1570 } 1571 } 1572 1573 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1574 // calls that we inline. 1575 bool MarkNoUnwind = CS.doesNotThrow(); 1576 1577 BasicBlock *OrigBB = TheCall->getParent(); 1578 Function *Caller = OrigBB->getParent(); 1579 1580 // GC poses two hazards to inlining, which only occur when the callee has GC: 1581 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1582 // caller. 1583 // 2. If the caller has a differing GC, it is invalid to inline. 1584 if (CalledFunc->hasGC()) { 1585 if (!Caller->hasGC()) 1586 Caller->setGC(CalledFunc->getGC()); 1587 else if (CalledFunc->getGC() != Caller->getGC()) 1588 return "incompatible GC"; 1589 } 1590 1591 // Get the personality function from the callee if it contains a landing pad. 1592 Constant *CalledPersonality = 1593 CalledFunc->hasPersonalityFn() 1594 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1595 : nullptr; 1596 1597 // Find the personality function used by the landing pads of the caller. If it 1598 // exists, then check to see that it matches the personality function used in 1599 // the callee. 1600 Constant *CallerPersonality = 1601 Caller->hasPersonalityFn() 1602 ? Caller->getPersonalityFn()->stripPointerCasts() 1603 : nullptr; 1604 if (CalledPersonality) { 1605 if (!CallerPersonality) 1606 Caller->setPersonalityFn(CalledPersonality); 1607 // If the personality functions match, then we can perform the 1608 // inlining. Otherwise, we can't inline. 1609 // TODO: This isn't 100% true. Some personality functions are proper 1610 // supersets of others and can be used in place of the other. 1611 else if (CalledPersonality != CallerPersonality) 1612 return "incompatible personality"; 1613 } 1614 1615 // We need to figure out which funclet the callsite was in so that we may 1616 // properly nest the callee. 1617 Instruction *CallSiteEHPad = nullptr; 1618 if (CallerPersonality) { 1619 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1620 if (isScopedEHPersonality(Personality)) { 1621 Optional<OperandBundleUse> ParentFunclet = 1622 CS.getOperandBundle(LLVMContext::OB_funclet); 1623 if (ParentFunclet) 1624 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1625 1626 // OK, the inlining site is legal. What about the target function? 1627 1628 if (CallSiteEHPad) { 1629 if (Personality == EHPersonality::MSVC_CXX) { 1630 // The MSVC personality cannot tolerate catches getting inlined into 1631 // cleanup funclets. 1632 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1633 // Ok, the call site is within a cleanuppad. Let's check the callee 1634 // for catchpads. 1635 for (const BasicBlock &CalledBB : *CalledFunc) { 1636 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1637 return "catch in cleanup funclet"; 1638 } 1639 } 1640 } else if (isAsynchronousEHPersonality(Personality)) { 1641 // SEH is even less tolerant, there may not be any sort of exceptional 1642 // funclet in the callee. 1643 for (const BasicBlock &CalledBB : *CalledFunc) { 1644 if (CalledBB.isEHPad()) 1645 return "SEH in cleanup funclet"; 1646 } 1647 } 1648 } 1649 } 1650 } 1651 1652 // Determine if we are dealing with a call in an EHPad which does not unwind 1653 // to caller. 1654 bool EHPadForCallUnwindsLocally = false; 1655 if (CallSiteEHPad && CS.isCall()) { 1656 UnwindDestMemoTy FuncletUnwindMap; 1657 Value *CallSiteUnwindDestToken = 1658 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); 1659 1660 EHPadForCallUnwindsLocally = 1661 CallSiteUnwindDestToken && 1662 !isa<ConstantTokenNone>(CallSiteUnwindDestToken); 1663 } 1664 1665 // Get an iterator to the last basic block in the function, which will have 1666 // the new function inlined after it. 1667 Function::iterator LastBlock = --Caller->end(); 1668 1669 // Make sure to capture all of the return instructions from the cloned 1670 // function. 1671 SmallVector<ReturnInst*, 8> Returns; 1672 ClonedCodeInfo InlinedFunctionInfo; 1673 Function::iterator FirstNewBlock; 1674 1675 { // Scope to destroy VMap after cloning. 1676 ValueToValueMapTy VMap; 1677 // Keep a list of pair (dst, src) to emit byval initializations. 1678 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1679 1680 auto &DL = Caller->getParent()->getDataLayout(); 1681 1682 // Calculate the vector of arguments to pass into the function cloner, which 1683 // matches up the formal to the actual argument values. 1684 CallSite::arg_iterator AI = CS.arg_begin(); 1685 unsigned ArgNo = 0; 1686 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1687 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1688 Value *ActualArg = *AI; 1689 1690 // When byval arguments actually inlined, we need to make the copy implied 1691 // by them explicit. However, we don't do this if the callee is readonly 1692 // or readnone, because the copy would be unneeded: the callee doesn't 1693 // modify the struct. 1694 if (CS.isByValArgument(ArgNo)) { 1695 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1696 CalledFunc->getParamAlignment(ArgNo)); 1697 if (ActualArg != *AI) 1698 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1699 } 1700 1701 VMap[&*I] = ActualArg; 1702 } 1703 1704 // Add alignment assumptions if necessary. We do this before the inlined 1705 // instructions are actually cloned into the caller so that we can easily 1706 // check what will be known at the start of the inlined code. 1707 AddAlignmentAssumptions(CS, IFI); 1708 1709 // We want the inliner to prune the code as it copies. We would LOVE to 1710 // have no dead or constant instructions leftover after inlining occurs 1711 // (which can happen, e.g., because an argument was constant), but we'll be 1712 // happy with whatever the cloner can do. 1713 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1714 /*ModuleLevelChanges=*/false, Returns, ".i", 1715 &InlinedFunctionInfo, TheCall); 1716 // Remember the first block that is newly cloned over. 1717 FirstNewBlock = LastBlock; ++FirstNewBlock; 1718 1719 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) 1720 // Update the BFI of blocks cloned into the caller. 1721 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, 1722 CalledFunc->front()); 1723 1724 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, 1725 IFI.PSI, IFI.CallerBFI); 1726 1727 // Inject byval arguments initialization. 1728 for (std::pair<Value*, Value*> &Init : ByValInit) 1729 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1730 &*FirstNewBlock, IFI); 1731 1732 Optional<OperandBundleUse> ParentDeopt = 1733 CS.getOperandBundle(LLVMContext::OB_deopt); 1734 if (ParentDeopt) { 1735 SmallVector<OperandBundleDef, 2> OpDefs; 1736 1737 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1738 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1739 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1740 1741 OpDefs.clear(); 1742 1743 CallSite ICS(I); 1744 OpDefs.reserve(ICS.getNumOperandBundles()); 1745 1746 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1747 auto ChildOB = ICS.getOperandBundleAt(i); 1748 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1749 // If the inlined call has other operand bundles, let them be 1750 OpDefs.emplace_back(ChildOB); 1751 continue; 1752 } 1753 1754 // It may be useful to separate this logic (of handling operand 1755 // bundles) out to a separate "policy" component if this gets crowded. 1756 // Prepend the parent's deoptimization continuation to the newly 1757 // inlined call's deoptimization continuation. 1758 std::vector<Value *> MergedDeoptArgs; 1759 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1760 ChildOB.Inputs.size()); 1761 1762 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1763 ParentDeopt->Inputs.begin(), 1764 ParentDeopt->Inputs.end()); 1765 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1766 ChildOB.Inputs.end()); 1767 1768 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1769 } 1770 1771 Instruction *NewI = nullptr; 1772 if (isa<CallInst>(I)) 1773 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1774 else if (isa<CallBrInst>(I)) 1775 NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I); 1776 else 1777 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1778 1779 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1780 // this even if the call returns void. 1781 I->replaceAllUsesWith(NewI); 1782 1783 VH = nullptr; 1784 I->eraseFromParent(); 1785 } 1786 } 1787 1788 // Update the callgraph if requested. 1789 if (IFI.CG) 1790 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1791 1792 // For 'nodebug' functions, the associated DISubprogram is always null. 1793 // Conservatively avoid propagating the callsite debug location to 1794 // instructions inlined from a function whose DISubprogram is not null. 1795 fixupLineNumbers(Caller, FirstNewBlock, TheCall, 1796 CalledFunc->getSubprogram() != nullptr); 1797 1798 // Clone existing noalias metadata if necessary. 1799 CloneAliasScopeMetadata(CS, VMap); 1800 1801 // Add noalias metadata if necessary. 1802 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1803 1804 // Propagate llvm.mem.parallel_loop_access if necessary. 1805 PropagateParallelLoopAccessMetadata(CS, VMap); 1806 1807 // Register any cloned assumptions. 1808 if (IFI.GetAssumptionCache) 1809 for (BasicBlock &NewBlock : 1810 make_range(FirstNewBlock->getIterator(), Caller->end())) 1811 for (Instruction &I : NewBlock) { 1812 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1813 if (II->getIntrinsicID() == Intrinsic::assume) 1814 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); 1815 } 1816 } 1817 1818 // If there are any alloca instructions in the block that used to be the entry 1819 // block for the callee, move them to the entry block of the caller. First 1820 // calculate which instruction they should be inserted before. We insert the 1821 // instructions at the end of the current alloca list. 1822 { 1823 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1824 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1825 E = FirstNewBlock->end(); I != E; ) { 1826 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1827 if (!AI) continue; 1828 1829 // If the alloca is now dead, remove it. This often occurs due to code 1830 // specialization. 1831 if (AI->use_empty()) { 1832 AI->eraseFromParent(); 1833 continue; 1834 } 1835 1836 if (!allocaWouldBeStaticInEntry(AI)) 1837 continue; 1838 1839 // Keep track of the static allocas that we inline into the caller. 1840 IFI.StaticAllocas.push_back(AI); 1841 1842 // Scan for the block of allocas that we can move over, and move them 1843 // all at once. 1844 while (isa<AllocaInst>(I) && 1845 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { 1846 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1847 ++I; 1848 } 1849 1850 // Transfer all of the allocas over in a block. Using splice means 1851 // that the instructions aren't removed from the symbol table, then 1852 // reinserted. 1853 Caller->getEntryBlock().getInstList().splice( 1854 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1855 } 1856 // Move any dbg.declares describing the allocas into the entry basic block. 1857 DIBuilder DIB(*Caller->getParent()); 1858 for (auto &AI : IFI.StaticAllocas) 1859 replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::ApplyOffset, 0); 1860 } 1861 1862 SmallVector<Value*,4> VarArgsToForward; 1863 SmallVector<AttributeSet, 4> VarArgsAttrs; 1864 for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); 1865 i < CS.getNumArgOperands(); i++) { 1866 VarArgsToForward.push_back(CS.getArgOperand(i)); 1867 VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); 1868 } 1869 1870 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; 1871 if (InlinedFunctionInfo.ContainsCalls) { 1872 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1873 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1874 CallSiteTailKind = CI->getTailCallKind(); 1875 1876 // For inlining purposes, the "notail" marker is the same as no marker. 1877 if (CallSiteTailKind == CallInst::TCK_NoTail) 1878 CallSiteTailKind = CallInst::TCK_None; 1879 1880 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1881 ++BB) { 1882 for (auto II = BB->begin(); II != BB->end();) { 1883 Instruction &I = *II++; 1884 CallInst *CI = dyn_cast<CallInst>(&I); 1885 if (!CI) 1886 continue; 1887 1888 // Forward varargs from inlined call site to calls to the 1889 // ForwardVarArgsTo function, if requested, and to musttail calls. 1890 if (!VarArgsToForward.empty() && 1891 ((ForwardVarArgsTo && 1892 CI->getCalledFunction() == ForwardVarArgsTo) || 1893 CI->isMustTailCall())) { 1894 // Collect attributes for non-vararg parameters. 1895 AttributeList Attrs = CI->getAttributes(); 1896 SmallVector<AttributeSet, 8> ArgAttrs; 1897 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { 1898 for (unsigned ArgNo = 0; 1899 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) 1900 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 1901 } 1902 1903 // Add VarArg attributes. 1904 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); 1905 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), 1906 Attrs.getRetAttributes(), ArgAttrs); 1907 // Add VarArgs to existing parameters. 1908 SmallVector<Value *, 6> Params(CI->arg_operands()); 1909 Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); 1910 CallInst *NewCI = CallInst::Create( 1911 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); 1912 NewCI->setDebugLoc(CI->getDebugLoc()); 1913 NewCI->setAttributes(Attrs); 1914 NewCI->setCallingConv(CI->getCallingConv()); 1915 CI->replaceAllUsesWith(NewCI); 1916 CI->eraseFromParent(); 1917 CI = NewCI; 1918 } 1919 1920 if (Function *F = CI->getCalledFunction()) 1921 InlinedDeoptimizeCalls |= 1922 F->getIntrinsicID() == Intrinsic::experimental_deoptimize; 1923 1924 // We need to reduce the strength of any inlined tail calls. For 1925 // musttail, we have to avoid introducing potential unbounded stack 1926 // growth. For example, if functions 'f' and 'g' are mutually recursive 1927 // with musttail, we can inline 'g' into 'f' so long as we preserve 1928 // musttail on the cloned call to 'f'. If either the inlined call site 1929 // or the cloned call site is *not* musttail, the program already has 1930 // one frame of stack growth, so it's safe to remove musttail. Here is 1931 // a table of example transformations: 1932 // 1933 // f -> musttail g -> musttail f ==> f -> musttail f 1934 // f -> musttail g -> tail f ==> f -> tail f 1935 // f -> g -> musttail f ==> f -> f 1936 // f -> g -> tail f ==> f -> f 1937 // 1938 // Inlined notail calls should remain notail calls. 1939 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1940 if (ChildTCK != CallInst::TCK_NoTail) 1941 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1942 CI->setTailCallKind(ChildTCK); 1943 InlinedMustTailCalls |= CI->isMustTailCall(); 1944 1945 // Calls inlined through a 'nounwind' call site should be marked 1946 // 'nounwind'. 1947 if (MarkNoUnwind) 1948 CI->setDoesNotThrow(); 1949 } 1950 } 1951 } 1952 1953 // Leave lifetime markers for the static alloca's, scoping them to the 1954 // function we just inlined. 1955 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1956 IRBuilder<> builder(&FirstNewBlock->front()); 1957 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1958 AllocaInst *AI = IFI.StaticAllocas[ai]; 1959 // Don't mark swifterror allocas. They can't have bitcast uses. 1960 if (AI->isSwiftError()) 1961 continue; 1962 1963 // If the alloca is already scoped to something smaller than the whole 1964 // function then there's no need to add redundant, less accurate markers. 1965 if (hasLifetimeMarkers(AI)) 1966 continue; 1967 1968 // Try to determine the size of the allocation. 1969 ConstantInt *AllocaSize = nullptr; 1970 if (ConstantInt *AIArraySize = 1971 dyn_cast<ConstantInt>(AI->getArraySize())) { 1972 auto &DL = Caller->getParent()->getDataLayout(); 1973 Type *AllocaType = AI->getAllocatedType(); 1974 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1975 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1976 1977 // Don't add markers for zero-sized allocas. 1978 if (AllocaArraySize == 0) 1979 continue; 1980 1981 // Check that array size doesn't saturate uint64_t and doesn't 1982 // overflow when it's multiplied by type size. 1983 if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && 1984 std::numeric_limits<uint64_t>::max() / AllocaArraySize >= 1985 AllocaTypeSize) { 1986 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1987 AllocaArraySize * AllocaTypeSize); 1988 } 1989 } 1990 1991 builder.CreateLifetimeStart(AI, AllocaSize); 1992 for (ReturnInst *RI : Returns) { 1993 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize 1994 // call and a return. The return kills all local allocas. 1995 if (InlinedMustTailCalls && 1996 RI->getParent()->getTerminatingMustTailCall()) 1997 continue; 1998 if (InlinedDeoptimizeCalls && 1999 RI->getParent()->getTerminatingDeoptimizeCall()) 2000 continue; 2001 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 2002 } 2003 } 2004 } 2005 2006 // If the inlined code contained dynamic alloca instructions, wrap the inlined 2007 // code with llvm.stacksave/llvm.stackrestore intrinsics. 2008 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 2009 Module *M = Caller->getParent(); 2010 // Get the two intrinsics we care about. 2011 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 2012 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 2013 2014 // Insert the llvm.stacksave. 2015 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 2016 .CreateCall(StackSave, {}, "savedstack"); 2017 2018 // Insert a call to llvm.stackrestore before any return instructions in the 2019 // inlined function. 2020 for (ReturnInst *RI : Returns) { 2021 // Don't insert llvm.stackrestore calls between a musttail or deoptimize 2022 // call and a return. The return will restore the stack pointer. 2023 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 2024 continue; 2025 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) 2026 continue; 2027 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 2028 } 2029 } 2030 2031 // If we are inlining for an invoke instruction, we must make sure to rewrite 2032 // any call instructions into invoke instructions. This is sensitive to which 2033 // funclet pads were top-level in the inlinee, so must be done before 2034 // rewriting the "parent pad" links. 2035 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 2036 BasicBlock *UnwindDest = II->getUnwindDest(); 2037 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 2038 if (isa<LandingPadInst>(FirstNonPHI)) { 2039 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2040 } else { 2041 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 2042 } 2043 } 2044 2045 // Update the lexical scopes of the new funclets and callsites. 2046 // Anything that had 'none' as its parent is now nested inside the callsite's 2047 // EHPad. 2048 2049 if (CallSiteEHPad) { 2050 for (Function::iterator BB = FirstNewBlock->getIterator(), 2051 E = Caller->end(); 2052 BB != E; ++BB) { 2053 // Add bundle operands to any top-level call sites. 2054 SmallVector<OperandBundleDef, 1> OpBundles; 2055 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 2056 Instruction *I = &*BBI++; 2057 CallSite CS(I); 2058 if (!CS) 2059 continue; 2060 2061 // Skip call sites which are nounwind intrinsics. 2062 auto *CalledFn = 2063 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2064 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 2065 continue; 2066 2067 // Skip call sites which already have a "funclet" bundle. 2068 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 2069 continue; 2070 2071 CS.getOperandBundlesAsDefs(OpBundles); 2072 OpBundles.emplace_back("funclet", CallSiteEHPad); 2073 2074 Instruction *NewInst; 2075 if (CS.isCall()) 2076 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 2077 else if (CS.isCallBr()) 2078 NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I); 2079 else 2080 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 2081 NewInst->takeName(I); 2082 I->replaceAllUsesWith(NewInst); 2083 I->eraseFromParent(); 2084 2085 OpBundles.clear(); 2086 } 2087 2088 // It is problematic if the inlinee has a cleanupret which unwinds to 2089 // caller and we inline it into a call site which doesn't unwind but into 2090 // an EH pad that does. Such an edge must be dynamically unreachable. 2091 // As such, we replace the cleanupret with unreachable. 2092 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) 2093 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) 2094 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); 2095 2096 Instruction *I = BB->getFirstNonPHI(); 2097 if (!I->isEHPad()) 2098 continue; 2099 2100 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 2101 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 2102 CatchSwitch->setParentPad(CallSiteEHPad); 2103 } else { 2104 auto *FPI = cast<FuncletPadInst>(I); 2105 if (isa<ConstantTokenNone>(FPI->getParentPad())) 2106 FPI->setParentPad(CallSiteEHPad); 2107 } 2108 } 2109 } 2110 2111 if (InlinedDeoptimizeCalls) { 2112 // We need to at least remove the deoptimizing returns from the Return set, 2113 // so that the control flow from those returns does not get merged into the 2114 // caller (but terminate it instead). If the caller's return type does not 2115 // match the callee's return type, we also need to change the return type of 2116 // the intrinsic. 2117 if (Caller->getReturnType() == TheCall->getType()) { 2118 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { 2119 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; 2120 }); 2121 Returns.erase(NewEnd, Returns.end()); 2122 } else { 2123 SmallVector<ReturnInst *, 8> NormalReturns; 2124 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( 2125 Caller->getParent(), Intrinsic::experimental_deoptimize, 2126 {Caller->getReturnType()}); 2127 2128 for (ReturnInst *RI : Returns) { 2129 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); 2130 if (!DeoptCall) { 2131 NormalReturns.push_back(RI); 2132 continue; 2133 } 2134 2135 // The calling convention on the deoptimize call itself may be bogus, 2136 // since the code we're inlining may have undefined behavior (and may 2137 // never actually execute at runtime); but all 2138 // @llvm.experimental.deoptimize declarations have to have the same 2139 // calling convention in a well-formed module. 2140 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); 2141 NewDeoptIntrinsic->setCallingConv(CallingConv); 2142 auto *CurBB = RI->getParent(); 2143 RI->eraseFromParent(); 2144 2145 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), 2146 DeoptCall->arg_end()); 2147 2148 SmallVector<OperandBundleDef, 1> OpBundles; 2149 DeoptCall->getOperandBundlesAsDefs(OpBundles); 2150 DeoptCall->eraseFromParent(); 2151 assert(!OpBundles.empty() && 2152 "Expected at least the deopt operand bundle"); 2153 2154 IRBuilder<> Builder(CurBB); 2155 CallInst *NewDeoptCall = 2156 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); 2157 NewDeoptCall->setCallingConv(CallingConv); 2158 if (NewDeoptCall->getType()->isVoidTy()) 2159 Builder.CreateRetVoid(); 2160 else 2161 Builder.CreateRet(NewDeoptCall); 2162 } 2163 2164 // Leave behind the normal returns so we can merge control flow. 2165 std::swap(Returns, NormalReturns); 2166 } 2167 } 2168 2169 // Handle any inlined musttail call sites. In order for a new call site to be 2170 // musttail, the source of the clone and the inlined call site must have been 2171 // musttail. Therefore it's safe to return without merging control into the 2172 // phi below. 2173 if (InlinedMustTailCalls) { 2174 // Check if we need to bitcast the result of any musttail calls. 2175 Type *NewRetTy = Caller->getReturnType(); 2176 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 2177 2178 // Handle the returns preceded by musttail calls separately. 2179 SmallVector<ReturnInst *, 8> NormalReturns; 2180 for (ReturnInst *RI : Returns) { 2181 CallInst *ReturnedMustTail = 2182 RI->getParent()->getTerminatingMustTailCall(); 2183 if (!ReturnedMustTail) { 2184 NormalReturns.push_back(RI); 2185 continue; 2186 } 2187 if (!NeedBitCast) 2188 continue; 2189 2190 // Delete the old return and any preceding bitcast. 2191 BasicBlock *CurBB = RI->getParent(); 2192 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 2193 RI->eraseFromParent(); 2194 if (OldCast) 2195 OldCast->eraseFromParent(); 2196 2197 // Insert a new bitcast and return with the right type. 2198 IRBuilder<> Builder(CurBB); 2199 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 2200 } 2201 2202 // Leave behind the normal returns so we can merge control flow. 2203 std::swap(Returns, NormalReturns); 2204 } 2205 2206 // Now that all of the transforms on the inlined code have taken place but 2207 // before we splice the inlined code into the CFG and lose track of which 2208 // blocks were actually inlined, collect the call sites. We only do this if 2209 // call graph updates weren't requested, as those provide value handle based 2210 // tracking of inlined call sites instead. 2211 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { 2212 // Otherwise just collect the raw call sites that were inlined. 2213 for (BasicBlock &NewBB : 2214 make_range(FirstNewBlock->getIterator(), Caller->end())) 2215 for (Instruction &I : NewBB) 2216 if (auto CS = CallSite(&I)) 2217 IFI.InlinedCallSites.push_back(CS); 2218 } 2219 2220 // If we cloned in _exactly one_ basic block, and if that block ends in a 2221 // return instruction, we splice the body of the inlined callee directly into 2222 // the calling basic block. 2223 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 2224 // Move all of the instructions right before the call. 2225 OrigBB->getInstList().splice(TheCall->getIterator(), 2226 FirstNewBlock->getInstList(), 2227 FirstNewBlock->begin(), FirstNewBlock->end()); 2228 // Remove the cloned basic block. 2229 Caller->getBasicBlockList().pop_back(); 2230 2231 // If the call site was an invoke instruction, add a branch to the normal 2232 // destination. 2233 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2234 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 2235 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 2236 } 2237 2238 // If the return instruction returned a value, replace uses of the call with 2239 // uses of the returned value. 2240 if (!TheCall->use_empty()) { 2241 ReturnInst *R = Returns[0]; 2242 if (TheCall == R->getReturnValue()) 2243 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2244 else 2245 TheCall->replaceAllUsesWith(R->getReturnValue()); 2246 } 2247 // Since we are now done with the Call/Invoke, we can delete it. 2248 TheCall->eraseFromParent(); 2249 2250 // Since we are now done with the return instruction, delete it also. 2251 Returns[0]->eraseFromParent(); 2252 2253 // We are now done with the inlining. 2254 return true; 2255 } 2256 2257 // Otherwise, we have the normal case, of more than one block to inline or 2258 // multiple return sites. 2259 2260 // We want to clone the entire callee function into the hole between the 2261 // "starter" and "ender" blocks. How we accomplish this depends on whether 2262 // this is an invoke instruction or a call instruction. 2263 BasicBlock *AfterCallBB; 2264 BranchInst *CreatedBranchToNormalDest = nullptr; 2265 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 2266 2267 // Add an unconditional branch to make this look like the CallInst case... 2268 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 2269 2270 // Split the basic block. This guarantees that no PHI nodes will have to be 2271 // updated due to new incoming edges, and make the invoke case more 2272 // symmetric to the call case. 2273 AfterCallBB = 2274 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 2275 CalledFunc->getName() + ".exit"); 2276 2277 } else { // It's a call 2278 // If this is a call instruction, we need to split the basic block that 2279 // the call lives in. 2280 // 2281 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 2282 CalledFunc->getName() + ".exit"); 2283 } 2284 2285 if (IFI.CallerBFI) { 2286 // Copy original BB's block frequency to AfterCallBB 2287 IFI.CallerBFI->setBlockFreq( 2288 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); 2289 } 2290 2291 // Change the branch that used to go to AfterCallBB to branch to the first 2292 // basic block of the inlined function. 2293 // 2294 Instruction *Br = OrigBB->getTerminator(); 2295 assert(Br && Br->getOpcode() == Instruction::Br && 2296 "splitBasicBlock broken!"); 2297 Br->setOperand(0, &*FirstNewBlock); 2298 2299 // Now that the function is correct, make it a little bit nicer. In 2300 // particular, move the basic blocks inserted from the end of the function 2301 // into the space made by splitting the source basic block. 2302 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 2303 Caller->getBasicBlockList(), FirstNewBlock, 2304 Caller->end()); 2305 2306 // Handle all of the return instructions that we just cloned in, and eliminate 2307 // any users of the original call/invoke instruction. 2308 Type *RTy = CalledFunc->getReturnType(); 2309 2310 PHINode *PHI = nullptr; 2311 if (Returns.size() > 1) { 2312 // The PHI node should go at the front of the new basic block to merge all 2313 // possible incoming values. 2314 if (!TheCall->use_empty()) { 2315 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 2316 &AfterCallBB->front()); 2317 // Anything that used the result of the function call should now use the 2318 // PHI node as their operand. 2319 TheCall->replaceAllUsesWith(PHI); 2320 } 2321 2322 // Loop over all of the return instructions adding entries to the PHI node 2323 // as appropriate. 2324 if (PHI) { 2325 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2326 ReturnInst *RI = Returns[i]; 2327 assert(RI->getReturnValue()->getType() == PHI->getType() && 2328 "Ret value not consistent in function!"); 2329 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 2330 } 2331 } 2332 2333 // Add a branch to the merge points and remove return instructions. 2334 DebugLoc Loc; 2335 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 2336 ReturnInst *RI = Returns[i]; 2337 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 2338 Loc = RI->getDebugLoc(); 2339 BI->setDebugLoc(Loc); 2340 RI->eraseFromParent(); 2341 } 2342 // We need to set the debug location to *somewhere* inside the 2343 // inlined function. The line number may be nonsensical, but the 2344 // instruction will at least be associated with the right 2345 // function. 2346 if (CreatedBranchToNormalDest) 2347 CreatedBranchToNormalDest->setDebugLoc(Loc); 2348 } else if (!Returns.empty()) { 2349 // Otherwise, if there is exactly one return value, just replace anything 2350 // using the return value of the call with the computed value. 2351 if (!TheCall->use_empty()) { 2352 if (TheCall == Returns[0]->getReturnValue()) 2353 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2354 else 2355 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 2356 } 2357 2358 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 2359 BasicBlock *ReturnBB = Returns[0]->getParent(); 2360 ReturnBB->replaceAllUsesWith(AfterCallBB); 2361 2362 // Splice the code from the return block into the block that it will return 2363 // to, which contains the code that was after the call. 2364 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 2365 ReturnBB->getInstList()); 2366 2367 if (CreatedBranchToNormalDest) 2368 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 2369 2370 // Delete the return instruction now and empty ReturnBB now. 2371 Returns[0]->eraseFromParent(); 2372 ReturnBB->eraseFromParent(); 2373 } else if (!TheCall->use_empty()) { 2374 // No returns, but something is using the return value of the call. Just 2375 // nuke the result. 2376 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 2377 } 2378 2379 // Since we are now done with the Call/Invoke, we can delete it. 2380 TheCall->eraseFromParent(); 2381 2382 // If we inlined any musttail calls and the original return is now 2383 // unreachable, delete it. It can only contain a bitcast and ret. 2384 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 2385 AfterCallBB->eraseFromParent(); 2386 2387 // We should always be able to fold the entry block of the function into the 2388 // single predecessor of the block... 2389 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 2390 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 2391 2392 // Splice the code entry block into calling block, right before the 2393 // unconditional branch. 2394 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 2395 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 2396 2397 // Remove the unconditional branch. 2398 OrigBB->getInstList().erase(Br); 2399 2400 // Now we can remove the CalleeEntry block, which is now empty. 2401 Caller->getBasicBlockList().erase(CalleeEntry); 2402 2403 // If we inserted a phi node, check to see if it has a single value (e.g. all 2404 // the entries are the same or undef). If so, remove the PHI so it doesn't 2405 // block other optimizations. 2406 if (PHI) { 2407 AssumptionCache *AC = 2408 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; 2409 auto &DL = Caller->getParent()->getDataLayout(); 2410 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { 2411 PHI->replaceAllUsesWith(V); 2412 PHI->eraseFromParent(); 2413 } 2414 } 2415 2416 return true; 2417 } 2418