xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/InlineFunction.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <iterator>
72 #include <limits>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 using ProfileCount = Function::ProfileCount;
79 
80 static cl::opt<bool>
81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
82   cl::Hidden,
83   cl::desc("Convert noalias attributes to metadata during inlining."));
84 
85 static cl::opt<bool>
86     UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
87                         cl::ZeroOrMore, cl::init(true),
88                         cl::desc("Use the llvm.experimental.noalias.scope.decl "
89                                  "intrinsic during inlining."));
90 
91 // Disabled by default, because the added alignment assumptions may increase
92 // compile-time and block optimizations. This option is not suitable for use
93 // with frontends that emit comprehensive parameter alignment annotations.
94 static cl::opt<bool>
95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
96   cl::init(false), cl::Hidden,
97   cl::desc("Convert align attributes to assumptions during inlining."));
98 
99 static cl::opt<bool> UpdateReturnAttributes(
100         "update-return-attrs", cl::init(true), cl::Hidden,
101             cl::desc("Update return attributes on calls within inlined body"));
102 
103 static cl::opt<unsigned> InlinerAttributeWindow(
104     "max-inst-checked-for-throw-during-inlining", cl::Hidden,
105     cl::desc("the maximum number of instructions analyzed for may throw during "
106              "attribute inference in inlined body"),
107     cl::init(4));
108 
109 namespace {
110 
111   /// A class for recording information about inlining a landing pad.
112   class LandingPadInliningInfo {
113     /// Destination of the invoke's unwind.
114     BasicBlock *OuterResumeDest;
115 
116     /// Destination for the callee's resume.
117     BasicBlock *InnerResumeDest = nullptr;
118 
119     /// LandingPadInst associated with the invoke.
120     LandingPadInst *CallerLPad = nullptr;
121 
122     /// PHI for EH values from landingpad insts.
123     PHINode *InnerEHValuesPHI = nullptr;
124 
125     SmallVector<Value*, 8> UnwindDestPHIValues;
126 
127   public:
128     LandingPadInliningInfo(InvokeInst *II)
129         : OuterResumeDest(II->getUnwindDest()) {
130       // If there are PHI nodes in the unwind destination block, we need to keep
131       // track of which values came into them from the invoke before removing
132       // the edge from this block.
133       BasicBlock *InvokeBB = II->getParent();
134       BasicBlock::iterator I = OuterResumeDest->begin();
135       for (; isa<PHINode>(I); ++I) {
136         // Save the value to use for this edge.
137         PHINode *PHI = cast<PHINode>(I);
138         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
139       }
140 
141       CallerLPad = cast<LandingPadInst>(I);
142     }
143 
144     /// The outer unwind destination is the target of
145     /// unwind edges introduced for calls within the inlined function.
146     BasicBlock *getOuterResumeDest() const {
147       return OuterResumeDest;
148     }
149 
150     BasicBlock *getInnerResumeDest();
151 
152     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
153 
154     /// Forward the 'resume' instruction to the caller's landing pad block.
155     /// When the landing pad block has only one predecessor, this is
156     /// a simple branch. When there is more than one predecessor, we need to
157     /// split the landing pad block after the landingpad instruction and jump
158     /// to there.
159     void forwardResume(ResumeInst *RI,
160                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
161 
162     /// Add incoming-PHI values to the unwind destination block for the given
163     /// basic block, using the values for the original invoke's source block.
164     void addIncomingPHIValuesFor(BasicBlock *BB) const {
165       addIncomingPHIValuesForInto(BB, OuterResumeDest);
166     }
167 
168     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
169       BasicBlock::iterator I = dest->begin();
170       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
171         PHINode *phi = cast<PHINode>(I);
172         phi->addIncoming(UnwindDestPHIValues[i], src);
173       }
174     }
175   };
176 
177 } // end anonymous namespace
178 
179 /// Get or create a target for the branch from ResumeInsts.
180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
181   if (InnerResumeDest) return InnerResumeDest;
182 
183   // Split the landing pad.
184   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
185   InnerResumeDest =
186     OuterResumeDest->splitBasicBlock(SplitPoint,
187                                      OuterResumeDest->getName() + ".body");
188 
189   // The number of incoming edges we expect to the inner landing pad.
190   const unsigned PHICapacity = 2;
191 
192   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193   Instruction *InsertPoint = &InnerResumeDest->front();
194   BasicBlock::iterator I = OuterResumeDest->begin();
195   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
196     PHINode *OuterPHI = cast<PHINode>(I);
197     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
198                                         OuterPHI->getName() + ".lpad-body",
199                                         InsertPoint);
200     OuterPHI->replaceAllUsesWith(InnerPHI);
201     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
202   }
203 
204   // Create a PHI for the exception values.
205   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
206                                      "eh.lpad-body", InsertPoint);
207   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
208   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
209 
210   // All done.
211   return InnerResumeDest;
212 }
213 
214 /// Forward the 'resume' instruction to the caller's landing pad block.
215 /// When the landing pad block has only one predecessor, this is a simple
216 /// branch. When there is more than one predecessor, we need to split the
217 /// landing pad block after the landingpad instruction and jump to there.
218 void LandingPadInliningInfo::forwardResume(
219     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
220   BasicBlock *Dest = getInnerResumeDest();
221   BasicBlock *Src = RI->getParent();
222 
223   BranchInst::Create(Dest, Src);
224 
225   // Update the PHIs in the destination. They were inserted in an order which
226   // makes this work.
227   addIncomingPHIValuesForInto(Src, Dest);
228 
229   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
230   RI->eraseFromParent();
231 }
232 
233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
234 static Value *getParentPad(Value *EHPad) {
235   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
236     return FPI->getParentPad();
237   return cast<CatchSwitchInst>(EHPad)->getParentPad();
238 }
239 
240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
241 
242 /// Helper for getUnwindDestToken that does the descendant-ward part of
243 /// the search.
244 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
245                                        UnwindDestMemoTy &MemoMap) {
246   SmallVector<Instruction *, 8> Worklist(1, EHPad);
247 
248   while (!Worklist.empty()) {
249     Instruction *CurrentPad = Worklist.pop_back_val();
250     // We only put pads on the worklist that aren't in the MemoMap.  When
251     // we find an unwind dest for a pad we may update its ancestors, but
252     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
253     // so they should never get updated while queued on the worklist.
254     assert(!MemoMap.count(CurrentPad));
255     Value *UnwindDestToken = nullptr;
256     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
257       if (CatchSwitch->hasUnwindDest()) {
258         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
259       } else {
260         // Catchswitch doesn't have a 'nounwind' variant, and one might be
261         // annotated as "unwinds to caller" when really it's nounwind (see
262         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
263         // parent's unwind dest from this.  We can check its catchpads'
264         // descendants, since they might include a cleanuppad with an
265         // "unwinds to caller" cleanupret, which can be trusted.
266         for (auto HI = CatchSwitch->handler_begin(),
267                   HE = CatchSwitch->handler_end();
268              HI != HE && !UnwindDestToken; ++HI) {
269           BasicBlock *HandlerBlock = *HI;
270           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
271           for (User *Child : CatchPad->users()) {
272             // Intentionally ignore invokes here -- since the catchswitch is
273             // marked "unwind to caller", it would be a verifier error if it
274             // contained an invoke which unwinds out of it, so any invoke we'd
275             // encounter must unwind to some child of the catch.
276             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
277               continue;
278 
279             Instruction *ChildPad = cast<Instruction>(Child);
280             auto Memo = MemoMap.find(ChildPad);
281             if (Memo == MemoMap.end()) {
282               // Haven't figured out this child pad yet; queue it.
283               Worklist.push_back(ChildPad);
284               continue;
285             }
286             // We've already checked this child, but might have found that
287             // it offers no proof either way.
288             Value *ChildUnwindDestToken = Memo->second;
289             if (!ChildUnwindDestToken)
290               continue;
291             // We already know the child's unwind dest, which can either
292             // be ConstantTokenNone to indicate unwind to caller, or can
293             // be another child of the catchpad.  Only the former indicates
294             // the unwind dest of the catchswitch.
295             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
296               UnwindDestToken = ChildUnwindDestToken;
297               break;
298             }
299             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
300           }
301         }
302       }
303     } else {
304       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
305       for (User *U : CleanupPad->users()) {
306         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
307           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
308             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
309           else
310             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
311           break;
312         }
313         Value *ChildUnwindDestToken;
314         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
315           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
316         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
317           Instruction *ChildPad = cast<Instruction>(U);
318           auto Memo = MemoMap.find(ChildPad);
319           if (Memo == MemoMap.end()) {
320             // Haven't resolved this child yet; queue it and keep searching.
321             Worklist.push_back(ChildPad);
322             continue;
323           }
324           // We've checked this child, but still need to ignore it if it
325           // had no proof either way.
326           ChildUnwindDestToken = Memo->second;
327           if (!ChildUnwindDestToken)
328             continue;
329         } else {
330           // Not a relevant user of the cleanuppad
331           continue;
332         }
333         // In a well-formed program, the child/invoke must either unwind to
334         // an(other) child of the cleanup, or exit the cleanup.  In the
335         // first case, continue searching.
336         if (isa<Instruction>(ChildUnwindDestToken) &&
337             getParentPad(ChildUnwindDestToken) == CleanupPad)
338           continue;
339         UnwindDestToken = ChildUnwindDestToken;
340         break;
341       }
342     }
343     // If we haven't found an unwind dest for CurrentPad, we may have queued its
344     // children, so move on to the next in the worklist.
345     if (!UnwindDestToken)
346       continue;
347 
348     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
349     // any ancestors of CurrentPad up to but not including UnwindDestToken's
350     // parent pad.  Record this in the memo map, and check to see if the
351     // original EHPad being queried is one of the ones exited.
352     Value *UnwindParent;
353     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
354       UnwindParent = getParentPad(UnwindPad);
355     else
356       UnwindParent = nullptr;
357     bool ExitedOriginalPad = false;
358     for (Instruction *ExitedPad = CurrentPad;
359          ExitedPad && ExitedPad != UnwindParent;
360          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
361       // Skip over catchpads since they just follow their catchswitches.
362       if (isa<CatchPadInst>(ExitedPad))
363         continue;
364       MemoMap[ExitedPad] = UnwindDestToken;
365       ExitedOriginalPad |= (ExitedPad == EHPad);
366     }
367 
368     if (ExitedOriginalPad)
369       return UnwindDestToken;
370 
371     // Continue the search.
372   }
373 
374   // No definitive information is contained within this funclet.
375   return nullptr;
376 }
377 
378 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
379 /// return that pad instruction.  If it unwinds to caller, return
380 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
381 /// return nullptr.
382 ///
383 /// This routine gets invoked for calls in funclets in inlinees when inlining
384 /// an invoke.  Since many funclets don't have calls inside them, it's queried
385 /// on-demand rather than building a map of pads to unwind dests up front.
386 /// Determining a funclet's unwind dest may require recursively searching its
387 /// descendants, and also ancestors and cousins if the descendants don't provide
388 /// an answer.  Since most funclets will have their unwind dest immediately
389 /// available as the unwind dest of a catchswitch or cleanupret, this routine
390 /// searches top-down from the given pad and then up. To avoid worst-case
391 /// quadratic run-time given that approach, it uses a memo map to avoid
392 /// re-processing funclet trees.  The callers that rewrite the IR as they go
393 /// take advantage of this, for correctness, by checking/forcing rewritten
394 /// pads' entries to match the original callee view.
395 static Value *getUnwindDestToken(Instruction *EHPad,
396                                  UnwindDestMemoTy &MemoMap) {
397   // Catchpads unwind to the same place as their catchswitch;
398   // redirct any queries on catchpads so the code below can
399   // deal with just catchswitches and cleanuppads.
400   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
401     EHPad = CPI->getCatchSwitch();
402 
403   // Check if we've already determined the unwind dest for this pad.
404   auto Memo = MemoMap.find(EHPad);
405   if (Memo != MemoMap.end())
406     return Memo->second;
407 
408   // Search EHPad and, if necessary, its descendants.
409   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
410   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
411   if (UnwindDestToken)
412     return UnwindDestToken;
413 
414   // No information is available for this EHPad from itself or any of its
415   // descendants.  An unwind all the way out to a pad in the caller would
416   // need also to agree with the unwind dest of the parent funclet, so
417   // search up the chain to try to find a funclet with information.  Put
418   // null entries in the memo map to avoid re-processing as we go up.
419   MemoMap[EHPad] = nullptr;
420 #ifndef NDEBUG
421   SmallPtrSet<Instruction *, 4> TempMemos;
422   TempMemos.insert(EHPad);
423 #endif
424   Instruction *LastUselessPad = EHPad;
425   Value *AncestorToken;
426   for (AncestorToken = getParentPad(EHPad);
427        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
428        AncestorToken = getParentPad(AncestorToken)) {
429     // Skip over catchpads since they just follow their catchswitches.
430     if (isa<CatchPadInst>(AncestorPad))
431       continue;
432     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
433     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
434     // call to getUnwindDestToken, that would mean that AncestorPad had no
435     // information in itself, its descendants, or its ancestors.  If that
436     // were the case, then we should also have recorded the lack of information
437     // for the descendant that we're coming from.  So assert that we don't
438     // find a null entry in the MemoMap for AncestorPad.
439     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
440     auto AncestorMemo = MemoMap.find(AncestorPad);
441     if (AncestorMemo == MemoMap.end()) {
442       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
443     } else {
444       UnwindDestToken = AncestorMemo->second;
445     }
446     if (UnwindDestToken)
447       break;
448     LastUselessPad = AncestorPad;
449     MemoMap[LastUselessPad] = nullptr;
450 #ifndef NDEBUG
451     TempMemos.insert(LastUselessPad);
452 #endif
453   }
454 
455   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
456   // returned nullptr (and likewise for EHPad and any of its ancestors up to
457   // LastUselessPad), so LastUselessPad has no information from below.  Since
458   // getUnwindDestTokenHelper must investigate all downward paths through
459   // no-information nodes to prove that a node has no information like this,
460   // and since any time it finds information it records it in the MemoMap for
461   // not just the immediately-containing funclet but also any ancestors also
462   // exited, it must be the case that, walking downward from LastUselessPad,
463   // visiting just those nodes which have not been mapped to an unwind dest
464   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
465   // they are just used to keep getUnwindDestTokenHelper from repeating work),
466   // any node visited must have been exhaustively searched with no information
467   // for it found.
468   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
469   while (!Worklist.empty()) {
470     Instruction *UselessPad = Worklist.pop_back_val();
471     auto Memo = MemoMap.find(UselessPad);
472     if (Memo != MemoMap.end() && Memo->second) {
473       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
474       // that it is a funclet that does have information about unwinding to
475       // a particular destination; its parent was a useless pad.
476       // Since its parent has no information, the unwind edge must not escape
477       // the parent, and must target a sibling of this pad.  This local unwind
478       // gives us no information about EHPad.  Leave it and the subtree rooted
479       // at it alone.
480       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
481       continue;
482     }
483     // We know we don't have information for UselesPad.  If it has an entry in
484     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
485     // added on this invocation of getUnwindDestToken; if a previous invocation
486     // recorded nullptr, it would have had to prove that the ancestors of
487     // UselessPad, which include LastUselessPad, had no information, and that
488     // in turn would have required proving that the descendants of
489     // LastUselesPad, which include EHPad, have no information about
490     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
491     // the MemoMap on that invocation, which isn't the case if we got here.
492     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
493     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
494     // information that we'd be contradicting by making a map entry for it
495     // (which is something that getUnwindDestTokenHelper must have proved for
496     // us to get here).  Just assert on is direct users here; the checks in
497     // this downward walk at its descendants will verify that they don't have
498     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
499     // unwind edges or unwind to a sibling).
500     MemoMap[UselessPad] = UnwindDestToken;
501     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
502       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
503       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
504         auto *CatchPad = HandlerBlock->getFirstNonPHI();
505         for (User *U : CatchPad->users()) {
506           assert(
507               (!isa<InvokeInst>(U) ||
508                (getParentPad(
509                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
510                 CatchPad)) &&
511               "Expected useless pad");
512           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
513             Worklist.push_back(cast<Instruction>(U));
514         }
515       }
516     } else {
517       assert(isa<CleanupPadInst>(UselessPad));
518       for (User *U : UselessPad->users()) {
519         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
520         assert((!isa<InvokeInst>(U) ||
521                 (getParentPad(
522                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
523                  UselessPad)) &&
524                "Expected useless pad");
525         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
526           Worklist.push_back(cast<Instruction>(U));
527       }
528     }
529   }
530 
531   return UnwindDestToken;
532 }
533 
534 /// When we inline a basic block into an invoke,
535 /// we have to turn all of the calls that can throw into invokes.
536 /// This function analyze BB to see if there are any calls, and if so,
537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
538 /// nodes in that block with the values specified in InvokeDestPHIValues.
539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
540     BasicBlock *BB, BasicBlock *UnwindEdge,
541     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
542   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
543     Instruction *I = &*BBI++;
544 
545     // We only need to check for function calls: inlined invoke
546     // instructions require no special handling.
547     CallInst *CI = dyn_cast<CallInst>(I);
548 
549     if (!CI || CI->doesNotThrow())
550       continue;
551 
552     if (CI->isInlineAsm()) {
553       InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
554       if (!IA->canThrow()) {
555         continue;
556       }
557     }
558 
559     // We do not need to (and in fact, cannot) convert possibly throwing calls
560     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
561     // invokes.  The caller's "segment" of the deoptimization continuation
562     // attached to the newly inlined @llvm.experimental_deoptimize
563     // (resp. @llvm.experimental.guard) call should contain the exception
564     // handling logic, if any.
565     if (auto *F = CI->getCalledFunction())
566       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
567           F->getIntrinsicID() == Intrinsic::experimental_guard)
568         continue;
569 
570     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
571       // This call is nested inside a funclet.  If that funclet has an unwind
572       // destination within the inlinee, then unwinding out of this call would
573       // be UB.  Rewriting this call to an invoke which targets the inlined
574       // invoke's unwind dest would give the call's parent funclet multiple
575       // unwind destinations, which is something that subsequent EH table
576       // generation can't handle and that the veirifer rejects.  So when we
577       // see such a call, leave it as a call.
578       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
579       Value *UnwindDestToken =
580           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
581       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
582         continue;
583 #ifndef NDEBUG
584       Instruction *MemoKey;
585       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
586         MemoKey = CatchPad->getCatchSwitch();
587       else
588         MemoKey = FuncletPad;
589       assert(FuncletUnwindMap->count(MemoKey) &&
590              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
591              "must get memoized to avoid confusing later searches");
592 #endif // NDEBUG
593     }
594 
595     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
596     return BB;
597   }
598   return nullptr;
599 }
600 
601 /// If we inlined an invoke site, we need to convert calls
602 /// in the body of the inlined function into invokes.
603 ///
604 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
605 /// block of the inlined code (the last block is the end of the function),
606 /// and InlineCodeInfo is information about the code that got inlined.
607 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
608                                     ClonedCodeInfo &InlinedCodeInfo) {
609   BasicBlock *InvokeDest = II->getUnwindDest();
610 
611   Function *Caller = FirstNewBlock->getParent();
612 
613   // The inlined code is currently at the end of the function, scan from the
614   // start of the inlined code to its end, checking for stuff we need to
615   // rewrite.
616   LandingPadInliningInfo Invoke(II);
617 
618   // Get all of the inlined landing pad instructions.
619   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
620   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
621        I != E; ++I)
622     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
623       InlinedLPads.insert(II->getLandingPadInst());
624 
625   // Append the clauses from the outer landing pad instruction into the inlined
626   // landing pad instructions.
627   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
628   for (LandingPadInst *InlinedLPad : InlinedLPads) {
629     unsigned OuterNum = OuterLPad->getNumClauses();
630     InlinedLPad->reserveClauses(OuterNum);
631     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
632       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
633     if (OuterLPad->isCleanup())
634       InlinedLPad->setCleanup(true);
635   }
636 
637   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
638        BB != E; ++BB) {
639     if (InlinedCodeInfo.ContainsCalls)
640       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
641               &*BB, Invoke.getOuterResumeDest()))
642         // Update any PHI nodes in the exceptional block to indicate that there
643         // is now a new entry in them.
644         Invoke.addIncomingPHIValuesFor(NewBB);
645 
646     // Forward any resumes that are remaining here.
647     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
648       Invoke.forwardResume(RI, InlinedLPads);
649   }
650 
651   // Now that everything is happy, we have one final detail.  The PHI nodes in
652   // the exception destination block still have entries due to the original
653   // invoke instruction. Eliminate these entries (which might even delete the
654   // PHI node) now.
655   InvokeDest->removePredecessor(II->getParent());
656 }
657 
658 /// If we inlined an invoke site, we need to convert calls
659 /// in the body of the inlined function into invokes.
660 ///
661 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
662 /// block of the inlined code (the last block is the end of the function),
663 /// and InlineCodeInfo is information about the code that got inlined.
664 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
665                                ClonedCodeInfo &InlinedCodeInfo) {
666   BasicBlock *UnwindDest = II->getUnwindDest();
667   Function *Caller = FirstNewBlock->getParent();
668 
669   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
670 
671   // If there are PHI nodes in the unwind destination block, we need to keep
672   // track of which values came into them from the invoke before removing the
673   // edge from this block.
674   SmallVector<Value *, 8> UnwindDestPHIValues;
675   BasicBlock *InvokeBB = II->getParent();
676   for (Instruction &I : *UnwindDest) {
677     // Save the value to use for this edge.
678     PHINode *PHI = dyn_cast<PHINode>(&I);
679     if (!PHI)
680       break;
681     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
682   }
683 
684   // Add incoming-PHI values to the unwind destination block for the given basic
685   // block, using the values for the original invoke's source block.
686   auto UpdatePHINodes = [&](BasicBlock *Src) {
687     BasicBlock::iterator I = UnwindDest->begin();
688     for (Value *V : UnwindDestPHIValues) {
689       PHINode *PHI = cast<PHINode>(I);
690       PHI->addIncoming(V, Src);
691       ++I;
692     }
693   };
694 
695   // This connects all the instructions which 'unwind to caller' to the invoke
696   // destination.
697   UnwindDestMemoTy FuncletUnwindMap;
698   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
699        BB != E; ++BB) {
700     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
701       if (CRI->unwindsToCaller()) {
702         auto *CleanupPad = CRI->getCleanupPad();
703         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
704         CRI->eraseFromParent();
705         UpdatePHINodes(&*BB);
706         // Finding a cleanupret with an unwind destination would confuse
707         // subsequent calls to getUnwindDestToken, so map the cleanuppad
708         // to short-circuit any such calls and recognize this as an "unwind
709         // to caller" cleanup.
710         assert(!FuncletUnwindMap.count(CleanupPad) ||
711                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
712         FuncletUnwindMap[CleanupPad] =
713             ConstantTokenNone::get(Caller->getContext());
714       }
715     }
716 
717     Instruction *I = BB->getFirstNonPHI();
718     if (!I->isEHPad())
719       continue;
720 
721     Instruction *Replacement = nullptr;
722     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
723       if (CatchSwitch->unwindsToCaller()) {
724         Value *UnwindDestToken;
725         if (auto *ParentPad =
726                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
727           // This catchswitch is nested inside another funclet.  If that
728           // funclet has an unwind destination within the inlinee, then
729           // unwinding out of this catchswitch would be UB.  Rewriting this
730           // catchswitch to unwind to the inlined invoke's unwind dest would
731           // give the parent funclet multiple unwind destinations, which is
732           // something that subsequent EH table generation can't handle and
733           // that the veirifer rejects.  So when we see such a call, leave it
734           // as "unwind to caller".
735           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
736           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
737             continue;
738         } else {
739           // This catchswitch has no parent to inherit constraints from, and
740           // none of its descendants can have an unwind edge that exits it and
741           // targets another funclet in the inlinee.  It may or may not have a
742           // descendant that definitively has an unwind to caller.  In either
743           // case, we'll have to assume that any unwinds out of it may need to
744           // be routed to the caller, so treat it as though it has a definitive
745           // unwind to caller.
746           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
747         }
748         auto *NewCatchSwitch = CatchSwitchInst::Create(
749             CatchSwitch->getParentPad(), UnwindDest,
750             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
751             CatchSwitch);
752         for (BasicBlock *PadBB : CatchSwitch->handlers())
753           NewCatchSwitch->addHandler(PadBB);
754         // Propagate info for the old catchswitch over to the new one in
755         // the unwind map.  This also serves to short-circuit any subsequent
756         // checks for the unwind dest of this catchswitch, which would get
757         // confused if they found the outer handler in the callee.
758         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
759         Replacement = NewCatchSwitch;
760       }
761     } else if (!isa<FuncletPadInst>(I)) {
762       llvm_unreachable("unexpected EHPad!");
763     }
764 
765     if (Replacement) {
766       Replacement->takeName(I);
767       I->replaceAllUsesWith(Replacement);
768       I->eraseFromParent();
769       UpdatePHINodes(&*BB);
770     }
771   }
772 
773   if (InlinedCodeInfo.ContainsCalls)
774     for (Function::iterator BB = FirstNewBlock->getIterator(),
775                             E = Caller->end();
776          BB != E; ++BB)
777       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
778               &*BB, UnwindDest, &FuncletUnwindMap))
779         // Update any PHI nodes in the exceptional block to indicate that there
780         // is now a new entry in them.
781         UpdatePHINodes(NewBB);
782 
783   // Now that everything is happy, we have one final detail.  The PHI nodes in
784   // the exception destination block still have entries due to the original
785   // invoke instruction. Eliminate these entries (which might even delete the
786   // PHI node) now.
787   UnwindDest->removePredecessor(InvokeBB);
788 }
789 
790 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
791 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
792 /// be propagated to all memory-accessing cloned instructions.
793 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
794                                       Function::iterator FEnd) {
795   MDNode *MemParallelLoopAccess =
796       CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
797   MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
798   MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
799   MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
800   if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
801     return;
802 
803   for (BasicBlock &BB : make_range(FStart, FEnd)) {
804     for (Instruction &I : BB) {
805       // This metadata is only relevant for instructions that access memory.
806       if (!I.mayReadOrWriteMemory())
807         continue;
808 
809       if (MemParallelLoopAccess) {
810         // TODO: This probably should not overwrite MemParalleLoopAccess.
811         MemParallelLoopAccess = MDNode::concatenate(
812             I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
813             MemParallelLoopAccess);
814         I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
815                       MemParallelLoopAccess);
816       }
817 
818       if (AccessGroup)
819         I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
820             I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
821 
822       if (AliasScope)
823         I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
824             I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
825 
826       if (NoAlias)
827         I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
828             I.getMetadata(LLVMContext::MD_noalias), NoAlias));
829     }
830   }
831 }
832 
833 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
834 /// using scoped alias metadata is inlined, the aliasing relationships may not
835 /// hold between the two version. It is necessary to create a deep clone of the
836 /// metadata, putting the two versions in separate scope domains.
837 class ScopedAliasMetadataDeepCloner {
838   using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
839   SetVector<const MDNode *> MD;
840   MetadataMap MDMap;
841   void addRecursiveMetadataUses();
842 
843 public:
844   ScopedAliasMetadataDeepCloner(const Function *F);
845 
846   /// Create a new clone of the scoped alias metadata, which will be used by
847   /// subsequent remap() calls.
848   void clone();
849 
850   /// Remap instructions in the given range from the original to the cloned
851   /// metadata.
852   void remap(Function::iterator FStart, Function::iterator FEnd);
853 };
854 
855 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
856     const Function *F) {
857   for (const BasicBlock &BB : *F) {
858     for (const Instruction &I : BB) {
859       if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
860         MD.insert(M);
861       if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
862         MD.insert(M);
863 
864       // We also need to clone the metadata in noalias intrinsics.
865       if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
866         MD.insert(Decl->getScopeList());
867     }
868   }
869   addRecursiveMetadataUses();
870 }
871 
872 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
873   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
874   while (!Queue.empty()) {
875     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
876     for (const Metadata *Op : M->operands())
877       if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
878         if (MD.insert(OpMD))
879           Queue.push_back(OpMD);
880   }
881 }
882 
883 void ScopedAliasMetadataDeepCloner::clone() {
884   assert(MDMap.empty() && "clone() already called ?");
885 
886   SmallVector<TempMDTuple, 16> DummyNodes;
887   for (const MDNode *I : MD) {
888     DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
889     MDMap[I].reset(DummyNodes.back().get());
890   }
891 
892   // Create new metadata nodes to replace the dummy nodes, replacing old
893   // metadata references with either a dummy node or an already-created new
894   // node.
895   SmallVector<Metadata *, 4> NewOps;
896   for (const MDNode *I : MD) {
897     for (const Metadata *Op : I->operands()) {
898       if (const MDNode *M = dyn_cast<MDNode>(Op))
899         NewOps.push_back(MDMap[M]);
900       else
901         NewOps.push_back(const_cast<Metadata *>(Op));
902     }
903 
904     MDNode *NewM = MDNode::get(I->getContext(), NewOps);
905     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
906     assert(TempM->isTemporary() && "Expected temporary node");
907 
908     TempM->replaceAllUsesWith(NewM);
909     NewOps.clear();
910   }
911 }
912 
913 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
914                                           Function::iterator FEnd) {
915   if (MDMap.empty())
916     return; // Nothing to do.
917 
918   for (BasicBlock &BB : make_range(FStart, FEnd)) {
919     for (Instruction &I : BB) {
920       // TODO: The null checks for the MDMap.lookup() results should no longer
921       // be necessary.
922       if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
923         if (MDNode *MNew = MDMap.lookup(M))
924           I.setMetadata(LLVMContext::MD_alias_scope, MNew);
925 
926       if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
927         if (MDNode *MNew = MDMap.lookup(M))
928           I.setMetadata(LLVMContext::MD_noalias, MNew);
929 
930       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
931         if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
932           Decl->setScopeList(MNew);
933     }
934   }
935 }
936 
937 /// If the inlined function has noalias arguments,
938 /// then add new alias scopes for each noalias argument, tag the mapped noalias
939 /// parameters with noalias metadata specifying the new scope, and tag all
940 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
942                                   const DataLayout &DL, AAResults *CalleeAAR,
943                                   ClonedCodeInfo &InlinedFunctionInfo) {
944   if (!EnableNoAliasConversion)
945     return;
946 
947   const Function *CalledFunc = CB.getCalledFunction();
948   SmallVector<const Argument *, 4> NoAliasArgs;
949 
950   for (const Argument &Arg : CalledFunc->args())
951     if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
952       NoAliasArgs.push_back(&Arg);
953 
954   if (NoAliasArgs.empty())
955     return;
956 
957   // To do a good job, if a noalias variable is captured, we need to know if
958   // the capture point dominates the particular use we're considering.
959   DominatorTree DT;
960   DT.recalculate(const_cast<Function&>(*CalledFunc));
961 
962   // noalias indicates that pointer values based on the argument do not alias
963   // pointer values which are not based on it. So we add a new "scope" for each
964   // noalias function argument. Accesses using pointers based on that argument
965   // become part of that alias scope, accesses using pointers not based on that
966   // argument are tagged as noalias with that scope.
967 
968   DenseMap<const Argument *, MDNode *> NewScopes;
969   MDBuilder MDB(CalledFunc->getContext());
970 
971   // Create a new scope domain for this function.
972   MDNode *NewDomain =
973     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
974   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
975     const Argument *A = NoAliasArgs[i];
976 
977     std::string Name = std::string(CalledFunc->getName());
978     if (A->hasName()) {
979       Name += ": %";
980       Name += A->getName();
981     } else {
982       Name += ": argument ";
983       Name += utostr(i);
984     }
985 
986     // Note: We always create a new anonymous root here. This is true regardless
987     // of the linkage of the callee because the aliasing "scope" is not just a
988     // property of the callee, but also all control dependencies in the caller.
989     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
990     NewScopes.insert(std::make_pair(A, NewScope));
991 
992     if (UseNoAliasIntrinsic) {
993       // Introduce a llvm.experimental.noalias.scope.decl for the noalias
994       // argument.
995       MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
996       auto *NoAliasDecl =
997           IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
998       // Ignore the result for now. The result will be used when the
999       // llvm.noalias intrinsic is introduced.
1000       (void)NoAliasDecl;
1001     }
1002   }
1003 
1004   // Iterate over all new instructions in the map; for all memory-access
1005   // instructions, add the alias scope metadata.
1006   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1007        VMI != VMIE; ++VMI) {
1008     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1009       if (!VMI->second)
1010         continue;
1011 
1012       Instruction *NI = dyn_cast<Instruction>(VMI->second);
1013       if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
1014         continue;
1015 
1016       bool IsArgMemOnlyCall = false, IsFuncCall = false;
1017       SmallVector<const Value *, 2> PtrArgs;
1018 
1019       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1020         PtrArgs.push_back(LI->getPointerOperand());
1021       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1022         PtrArgs.push_back(SI->getPointerOperand());
1023       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1024         PtrArgs.push_back(VAAI->getPointerOperand());
1025       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1026         PtrArgs.push_back(CXI->getPointerOperand());
1027       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1028         PtrArgs.push_back(RMWI->getPointerOperand());
1029       else if (const auto *Call = dyn_cast<CallBase>(I)) {
1030         // If we know that the call does not access memory, then we'll still
1031         // know that about the inlined clone of this call site, and we don't
1032         // need to add metadata.
1033         if (Call->doesNotAccessMemory())
1034           continue;
1035 
1036         IsFuncCall = true;
1037         if (CalleeAAR) {
1038           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1039 
1040           // We'll retain this knowledge without additional metadata.
1041           if (AAResults::onlyAccessesInaccessibleMem(MRB))
1042             continue;
1043 
1044           if (AAResults::onlyAccessesArgPointees(MRB))
1045             IsArgMemOnlyCall = true;
1046         }
1047 
1048         for (Value *Arg : Call->args()) {
1049           // We need to check the underlying objects of all arguments, not just
1050           // the pointer arguments, because we might be passing pointers as
1051           // integers, etc.
1052           // However, if we know that the call only accesses pointer arguments,
1053           // then we only need to check the pointer arguments.
1054           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1055             continue;
1056 
1057           PtrArgs.push_back(Arg);
1058         }
1059       }
1060 
1061       // If we found no pointers, then this instruction is not suitable for
1062       // pairing with an instruction to receive aliasing metadata.
1063       // However, if this is a call, this we might just alias with none of the
1064       // noalias arguments.
1065       if (PtrArgs.empty() && !IsFuncCall)
1066         continue;
1067 
1068       // It is possible that there is only one underlying object, but you
1069       // need to go through several PHIs to see it, and thus could be
1070       // repeated in the Objects list.
1071       SmallPtrSet<const Value *, 4> ObjSet;
1072       SmallVector<Metadata *, 4> Scopes, NoAliases;
1073 
1074       SmallSetVector<const Argument *, 4> NAPtrArgs;
1075       for (const Value *V : PtrArgs) {
1076         SmallVector<const Value *, 4> Objects;
1077         getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1078 
1079         for (const Value *O : Objects)
1080           ObjSet.insert(O);
1081       }
1082 
1083       // Figure out if we're derived from anything that is not a noalias
1084       // argument.
1085       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1086       for (const Value *V : ObjSet) {
1087         // Is this value a constant that cannot be derived from any pointer
1088         // value (we need to exclude constant expressions, for example, that
1089         // are formed from arithmetic on global symbols).
1090         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1091                              isa<ConstantPointerNull>(V) ||
1092                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1093         if (IsNonPtrConst)
1094           continue;
1095 
1096         // If this is anything other than a noalias argument, then we cannot
1097         // completely describe the aliasing properties using alias.scope
1098         // metadata (and, thus, won't add any).
1099         if (const Argument *A = dyn_cast<Argument>(V)) {
1100           if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1101             UsesAliasingPtr = true;
1102         } else {
1103           UsesAliasingPtr = true;
1104         }
1105 
1106         // If this is not some identified function-local object (which cannot
1107         // directly alias a noalias argument), or some other argument (which,
1108         // by definition, also cannot alias a noalias argument), then we could
1109         // alias a noalias argument that has been captured).
1110         if (!isa<Argument>(V) &&
1111             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1112           CanDeriveViaCapture = true;
1113       }
1114 
1115       // A function call can always get captured noalias pointers (via other
1116       // parameters, globals, etc.).
1117       if (IsFuncCall && !IsArgMemOnlyCall)
1118         CanDeriveViaCapture = true;
1119 
1120       // First, we want to figure out all of the sets with which we definitely
1121       // don't alias. Iterate over all noalias set, and add those for which:
1122       //   1. The noalias argument is not in the set of objects from which we
1123       //      definitely derive.
1124       //   2. The noalias argument has not yet been captured.
1125       // An arbitrary function that might load pointers could see captured
1126       // noalias arguments via other noalias arguments or globals, and so we
1127       // must always check for prior capture.
1128       for (const Argument *A : NoAliasArgs) {
1129         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1130                                  // It might be tempting to skip the
1131                                  // PointerMayBeCapturedBefore check if
1132                                  // A->hasNoCaptureAttr() is true, but this is
1133                                  // incorrect because nocapture only guarantees
1134                                  // that no copies outlive the function, not
1135                                  // that the value cannot be locally captured.
1136                                  !PointerMayBeCapturedBefore(A,
1137                                    /* ReturnCaptures */ false,
1138                                    /* StoreCaptures */ false, I, &DT)))
1139           NoAliases.push_back(NewScopes[A]);
1140       }
1141 
1142       if (!NoAliases.empty())
1143         NI->setMetadata(LLVMContext::MD_noalias,
1144                         MDNode::concatenate(
1145                             NI->getMetadata(LLVMContext::MD_noalias),
1146                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1147 
1148       // Next, we want to figure out all of the sets to which we might belong.
1149       // We might belong to a set if the noalias argument is in the set of
1150       // underlying objects. If there is some non-noalias argument in our list
1151       // of underlying objects, then we cannot add a scope because the fact
1152       // that some access does not alias with any set of our noalias arguments
1153       // cannot itself guarantee that it does not alias with this access
1154       // (because there is some pointer of unknown origin involved and the
1155       // other access might also depend on this pointer). We also cannot add
1156       // scopes to arbitrary functions unless we know they don't access any
1157       // non-parameter pointer-values.
1158       bool CanAddScopes = !UsesAliasingPtr;
1159       if (CanAddScopes && IsFuncCall)
1160         CanAddScopes = IsArgMemOnlyCall;
1161 
1162       if (CanAddScopes)
1163         for (const Argument *A : NoAliasArgs) {
1164           if (ObjSet.count(A))
1165             Scopes.push_back(NewScopes[A]);
1166         }
1167 
1168       if (!Scopes.empty())
1169         NI->setMetadata(
1170             LLVMContext::MD_alias_scope,
1171             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1172                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1173     }
1174   }
1175 }
1176 
1177 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1178                                             Instruction *End) {
1179 
1180   assert(Begin->getParent() == End->getParent() &&
1181          "Expected to be in same basic block!");
1182   unsigned NumInstChecked = 0;
1183   // Check that all instructions in the range [Begin, End) are guaranteed to
1184   // transfer execution to successor.
1185   for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
1186     if (NumInstChecked++ > InlinerAttributeWindow ||
1187         !isGuaranteedToTransferExecutionToSuccessor(&I))
1188       return true;
1189   return false;
1190 }
1191 
1192 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1193 
1194   AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1195   if (AB.empty())
1196     return AB;
1197   AttrBuilder Valid;
1198   // Only allow these white listed attributes to be propagated back to the
1199   // callee. This is because other attributes may only be valid on the call
1200   // itself, i.e. attributes such as signext and zeroext.
1201   if (auto DerefBytes = AB.getDereferenceableBytes())
1202     Valid.addDereferenceableAttr(DerefBytes);
1203   if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1204     Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1205   if (AB.contains(Attribute::NoAlias))
1206     Valid.addAttribute(Attribute::NoAlias);
1207   if (AB.contains(Attribute::NonNull))
1208     Valid.addAttribute(Attribute::NonNull);
1209   return Valid;
1210 }
1211 
1212 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1213   if (!UpdateReturnAttributes)
1214     return;
1215 
1216   AttrBuilder Valid = IdentifyValidAttributes(CB);
1217   if (Valid.empty())
1218     return;
1219   auto *CalledFunction = CB.getCalledFunction();
1220   auto &Context = CalledFunction->getContext();
1221 
1222   for (auto &BB : *CalledFunction) {
1223     auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1224     if (!RI || !isa<CallBase>(RI->getOperand(0)))
1225       continue;
1226     auto *RetVal = cast<CallBase>(RI->getOperand(0));
1227     // Sanity check that the cloned RetVal exists and is a call, otherwise we
1228     // cannot add the attributes on the cloned RetVal.
1229     // Simplification during inlining could have transformed the cloned
1230     // instruction.
1231     auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1232     if (!NewRetVal)
1233       continue;
1234     // Backward propagation of attributes to the returned value may be incorrect
1235     // if it is control flow dependent.
1236     // Consider:
1237     // @callee {
1238     //  %rv = call @foo()
1239     //  %rv2 = call @bar()
1240     //  if (%rv2 != null)
1241     //    return %rv2
1242     //  if (%rv == null)
1243     //    exit()
1244     //  return %rv
1245     // }
1246     // caller() {
1247     //   %val = call nonnull @callee()
1248     // }
1249     // Here we cannot add the nonnull attribute on either foo or bar. So, we
1250     // limit the check to both RetVal and RI are in the same basic block and
1251     // there are no throwing/exiting instructions between these instructions.
1252     if (RI->getParent() != RetVal->getParent() ||
1253         MayContainThrowingOrExitingCall(RetVal, RI))
1254       continue;
1255     // Add to the existing attributes of NewRetVal, i.e. the cloned call
1256     // instruction.
1257     // NB! When we have the same attribute already existing on NewRetVal, but
1258     // with a differing value, the AttributeList's merge API honours the already
1259     // existing attribute value (i.e. attributes such as dereferenceable,
1260     // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1261     AttributeList AL = NewRetVal->getAttributes();
1262     AttributeList NewAL =
1263         AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
1264     NewRetVal->setAttributes(NewAL);
1265   }
1266 }
1267 
1268 /// If the inlined function has non-byval align arguments, then
1269 /// add @llvm.assume-based alignment assumptions to preserve this information.
1270 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1271   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1272     return;
1273 
1274   AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1275   auto &DL = CB.getCaller()->getParent()->getDataLayout();
1276 
1277   // To avoid inserting redundant assumptions, we should check for assumptions
1278   // already in the caller. To do this, we might need a DT of the caller.
1279   DominatorTree DT;
1280   bool DTCalculated = false;
1281 
1282   Function *CalledFunc = CB.getCalledFunction();
1283   for (Argument &Arg : CalledFunc->args()) {
1284     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1285     if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1286       if (!DTCalculated) {
1287         DT.recalculate(*CB.getCaller());
1288         DTCalculated = true;
1289       }
1290 
1291       // If we can already prove the asserted alignment in the context of the
1292       // caller, then don't bother inserting the assumption.
1293       Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1294       if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1295         continue;
1296 
1297       CallInst *NewAsmp =
1298           IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1299       AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1300     }
1301   }
1302 }
1303 
1304 /// Once we have cloned code over from a callee into the caller,
1305 /// update the specified callgraph to reflect the changes we made.
1306 /// Note that it's possible that not all code was copied over, so only
1307 /// some edges of the callgraph may remain.
1308 static void UpdateCallGraphAfterInlining(CallBase &CB,
1309                                          Function::iterator FirstNewBlock,
1310                                          ValueToValueMapTy &VMap,
1311                                          InlineFunctionInfo &IFI) {
1312   CallGraph &CG = *IFI.CG;
1313   const Function *Caller = CB.getCaller();
1314   const Function *Callee = CB.getCalledFunction();
1315   CallGraphNode *CalleeNode = CG[Callee];
1316   CallGraphNode *CallerNode = CG[Caller];
1317 
1318   // Since we inlined some uninlined call sites in the callee into the caller,
1319   // add edges from the caller to all of the callees of the callee.
1320   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1321 
1322   // Consider the case where CalleeNode == CallerNode.
1323   CallGraphNode::CalledFunctionsVector CallCache;
1324   if (CalleeNode == CallerNode) {
1325     CallCache.assign(I, E);
1326     I = CallCache.begin();
1327     E = CallCache.end();
1328   }
1329 
1330   for (; I != E; ++I) {
1331     // Skip 'refererence' call records.
1332     if (!I->first)
1333       continue;
1334 
1335     const Value *OrigCall = *I->first;
1336 
1337     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1338     // Only copy the edge if the call was inlined!
1339     if (VMI == VMap.end() || VMI->second == nullptr)
1340       continue;
1341 
1342     // If the call was inlined, but then constant folded, there is no edge to
1343     // add.  Check for this case.
1344     auto *NewCall = dyn_cast<CallBase>(VMI->second);
1345     if (!NewCall)
1346       continue;
1347 
1348     // We do not treat intrinsic calls like real function calls because we
1349     // expect them to become inline code; do not add an edge for an intrinsic.
1350     if (NewCall->getCalledFunction() &&
1351         NewCall->getCalledFunction()->isIntrinsic())
1352       continue;
1353 
1354     // Remember that this call site got inlined for the client of
1355     // InlineFunction.
1356     IFI.InlinedCalls.push_back(NewCall);
1357 
1358     // It's possible that inlining the callsite will cause it to go from an
1359     // indirect to a direct call by resolving a function pointer.  If this
1360     // happens, set the callee of the new call site to a more precise
1361     // destination.  This can also happen if the call graph node of the caller
1362     // was just unnecessarily imprecise.
1363     if (!I->second->getFunction())
1364       if (Function *F = NewCall->getCalledFunction()) {
1365         // Indirect call site resolved to direct call.
1366         CallerNode->addCalledFunction(NewCall, CG[F]);
1367 
1368         continue;
1369       }
1370 
1371     CallerNode->addCalledFunction(NewCall, I->second);
1372   }
1373 
1374   // Update the call graph by deleting the edge from Callee to Caller.  We must
1375   // do this after the loop above in case Caller and Callee are the same.
1376   CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1377 }
1378 
1379 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1380                                     BasicBlock *InsertBlock,
1381                                     InlineFunctionInfo &IFI) {
1382   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1383   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1384 
1385   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1386 
1387   // Always generate a memcpy of alignment 1 here because we don't know
1388   // the alignment of the src pointer.  Other optimizations can infer
1389   // better alignment.
1390   Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1391                        /*SrcAlign*/ Align(1), Size);
1392 }
1393 
1394 /// When inlining a call site that has a byval argument,
1395 /// we have to make the implicit memcpy explicit by adding it.
1396 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1397                                   const Function *CalledFunc,
1398                                   InlineFunctionInfo &IFI,
1399                                   unsigned ByValAlignment) {
1400   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1401   Type *AggTy = ArgTy->getElementType();
1402 
1403   Function *Caller = TheCall->getFunction();
1404   const DataLayout &DL = Caller->getParent()->getDataLayout();
1405 
1406   // If the called function is readonly, then it could not mutate the caller's
1407   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1408   // temporary.
1409   if (CalledFunc->onlyReadsMemory()) {
1410     // If the byval argument has a specified alignment that is greater than the
1411     // passed in pointer, then we either have to round up the input pointer or
1412     // give up on this transformation.
1413     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1414       return Arg;
1415 
1416     AssumptionCache *AC =
1417         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1418 
1419     // If the pointer is already known to be sufficiently aligned, or if we can
1420     // round it up to a larger alignment, then we don't need a temporary.
1421     if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1422                                    AC) >= ByValAlignment)
1423       return Arg;
1424 
1425     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1426     // for code quality, but rarely happens and is required for correctness.
1427   }
1428 
1429   // Create the alloca.  If we have DataLayout, use nice alignment.
1430   Align Alignment(DL.getPrefTypeAlignment(AggTy));
1431 
1432   // If the byval had an alignment specified, we *must* use at least that
1433   // alignment, as it is required by the byval argument (and uses of the
1434   // pointer inside the callee).
1435   Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1436 
1437   Value *NewAlloca =
1438       new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1439                      Arg->getName(), &*Caller->begin()->begin());
1440   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1441 
1442   // Uses of the argument in the function should use our new alloca
1443   // instead.
1444   return NewAlloca;
1445 }
1446 
1447 // Check whether this Value is used by a lifetime intrinsic.
1448 static bool isUsedByLifetimeMarker(Value *V) {
1449   for (User *U : V->users())
1450     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1451       if (II->isLifetimeStartOrEnd())
1452         return true;
1453   return false;
1454 }
1455 
1456 // Check whether the given alloca already has
1457 // lifetime.start or lifetime.end intrinsics.
1458 static bool hasLifetimeMarkers(AllocaInst *AI) {
1459   Type *Ty = AI->getType();
1460   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1461                                        Ty->getPointerAddressSpace());
1462   if (Ty == Int8PtrTy)
1463     return isUsedByLifetimeMarker(AI);
1464 
1465   // Do a scan to find all the casts to i8*.
1466   for (User *U : AI->users()) {
1467     if (U->getType() != Int8PtrTy) continue;
1468     if (U->stripPointerCasts() != AI) continue;
1469     if (isUsedByLifetimeMarker(U))
1470       return true;
1471   }
1472   return false;
1473 }
1474 
1475 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1476 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1477 /// cannot be static.
1478 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1479   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1480 }
1481 
1482 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1483 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1484 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1485                                LLVMContext &Ctx,
1486                                DenseMap<const MDNode *, MDNode *> &IANodes) {
1487   auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1488   return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1489                          OrigDL.getScope(), IA);
1490 }
1491 
1492 /// Update inlined instructions' line numbers to
1493 /// to encode location where these instructions are inlined.
1494 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1495                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1496   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1497   if (!TheCallDL)
1498     return;
1499 
1500   auto &Ctx = Fn->getContext();
1501   DILocation *InlinedAtNode = TheCallDL;
1502 
1503   // Create a unique call site, not to be confused with any other call from the
1504   // same location.
1505   InlinedAtNode = DILocation::getDistinct(
1506       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1507       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1508 
1509   // Cache the inlined-at nodes as they're built so they are reused, without
1510   // this every instruction's inlined-at chain would become distinct from each
1511   // other.
1512   DenseMap<const MDNode *, MDNode *> IANodes;
1513 
1514   // Check if we are not generating inline line tables and want to use
1515   // the call site location instead.
1516   bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1517 
1518   for (; FI != Fn->end(); ++FI) {
1519     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1520          BI != BE; ++BI) {
1521       // Loop metadata needs to be updated so that the start and end locs
1522       // reference inlined-at locations.
1523       auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1524                                 &IANodes](Metadata *MD) -> Metadata * {
1525         if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1526           return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1527         return MD;
1528       };
1529       updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1530 
1531       if (!NoInlineLineTables)
1532         if (DebugLoc DL = BI->getDebugLoc()) {
1533           DebugLoc IDL =
1534               inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1535           BI->setDebugLoc(IDL);
1536           continue;
1537         }
1538 
1539       if (CalleeHasDebugInfo && !NoInlineLineTables)
1540         continue;
1541 
1542       // If the inlined instruction has no line number, or if inline info
1543       // is not being generated, make it look as if it originates from the call
1544       // location. This is important for ((__always_inline, __nodebug__))
1545       // functions which must use caller location for all instructions in their
1546       // function body.
1547 
1548       // Don't update static allocas, as they may get moved later.
1549       if (auto *AI = dyn_cast<AllocaInst>(BI))
1550         if (allocaWouldBeStaticInEntry(AI))
1551           continue;
1552 
1553       BI->setDebugLoc(TheCallDL);
1554     }
1555 
1556     // Remove debug info intrinsics if we're not keeping inline info.
1557     if (NoInlineLineTables) {
1558       BasicBlock::iterator BI = FI->begin();
1559       while (BI != FI->end()) {
1560         if (isa<DbgInfoIntrinsic>(BI)) {
1561           BI = BI->eraseFromParent();
1562           continue;
1563         }
1564         ++BI;
1565       }
1566     }
1567 
1568   }
1569 }
1570 
1571 /// Update the block frequencies of the caller after a callee has been inlined.
1572 ///
1573 /// Each block cloned into the caller has its block frequency scaled by the
1574 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1575 /// callee's entry block gets the same frequency as the callsite block and the
1576 /// relative frequencies of all cloned blocks remain the same after cloning.
1577 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1578                             const ValueToValueMapTy &VMap,
1579                             BlockFrequencyInfo *CallerBFI,
1580                             BlockFrequencyInfo *CalleeBFI,
1581                             const BasicBlock &CalleeEntryBlock) {
1582   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1583   for (auto Entry : VMap) {
1584     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1585       continue;
1586     auto *OrigBB = cast<BasicBlock>(Entry.first);
1587     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1588     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1589     if (!ClonedBBs.insert(ClonedBB).second) {
1590       // Multiple blocks in the callee might get mapped to one cloned block in
1591       // the caller since we prune the callee as we clone it. When that happens,
1592       // we want to use the maximum among the original blocks' frequencies.
1593       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1594       if (NewFreq > Freq)
1595         Freq = NewFreq;
1596     }
1597     CallerBFI->setBlockFreq(ClonedBB, Freq);
1598   }
1599   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1600   CallerBFI->setBlockFreqAndScale(
1601       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1602       ClonedBBs);
1603 }
1604 
1605 /// Update the branch metadata for cloned call instructions.
1606 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1607                               const ProfileCount &CalleeEntryCount,
1608                               const CallBase &TheCall, ProfileSummaryInfo *PSI,
1609                               BlockFrequencyInfo *CallerBFI) {
1610   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1611       CalleeEntryCount.getCount() < 1)
1612     return;
1613   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1614   int64_t CallCount =
1615       std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
1616   updateProfileCallee(Callee, -CallCount, &VMap);
1617 }
1618 
1619 void llvm::updateProfileCallee(
1620     Function *Callee, int64_t entryDelta,
1621     const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1622   auto CalleeCount = Callee->getEntryCount();
1623   if (!CalleeCount.hasValue())
1624     return;
1625 
1626   uint64_t priorEntryCount = CalleeCount.getCount();
1627   uint64_t newEntryCount;
1628 
1629   // Since CallSiteCount is an estimate, it could exceed the original callee
1630   // count and has to be set to 0 so guard against underflow.
1631   if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1632     newEntryCount = 0;
1633   else
1634     newEntryCount = priorEntryCount + entryDelta;
1635 
1636   // During inlining ?
1637   if (VMap) {
1638     uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1639     for (auto Entry : *VMap)
1640       if (isa<CallInst>(Entry.first))
1641         if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1642           CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1643   }
1644 
1645   if (entryDelta) {
1646     Callee->setEntryCount(newEntryCount);
1647 
1648     for (BasicBlock &BB : *Callee)
1649       // No need to update the callsite if it is pruned during inlining.
1650       if (!VMap || VMap->count(&BB))
1651         for (Instruction &I : BB)
1652           if (CallInst *CI = dyn_cast<CallInst>(&I))
1653             CI->updateProfWeight(newEntryCount, priorEntryCount);
1654   }
1655 }
1656 
1657 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1658 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1659 /// after the call. This function inlines the retainRV/claimRV calls.
1660 ///
1661 /// There are three cases to consider:
1662 ///
1663 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1664 ///    object in the callee return block, the autoreleaseRV call and the
1665 ///    retainRV/claimRV call in the caller cancel out. If the call in the caller
1666 ///    is a claimRV call, a call to objc_release is emitted.
1667 ///
1668 /// 2. If there is a call in the callee return block that doesn't have operand
1669 ///    bundle "clang.arc.attachedcall", the operand bundle on the original call
1670 ///    is transferred to the call in the callee.
1671 ///
1672 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1673 ///    a retainRV call.
1674 static void
1675 inlineRetainOrClaimRVCalls(CallBase &CB,
1676                            const SmallVectorImpl<ReturnInst *> &Returns) {
1677   Module *Mod = CB.getModule();
1678   bool IsRetainRV = objcarc::hasAttachedCallOpBundle(&CB, true),
1679        IsClaimRV = !IsRetainRV;
1680 
1681   for (auto *RI : Returns) {
1682     Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1683     BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse());
1684     BasicBlock::reverse_iterator EI = RI->getParent()->rend();
1685     bool InsertRetainCall = IsRetainRV;
1686     IRBuilder<> Builder(RI->getContext());
1687 
1688     // Walk backwards through the basic block looking for either a matching
1689     // autoreleaseRV call or an unannotated call.
1690     for (; I != EI;) {
1691       auto CurI = I++;
1692 
1693       // Ignore casts.
1694       if (isa<CastInst>(*CurI))
1695         continue;
1696 
1697       if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) {
1698         if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue &&
1699             II->hasNUses(0) &&
1700             objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) {
1701           // If we've found a matching authoreleaseRV call:
1702           // - If claimRV is attached to the call, insert a call to objc_release
1703           //   and erase the autoreleaseRV call.
1704           // - If retainRV is attached to the call, just erase the autoreleaseRV
1705           //   call.
1706           if (IsClaimRV) {
1707             Builder.SetInsertPoint(II);
1708             Function *IFn =
1709                 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1710             Value *BC =
1711                 Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1712             Builder.CreateCall(IFn, BC, "");
1713           }
1714           II->eraseFromParent();
1715           InsertRetainCall = false;
1716         }
1717       } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) {
1718         if (objcarc::GetRCIdentityRoot(CI) == RetOpnd &&
1719             !objcarc::hasAttachedCallOpBundle(CI)) {
1720           // If we've found an unannotated call that defines RetOpnd, add a
1721           // "clang.arc.attachedcall" operand bundle.
1722           Value *BundleArgs[] = {ConstantInt::get(
1723               Builder.getInt64Ty(),
1724               objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
1725           OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1726           auto *NewCall = CallBase::addOperandBundle(
1727               CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1728           NewCall->copyMetadata(*CI);
1729           CI->replaceAllUsesWith(NewCall);
1730           CI->eraseFromParent();
1731           InsertRetainCall = false;
1732         }
1733       }
1734 
1735       break;
1736     }
1737 
1738     if (InsertRetainCall) {
1739       // The retainRV is attached to the call and we've failed to find a
1740       // matching autoreleaseRV or an annotated call in the callee. Emit a call
1741       // to objc_retain.
1742       Builder.SetInsertPoint(RI);
1743       Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1744       Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1745       Builder.CreateCall(IFn, BC, "");
1746     }
1747   }
1748 }
1749 
1750 /// This function inlines the called function into the basic block of the
1751 /// caller. This returns false if it is not possible to inline this call.
1752 /// The program is still in a well defined state if this occurs though.
1753 ///
1754 /// Note that this only does one level of inlining.  For example, if the
1755 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1756 /// exists in the instruction stream.  Similarly this will inline a recursive
1757 /// function by one level.
1758 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1759                                         AAResults *CalleeAAR,
1760                                         bool InsertLifetime,
1761                                         Function *ForwardVarArgsTo) {
1762   assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1763 
1764   // FIXME: we don't inline callbr yet.
1765   if (isa<CallBrInst>(CB))
1766     return InlineResult::failure("We don't inline callbr yet.");
1767 
1768   // If IFI has any state in it, zap it before we fill it in.
1769   IFI.reset();
1770 
1771   Function *CalledFunc = CB.getCalledFunction();
1772   if (!CalledFunc ||               // Can't inline external function or indirect
1773       CalledFunc->isDeclaration()) // call!
1774     return InlineResult::failure("external or indirect");
1775 
1776   // The inliner does not know how to inline through calls with operand bundles
1777   // in general ...
1778   if (CB.hasOperandBundles()) {
1779     for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1780       uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1781       // ... but it knows how to inline through "deopt" operand bundles ...
1782       if (Tag == LLVMContext::OB_deopt)
1783         continue;
1784       // ... and "funclet" operand bundles.
1785       if (Tag == LLVMContext::OB_funclet)
1786         continue;
1787       if (Tag == LLVMContext::OB_clang_arc_attachedcall)
1788         continue;
1789 
1790       return InlineResult::failure("unsupported operand bundle");
1791     }
1792   }
1793 
1794   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1795   // calls that we inline.
1796   bool MarkNoUnwind = CB.doesNotThrow();
1797 
1798   BasicBlock *OrigBB = CB.getParent();
1799   Function *Caller = OrigBB->getParent();
1800 
1801   // GC poses two hazards to inlining, which only occur when the callee has GC:
1802   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1803   //     caller.
1804   //  2. If the caller has a differing GC, it is invalid to inline.
1805   if (CalledFunc->hasGC()) {
1806     if (!Caller->hasGC())
1807       Caller->setGC(CalledFunc->getGC());
1808     else if (CalledFunc->getGC() != Caller->getGC())
1809       return InlineResult::failure("incompatible GC");
1810   }
1811 
1812   // Get the personality function from the callee if it contains a landing pad.
1813   Constant *CalledPersonality =
1814       CalledFunc->hasPersonalityFn()
1815           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1816           : nullptr;
1817 
1818   // Find the personality function used by the landing pads of the caller. If it
1819   // exists, then check to see that it matches the personality function used in
1820   // the callee.
1821   Constant *CallerPersonality =
1822       Caller->hasPersonalityFn()
1823           ? Caller->getPersonalityFn()->stripPointerCasts()
1824           : nullptr;
1825   if (CalledPersonality) {
1826     if (!CallerPersonality)
1827       Caller->setPersonalityFn(CalledPersonality);
1828     // If the personality functions match, then we can perform the
1829     // inlining. Otherwise, we can't inline.
1830     // TODO: This isn't 100% true. Some personality functions are proper
1831     //       supersets of others and can be used in place of the other.
1832     else if (CalledPersonality != CallerPersonality)
1833       return InlineResult::failure("incompatible personality");
1834   }
1835 
1836   // We need to figure out which funclet the callsite was in so that we may
1837   // properly nest the callee.
1838   Instruction *CallSiteEHPad = nullptr;
1839   if (CallerPersonality) {
1840     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1841     if (isScopedEHPersonality(Personality)) {
1842       Optional<OperandBundleUse> ParentFunclet =
1843           CB.getOperandBundle(LLVMContext::OB_funclet);
1844       if (ParentFunclet)
1845         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1846 
1847       // OK, the inlining site is legal.  What about the target function?
1848 
1849       if (CallSiteEHPad) {
1850         if (Personality == EHPersonality::MSVC_CXX) {
1851           // The MSVC personality cannot tolerate catches getting inlined into
1852           // cleanup funclets.
1853           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1854             // Ok, the call site is within a cleanuppad.  Let's check the callee
1855             // for catchpads.
1856             for (const BasicBlock &CalledBB : *CalledFunc) {
1857               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1858                 return InlineResult::failure("catch in cleanup funclet");
1859             }
1860           }
1861         } else if (isAsynchronousEHPersonality(Personality)) {
1862           // SEH is even less tolerant, there may not be any sort of exceptional
1863           // funclet in the callee.
1864           for (const BasicBlock &CalledBB : *CalledFunc) {
1865             if (CalledBB.isEHPad())
1866               return InlineResult::failure("SEH in cleanup funclet");
1867           }
1868         }
1869       }
1870     }
1871   }
1872 
1873   // Determine if we are dealing with a call in an EHPad which does not unwind
1874   // to caller.
1875   bool EHPadForCallUnwindsLocally = false;
1876   if (CallSiteEHPad && isa<CallInst>(CB)) {
1877     UnwindDestMemoTy FuncletUnwindMap;
1878     Value *CallSiteUnwindDestToken =
1879         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1880 
1881     EHPadForCallUnwindsLocally =
1882         CallSiteUnwindDestToken &&
1883         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1884   }
1885 
1886   // Get an iterator to the last basic block in the function, which will have
1887   // the new function inlined after it.
1888   Function::iterator LastBlock = --Caller->end();
1889 
1890   // Make sure to capture all of the return instructions from the cloned
1891   // function.
1892   SmallVector<ReturnInst*, 8> Returns;
1893   ClonedCodeInfo InlinedFunctionInfo;
1894   Function::iterator FirstNewBlock;
1895 
1896   { // Scope to destroy VMap after cloning.
1897     ValueToValueMapTy VMap;
1898     // Keep a list of pair (dst, src) to emit byval initializations.
1899     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1900 
1901     // When inlining a function that contains noalias scope metadata,
1902     // this metadata needs to be cloned so that the inlined blocks
1903     // have different "unique scopes" at every call site.
1904     // Track the metadata that must be cloned. Do this before other changes to
1905     // the function, so that we do not get in trouble when inlining caller ==
1906     // callee.
1907     ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1908 
1909     auto &DL = Caller->getParent()->getDataLayout();
1910 
1911     // Calculate the vector of arguments to pass into the function cloner, which
1912     // matches up the formal to the actual argument values.
1913     auto AI = CB.arg_begin();
1914     unsigned ArgNo = 0;
1915     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1916          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1917       Value *ActualArg = *AI;
1918 
1919       // When byval arguments actually inlined, we need to make the copy implied
1920       // by them explicit.  However, we don't do this if the callee is readonly
1921       // or readnone, because the copy would be unneeded: the callee doesn't
1922       // modify the struct.
1923       if (CB.isByValArgument(ArgNo)) {
1924         ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
1925                                         CalledFunc->getParamAlignment(ArgNo));
1926         if (ActualArg != *AI)
1927           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1928       }
1929 
1930       VMap[&*I] = ActualArg;
1931     }
1932 
1933     // TODO: Remove this when users have been updated to the assume bundles.
1934     // Add alignment assumptions if necessary. We do this before the inlined
1935     // instructions are actually cloned into the caller so that we can easily
1936     // check what will be known at the start of the inlined code.
1937     AddAlignmentAssumptions(CB, IFI);
1938 
1939     AssumptionCache *AC =
1940         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1941 
1942     /// Preserve all attributes on of the call and its parameters.
1943     salvageKnowledge(&CB, AC);
1944 
1945     // We want the inliner to prune the code as it copies.  We would LOVE to
1946     // have no dead or constant instructions leftover after inlining occurs
1947     // (which can happen, e.g., because an argument was constant), but we'll be
1948     // happy with whatever the cloner can do.
1949     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1950                               /*ModuleLevelChanges=*/false, Returns, ".i",
1951                               &InlinedFunctionInfo);
1952     // Remember the first block that is newly cloned over.
1953     FirstNewBlock = LastBlock; ++FirstNewBlock;
1954 
1955     // Insert retainRV/clainRV runtime calls.
1956     if (objcarc::hasAttachedCallOpBundle(&CB))
1957       inlineRetainOrClaimRVCalls(CB, Returns);
1958 
1959     // Updated caller/callee profiles only when requested. For sample loader
1960     // inlining, the context-sensitive inlinee profile doesn't need to be
1961     // subtracted from callee profile, and the inlined clone also doesn't need
1962     // to be scaled based on call site count.
1963     if (IFI.UpdateProfile) {
1964       if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1965         // Update the BFI of blocks cloned into the caller.
1966         updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1967                         CalledFunc->front());
1968 
1969       updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
1970                         IFI.PSI, IFI.CallerBFI);
1971     }
1972 
1973     // Inject byval arguments initialization.
1974     for (std::pair<Value*, Value*> &Init : ByValInit)
1975       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1976                               &*FirstNewBlock, IFI);
1977 
1978     Optional<OperandBundleUse> ParentDeopt =
1979         CB.getOperandBundle(LLVMContext::OB_deopt);
1980     if (ParentDeopt) {
1981       SmallVector<OperandBundleDef, 2> OpDefs;
1982 
1983       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1984         CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1985         if (!ICS)
1986           continue; // instruction was DCE'd or RAUW'ed to undef
1987 
1988         OpDefs.clear();
1989 
1990         OpDefs.reserve(ICS->getNumOperandBundles());
1991 
1992         for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1993              ++COBi) {
1994           auto ChildOB = ICS->getOperandBundleAt(COBi);
1995           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1996             // If the inlined call has other operand bundles, let them be
1997             OpDefs.emplace_back(ChildOB);
1998             continue;
1999           }
2000 
2001           // It may be useful to separate this logic (of handling operand
2002           // bundles) out to a separate "policy" component if this gets crowded.
2003           // Prepend the parent's deoptimization continuation to the newly
2004           // inlined call's deoptimization continuation.
2005           std::vector<Value *> MergedDeoptArgs;
2006           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2007                                   ChildOB.Inputs.size());
2008 
2009           llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2010           llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2011 
2012           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2013         }
2014 
2015         Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2016 
2017         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2018         // this even if the call returns void.
2019         ICS->replaceAllUsesWith(NewI);
2020 
2021         VH = nullptr;
2022         ICS->eraseFromParent();
2023       }
2024     }
2025 
2026     // Update the callgraph if requested.
2027     if (IFI.CG)
2028       UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2029 
2030     // For 'nodebug' functions, the associated DISubprogram is always null.
2031     // Conservatively avoid propagating the callsite debug location to
2032     // instructions inlined from a function whose DISubprogram is not null.
2033     fixupLineNumbers(Caller, FirstNewBlock, &CB,
2034                      CalledFunc->getSubprogram() != nullptr);
2035 
2036     // Now clone the inlined noalias scope metadata.
2037     SAMetadataCloner.clone();
2038     SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2039 
2040     // Add noalias metadata if necessary.
2041     AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
2042 
2043     // Clone return attributes on the callsite into the calls within the inlined
2044     // function which feed into its return value.
2045     AddReturnAttributes(CB, VMap);
2046 
2047     // Propagate metadata on the callsite if necessary.
2048     PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2049 
2050     // Register any cloned assumptions.
2051     if (IFI.GetAssumptionCache)
2052       for (BasicBlock &NewBlock :
2053            make_range(FirstNewBlock->getIterator(), Caller->end()))
2054         for (Instruction &I : NewBlock)
2055           if (auto *II = dyn_cast<AssumeInst>(&I))
2056             IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2057   }
2058 
2059   // If there are any alloca instructions in the block that used to be the entry
2060   // block for the callee, move them to the entry block of the caller.  First
2061   // calculate which instruction they should be inserted before.  We insert the
2062   // instructions at the end of the current alloca list.
2063   {
2064     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2065     for (BasicBlock::iterator I = FirstNewBlock->begin(),
2066          E = FirstNewBlock->end(); I != E; ) {
2067       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2068       if (!AI) continue;
2069 
2070       // If the alloca is now dead, remove it.  This often occurs due to code
2071       // specialization.
2072       if (AI->use_empty()) {
2073         AI->eraseFromParent();
2074         continue;
2075       }
2076 
2077       if (!allocaWouldBeStaticInEntry(AI))
2078         continue;
2079 
2080       // Keep track of the static allocas that we inline into the caller.
2081       IFI.StaticAllocas.push_back(AI);
2082 
2083       // Scan for the block of allocas that we can move over, and move them
2084       // all at once.
2085       while (isa<AllocaInst>(I) &&
2086              !cast<AllocaInst>(I)->use_empty() &&
2087              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2088         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2089         ++I;
2090       }
2091 
2092       // Transfer all of the allocas over in a block.  Using splice means
2093       // that the instructions aren't removed from the symbol table, then
2094       // reinserted.
2095       Caller->getEntryBlock().getInstList().splice(
2096           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2097     }
2098   }
2099 
2100   SmallVector<Value*,4> VarArgsToForward;
2101   SmallVector<AttributeSet, 4> VarArgsAttrs;
2102   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2103        i < CB.getNumArgOperands(); i++) {
2104     VarArgsToForward.push_back(CB.getArgOperand(i));
2105     VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
2106   }
2107 
2108   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2109   if (InlinedFunctionInfo.ContainsCalls) {
2110     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2111     if (CallInst *CI = dyn_cast<CallInst>(&CB))
2112       CallSiteTailKind = CI->getTailCallKind();
2113 
2114     // For inlining purposes, the "notail" marker is the same as no marker.
2115     if (CallSiteTailKind == CallInst::TCK_NoTail)
2116       CallSiteTailKind = CallInst::TCK_None;
2117 
2118     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2119          ++BB) {
2120       for (auto II = BB->begin(); II != BB->end();) {
2121         Instruction &I = *II++;
2122         CallInst *CI = dyn_cast<CallInst>(&I);
2123         if (!CI)
2124           continue;
2125 
2126         // Forward varargs from inlined call site to calls to the
2127         // ForwardVarArgsTo function, if requested, and to musttail calls.
2128         if (!VarArgsToForward.empty() &&
2129             ((ForwardVarArgsTo &&
2130               CI->getCalledFunction() == ForwardVarArgsTo) ||
2131              CI->isMustTailCall())) {
2132           // Collect attributes for non-vararg parameters.
2133           AttributeList Attrs = CI->getAttributes();
2134           SmallVector<AttributeSet, 8> ArgAttrs;
2135           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2136             for (unsigned ArgNo = 0;
2137                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2138               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
2139           }
2140 
2141           // Add VarArg attributes.
2142           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2143           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
2144                                      Attrs.getRetAttributes(), ArgAttrs);
2145           // Add VarArgs to existing parameters.
2146           SmallVector<Value *, 6> Params(CI->arg_operands());
2147           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2148           CallInst *NewCI = CallInst::Create(
2149               CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2150           NewCI->setDebugLoc(CI->getDebugLoc());
2151           NewCI->setAttributes(Attrs);
2152           NewCI->setCallingConv(CI->getCallingConv());
2153           CI->replaceAllUsesWith(NewCI);
2154           CI->eraseFromParent();
2155           CI = NewCI;
2156         }
2157 
2158         if (Function *F = CI->getCalledFunction())
2159           InlinedDeoptimizeCalls |=
2160               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2161 
2162         // We need to reduce the strength of any inlined tail calls.  For
2163         // musttail, we have to avoid introducing potential unbounded stack
2164         // growth.  For example, if functions 'f' and 'g' are mutually recursive
2165         // with musttail, we can inline 'g' into 'f' so long as we preserve
2166         // musttail on the cloned call to 'f'.  If either the inlined call site
2167         // or the cloned call site is *not* musttail, the program already has
2168         // one frame of stack growth, so it's safe to remove musttail.  Here is
2169         // a table of example transformations:
2170         //
2171         //    f -> musttail g -> musttail f  ==>  f -> musttail f
2172         //    f -> musttail g ->     tail f  ==>  f ->     tail f
2173         //    f ->          g -> musttail f  ==>  f ->          f
2174         //    f ->          g ->     tail f  ==>  f ->          f
2175         //
2176         // Inlined notail calls should remain notail calls.
2177         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2178         if (ChildTCK != CallInst::TCK_NoTail)
2179           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2180         CI->setTailCallKind(ChildTCK);
2181         InlinedMustTailCalls |= CI->isMustTailCall();
2182 
2183         // Calls inlined through a 'nounwind' call site should be marked
2184         // 'nounwind'.
2185         if (MarkNoUnwind)
2186           CI->setDoesNotThrow();
2187       }
2188     }
2189   }
2190 
2191   // Leave lifetime markers for the static alloca's, scoping them to the
2192   // function we just inlined.
2193   // We need to insert lifetime intrinsics even at O0 to avoid invalid
2194   // access caused by multithreaded coroutines. The check
2195   // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2196   if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2197       !IFI.StaticAllocas.empty()) {
2198     IRBuilder<> builder(&FirstNewBlock->front());
2199     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2200       AllocaInst *AI = IFI.StaticAllocas[ai];
2201       // Don't mark swifterror allocas. They can't have bitcast uses.
2202       if (AI->isSwiftError())
2203         continue;
2204 
2205       // If the alloca is already scoped to something smaller than the whole
2206       // function then there's no need to add redundant, less accurate markers.
2207       if (hasLifetimeMarkers(AI))
2208         continue;
2209 
2210       // Try to determine the size of the allocation.
2211       ConstantInt *AllocaSize = nullptr;
2212       if (ConstantInt *AIArraySize =
2213           dyn_cast<ConstantInt>(AI->getArraySize())) {
2214         auto &DL = Caller->getParent()->getDataLayout();
2215         Type *AllocaType = AI->getAllocatedType();
2216         TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2217         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2218 
2219         // Don't add markers for zero-sized allocas.
2220         if (AllocaArraySize == 0)
2221           continue;
2222 
2223         // Check that array size doesn't saturate uint64_t and doesn't
2224         // overflow when it's multiplied by type size.
2225         if (!AllocaTypeSize.isScalable() &&
2226             AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2227             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2228                 AllocaTypeSize.getFixedSize()) {
2229           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2230                                         AllocaArraySize * AllocaTypeSize);
2231         }
2232       }
2233 
2234       builder.CreateLifetimeStart(AI, AllocaSize);
2235       for (ReturnInst *RI : Returns) {
2236         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2237         // call and a return.  The return kills all local allocas.
2238         if (InlinedMustTailCalls &&
2239             RI->getParent()->getTerminatingMustTailCall())
2240           continue;
2241         if (InlinedDeoptimizeCalls &&
2242             RI->getParent()->getTerminatingDeoptimizeCall())
2243           continue;
2244         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2245       }
2246     }
2247   }
2248 
2249   // If the inlined code contained dynamic alloca instructions, wrap the inlined
2250   // code with llvm.stacksave/llvm.stackrestore intrinsics.
2251   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2252     Module *M = Caller->getParent();
2253     // Get the two intrinsics we care about.
2254     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2255     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2256 
2257     // Insert the llvm.stacksave.
2258     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2259                              .CreateCall(StackSave, {}, "savedstack");
2260 
2261     // Insert a call to llvm.stackrestore before any return instructions in the
2262     // inlined function.
2263     for (ReturnInst *RI : Returns) {
2264       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2265       // call and a return.  The return will restore the stack pointer.
2266       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2267         continue;
2268       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2269         continue;
2270       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2271     }
2272   }
2273 
2274   // If we are inlining for an invoke instruction, we must make sure to rewrite
2275   // any call instructions into invoke instructions.  This is sensitive to which
2276   // funclet pads were top-level in the inlinee, so must be done before
2277   // rewriting the "parent pad" links.
2278   if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2279     BasicBlock *UnwindDest = II->getUnwindDest();
2280     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2281     if (isa<LandingPadInst>(FirstNonPHI)) {
2282       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2283     } else {
2284       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2285     }
2286   }
2287 
2288   // Update the lexical scopes of the new funclets and callsites.
2289   // Anything that had 'none' as its parent is now nested inside the callsite's
2290   // EHPad.
2291 
2292   if (CallSiteEHPad) {
2293     for (Function::iterator BB = FirstNewBlock->getIterator(),
2294                             E = Caller->end();
2295          BB != E; ++BB) {
2296       // Add bundle operands to any top-level call sites.
2297       SmallVector<OperandBundleDef, 1> OpBundles;
2298       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2299         CallBase *I = dyn_cast<CallBase>(&*BBI++);
2300         if (!I)
2301           continue;
2302 
2303         // Skip call sites which are nounwind intrinsics.
2304         auto *CalledFn =
2305             dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2306         if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2307           continue;
2308 
2309         // Skip call sites which already have a "funclet" bundle.
2310         if (I->getOperandBundle(LLVMContext::OB_funclet))
2311           continue;
2312 
2313         I->getOperandBundlesAsDefs(OpBundles);
2314         OpBundles.emplace_back("funclet", CallSiteEHPad);
2315 
2316         Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2317         NewInst->takeName(I);
2318         I->replaceAllUsesWith(NewInst);
2319         I->eraseFromParent();
2320 
2321         OpBundles.clear();
2322       }
2323 
2324       // It is problematic if the inlinee has a cleanupret which unwinds to
2325       // caller and we inline it into a call site which doesn't unwind but into
2326       // an EH pad that does.  Such an edge must be dynamically unreachable.
2327       // As such, we replace the cleanupret with unreachable.
2328       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2329         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2330           changeToUnreachable(CleanupRet);
2331 
2332       Instruction *I = BB->getFirstNonPHI();
2333       if (!I->isEHPad())
2334         continue;
2335 
2336       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2337         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2338           CatchSwitch->setParentPad(CallSiteEHPad);
2339       } else {
2340         auto *FPI = cast<FuncletPadInst>(I);
2341         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2342           FPI->setParentPad(CallSiteEHPad);
2343       }
2344     }
2345   }
2346 
2347   if (InlinedDeoptimizeCalls) {
2348     // We need to at least remove the deoptimizing returns from the Return set,
2349     // so that the control flow from those returns does not get merged into the
2350     // caller (but terminate it instead).  If the caller's return type does not
2351     // match the callee's return type, we also need to change the return type of
2352     // the intrinsic.
2353     if (Caller->getReturnType() == CB.getType()) {
2354       llvm::erase_if(Returns, [](ReturnInst *RI) {
2355         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2356       });
2357     } else {
2358       SmallVector<ReturnInst *, 8> NormalReturns;
2359       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2360           Caller->getParent(), Intrinsic::experimental_deoptimize,
2361           {Caller->getReturnType()});
2362 
2363       for (ReturnInst *RI : Returns) {
2364         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2365         if (!DeoptCall) {
2366           NormalReturns.push_back(RI);
2367           continue;
2368         }
2369 
2370         // The calling convention on the deoptimize call itself may be bogus,
2371         // since the code we're inlining may have undefined behavior (and may
2372         // never actually execute at runtime); but all
2373         // @llvm.experimental.deoptimize declarations have to have the same
2374         // calling convention in a well-formed module.
2375         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2376         NewDeoptIntrinsic->setCallingConv(CallingConv);
2377         auto *CurBB = RI->getParent();
2378         RI->eraseFromParent();
2379 
2380         SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2381 
2382         SmallVector<OperandBundleDef, 1> OpBundles;
2383         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2384         auto DeoptAttributes = DeoptCall->getAttributes();
2385         DeoptCall->eraseFromParent();
2386         assert(!OpBundles.empty() &&
2387                "Expected at least the deopt operand bundle");
2388 
2389         IRBuilder<> Builder(CurBB);
2390         CallInst *NewDeoptCall =
2391             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2392         NewDeoptCall->setCallingConv(CallingConv);
2393         NewDeoptCall->setAttributes(DeoptAttributes);
2394         if (NewDeoptCall->getType()->isVoidTy())
2395           Builder.CreateRetVoid();
2396         else
2397           Builder.CreateRet(NewDeoptCall);
2398       }
2399 
2400       // Leave behind the normal returns so we can merge control flow.
2401       std::swap(Returns, NormalReturns);
2402     }
2403   }
2404 
2405   // Handle any inlined musttail call sites.  In order for a new call site to be
2406   // musttail, the source of the clone and the inlined call site must have been
2407   // musttail.  Therefore it's safe to return without merging control into the
2408   // phi below.
2409   if (InlinedMustTailCalls) {
2410     // Check if we need to bitcast the result of any musttail calls.
2411     Type *NewRetTy = Caller->getReturnType();
2412     bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2413 
2414     // Handle the returns preceded by musttail calls separately.
2415     SmallVector<ReturnInst *, 8> NormalReturns;
2416     for (ReturnInst *RI : Returns) {
2417       CallInst *ReturnedMustTail =
2418           RI->getParent()->getTerminatingMustTailCall();
2419       if (!ReturnedMustTail) {
2420         NormalReturns.push_back(RI);
2421         continue;
2422       }
2423       if (!NeedBitCast)
2424         continue;
2425 
2426       // Delete the old return and any preceding bitcast.
2427       BasicBlock *CurBB = RI->getParent();
2428       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2429       RI->eraseFromParent();
2430       if (OldCast)
2431         OldCast->eraseFromParent();
2432 
2433       // Insert a new bitcast and return with the right type.
2434       IRBuilder<> Builder(CurBB);
2435       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2436     }
2437 
2438     // Leave behind the normal returns so we can merge control flow.
2439     std::swap(Returns, NormalReturns);
2440   }
2441 
2442   // Now that all of the transforms on the inlined code have taken place but
2443   // before we splice the inlined code into the CFG and lose track of which
2444   // blocks were actually inlined, collect the call sites. We only do this if
2445   // call graph updates weren't requested, as those provide value handle based
2446   // tracking of inlined call sites instead. Calls to intrinsics are not
2447   // collected because they are not inlineable.
2448   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2449     // Otherwise just collect the raw call sites that were inlined.
2450     for (BasicBlock &NewBB :
2451          make_range(FirstNewBlock->getIterator(), Caller->end()))
2452       for (Instruction &I : NewBB)
2453         if (auto *CB = dyn_cast<CallBase>(&I))
2454           if (!(CB->getCalledFunction() &&
2455                 CB->getCalledFunction()->isIntrinsic()))
2456             IFI.InlinedCallSites.push_back(CB);
2457   }
2458 
2459   // If we cloned in _exactly one_ basic block, and if that block ends in a
2460   // return instruction, we splice the body of the inlined callee directly into
2461   // the calling basic block.
2462   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2463     // Move all of the instructions right before the call.
2464     OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2465                                  FirstNewBlock->begin(), FirstNewBlock->end());
2466     // Remove the cloned basic block.
2467     Caller->getBasicBlockList().pop_back();
2468 
2469     // If the call site was an invoke instruction, add a branch to the normal
2470     // destination.
2471     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2472       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2473       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2474     }
2475 
2476     // If the return instruction returned a value, replace uses of the call with
2477     // uses of the returned value.
2478     if (!CB.use_empty()) {
2479       ReturnInst *R = Returns[0];
2480       if (&CB == R->getReturnValue())
2481         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2482       else
2483         CB.replaceAllUsesWith(R->getReturnValue());
2484     }
2485     // Since we are now done with the Call/Invoke, we can delete it.
2486     CB.eraseFromParent();
2487 
2488     // Since we are now done with the return instruction, delete it also.
2489     Returns[0]->eraseFromParent();
2490 
2491     // We are now done with the inlining.
2492     return InlineResult::success();
2493   }
2494 
2495   // Otherwise, we have the normal case, of more than one block to inline or
2496   // multiple return sites.
2497 
2498   // We want to clone the entire callee function into the hole between the
2499   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2500   // this is an invoke instruction or a call instruction.
2501   BasicBlock *AfterCallBB;
2502   BranchInst *CreatedBranchToNormalDest = nullptr;
2503   if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2504 
2505     // Add an unconditional branch to make this look like the CallInst case...
2506     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2507 
2508     // Split the basic block.  This guarantees that no PHI nodes will have to be
2509     // updated due to new incoming edges, and make the invoke case more
2510     // symmetric to the call case.
2511     AfterCallBB =
2512         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2513                                 CalledFunc->getName() + ".exit");
2514 
2515   } else { // It's a call
2516     // If this is a call instruction, we need to split the basic block that
2517     // the call lives in.
2518     //
2519     AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2520                                           CalledFunc->getName() + ".exit");
2521   }
2522 
2523   if (IFI.CallerBFI) {
2524     // Copy original BB's block frequency to AfterCallBB
2525     IFI.CallerBFI->setBlockFreq(
2526         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2527   }
2528 
2529   // Change the branch that used to go to AfterCallBB to branch to the first
2530   // basic block of the inlined function.
2531   //
2532   Instruction *Br = OrigBB->getTerminator();
2533   assert(Br && Br->getOpcode() == Instruction::Br &&
2534          "splitBasicBlock broken!");
2535   Br->setOperand(0, &*FirstNewBlock);
2536 
2537   // Now that the function is correct, make it a little bit nicer.  In
2538   // particular, move the basic blocks inserted from the end of the function
2539   // into the space made by splitting the source basic block.
2540   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2541                                      Caller->getBasicBlockList(), FirstNewBlock,
2542                                      Caller->end());
2543 
2544   // Handle all of the return instructions that we just cloned in, and eliminate
2545   // any users of the original call/invoke instruction.
2546   Type *RTy = CalledFunc->getReturnType();
2547 
2548   PHINode *PHI = nullptr;
2549   if (Returns.size() > 1) {
2550     // The PHI node should go at the front of the new basic block to merge all
2551     // possible incoming values.
2552     if (!CB.use_empty()) {
2553       PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2554                             &AfterCallBB->front());
2555       // Anything that used the result of the function call should now use the
2556       // PHI node as their operand.
2557       CB.replaceAllUsesWith(PHI);
2558     }
2559 
2560     // Loop over all of the return instructions adding entries to the PHI node
2561     // as appropriate.
2562     if (PHI) {
2563       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2564         ReturnInst *RI = Returns[i];
2565         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2566                "Ret value not consistent in function!");
2567         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2568       }
2569     }
2570 
2571     // Add a branch to the merge points and remove return instructions.
2572     DebugLoc Loc;
2573     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2574       ReturnInst *RI = Returns[i];
2575       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2576       Loc = RI->getDebugLoc();
2577       BI->setDebugLoc(Loc);
2578       RI->eraseFromParent();
2579     }
2580     // We need to set the debug location to *somewhere* inside the
2581     // inlined function. The line number may be nonsensical, but the
2582     // instruction will at least be associated with the right
2583     // function.
2584     if (CreatedBranchToNormalDest)
2585       CreatedBranchToNormalDest->setDebugLoc(Loc);
2586   } else if (!Returns.empty()) {
2587     // Otherwise, if there is exactly one return value, just replace anything
2588     // using the return value of the call with the computed value.
2589     if (!CB.use_empty()) {
2590       if (&CB == Returns[0]->getReturnValue())
2591         CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2592       else
2593         CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2594     }
2595 
2596     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2597     BasicBlock *ReturnBB = Returns[0]->getParent();
2598     ReturnBB->replaceAllUsesWith(AfterCallBB);
2599 
2600     // Splice the code from the return block into the block that it will return
2601     // to, which contains the code that was after the call.
2602     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2603                                       ReturnBB->getInstList());
2604 
2605     if (CreatedBranchToNormalDest)
2606       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2607 
2608     // Delete the return instruction now and empty ReturnBB now.
2609     Returns[0]->eraseFromParent();
2610     ReturnBB->eraseFromParent();
2611   } else if (!CB.use_empty()) {
2612     // No returns, but something is using the return value of the call.  Just
2613     // nuke the result.
2614     CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2615   }
2616 
2617   // Since we are now done with the Call/Invoke, we can delete it.
2618   CB.eraseFromParent();
2619 
2620   // If we inlined any musttail calls and the original return is now
2621   // unreachable, delete it.  It can only contain a bitcast and ret.
2622   if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2623     AfterCallBB->eraseFromParent();
2624 
2625   // We should always be able to fold the entry block of the function into the
2626   // single predecessor of the block...
2627   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2628   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2629 
2630   // Splice the code entry block into calling block, right before the
2631   // unconditional branch.
2632   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2633   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2634 
2635   // Remove the unconditional branch.
2636   OrigBB->getInstList().erase(Br);
2637 
2638   // Now we can remove the CalleeEntry block, which is now empty.
2639   Caller->getBasicBlockList().erase(CalleeEntry);
2640 
2641   // If we inserted a phi node, check to see if it has a single value (e.g. all
2642   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2643   // block other optimizations.
2644   if (PHI) {
2645     AssumptionCache *AC =
2646         IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2647     auto &DL = Caller->getParent()->getDataLayout();
2648     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2649       PHI->replaceAllUsesWith(V);
2650       PHI->eraseFromParent();
2651     }
2652   }
2653 
2654   return InlineResult::success();
2655 }
2656