10b57cec5SDimitry Andric //===- InlineFunction.cpp - Code to perform function inlining -------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements inlining of a function into a call site, resolving
100b57cec5SDimitry Andric // parameters and the return value as appropriate.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric
140b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
150b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
160b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h"
170b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
180b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
190b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h"
200b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h"
210b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
220b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
230b57cec5SDimitry Andric #include "llvm/Analysis/BlockFrequencyInfo.h"
240b57cec5SDimitry Andric #include "llvm/Analysis/CallGraph.h"
250b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h"
260fca6ea1SDimitry Andric #include "llvm/Analysis/IndirectCallVisitor.h"
270b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
28bdd1243dSDimitry Andric #include "llvm/Analysis/MemoryProfileInfo.h"
29fe6060f1SDimitry Andric #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
30fe6060f1SDimitry Andric #include "llvm/Analysis/ObjCARCUtil.h"
310b57cec5SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h"
320b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
330b57cec5SDimitry Andric #include "llvm/Analysis/VectorUtils.h"
340b57cec5SDimitry Andric #include "llvm/IR/Argument.h"
350fca6ea1SDimitry Andric #include "llvm/IR/AttributeMask.h"
360b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
370b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
380b57cec5SDimitry Andric #include "llvm/IR/Constant.h"
390fca6ea1SDimitry Andric #include "llvm/IR/ConstantRange.h"
400b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
410b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
421fd87a68SDimitry Andric #include "llvm/IR/DebugInfo.h"
430b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h"
440b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
450b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
460b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
4706c3fb27SDimitry Andric #include "llvm/IR/EHPersonalities.h"
480b57cec5SDimitry Andric #include "llvm/IR/Function.h"
490b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
50fe6060f1SDimitry Andric #include "llvm/IR/InlineAsm.h"
510b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
520b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
530b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
540b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
550b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
560b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
570b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h"
580b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
590b57cec5SDimitry Andric #include "llvm/IR/Module.h"
600fca6ea1SDimitry Andric #include "llvm/IR/ProfDataUtils.h"
610b57cec5SDimitry Andric #include "llvm/IR/Type.h"
620b57cec5SDimitry Andric #include "llvm/IR/User.h"
630b57cec5SDimitry Andric #include "llvm/IR/Value.h"
640b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
650b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
660b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
675ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
680b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Cloning.h"
69fe6060f1SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
700b57cec5SDimitry Andric #include "llvm/Transforms/Utils/ValueMapper.h"
710b57cec5SDimitry Andric #include <algorithm>
720b57cec5SDimitry Andric #include <cassert>
730b57cec5SDimitry Andric #include <cstdint>
740b57cec5SDimitry Andric #include <iterator>
750b57cec5SDimitry Andric #include <limits>
76bdd1243dSDimitry Andric #include <optional>
770b57cec5SDimitry Andric #include <string>
780b57cec5SDimitry Andric #include <utility>
790b57cec5SDimitry Andric #include <vector>
800b57cec5SDimitry Andric
81bdd1243dSDimitry Andric #define DEBUG_TYPE "inline-function"
82bdd1243dSDimitry Andric
830b57cec5SDimitry Andric using namespace llvm;
84bdd1243dSDimitry Andric using namespace llvm::memprof;
850b57cec5SDimitry Andric using ProfileCount = Function::ProfileCount;
860b57cec5SDimitry Andric
870b57cec5SDimitry Andric static cl::opt<bool>
880b57cec5SDimitry Andric EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
890b57cec5SDimitry Andric cl::Hidden,
900b57cec5SDimitry Andric cl::desc("Convert noalias attributes to metadata during inlining."));
910b57cec5SDimitry Andric
92e8d8bef9SDimitry Andric static cl::opt<bool>
93e8d8bef9SDimitry Andric UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
9481ad6265SDimitry Andric cl::init(true),
95e8d8bef9SDimitry Andric cl::desc("Use the llvm.experimental.noalias.scope.decl "
96e8d8bef9SDimitry Andric "intrinsic during inlining."));
97e8d8bef9SDimitry Andric
985ffd83dbSDimitry Andric // Disabled by default, because the added alignment assumptions may increase
995ffd83dbSDimitry Andric // compile-time and block optimizations. This option is not suitable for use
1005ffd83dbSDimitry Andric // with frontends that emit comprehensive parameter alignment annotations.
1010b57cec5SDimitry Andric static cl::opt<bool>
1020b57cec5SDimitry Andric PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
1035ffd83dbSDimitry Andric cl::init(false), cl::Hidden,
1040b57cec5SDimitry Andric cl::desc("Convert align attributes to assumptions during inlining."));
1050b57cec5SDimitry Andric
1065ffd83dbSDimitry Andric static cl::opt<unsigned> InlinerAttributeWindow(
1075ffd83dbSDimitry Andric "max-inst-checked-for-throw-during-inlining", cl::Hidden,
1085ffd83dbSDimitry Andric cl::desc("the maximum number of instructions analyzed for may throw during "
1095ffd83dbSDimitry Andric "attribute inference in inlined body"),
1105ffd83dbSDimitry Andric cl::init(4));
1110b57cec5SDimitry Andric
1120b57cec5SDimitry Andric namespace {
1130b57cec5SDimitry Andric
1140b57cec5SDimitry Andric /// A class for recording information about inlining a landing pad.
1150b57cec5SDimitry Andric class LandingPadInliningInfo {
1160b57cec5SDimitry Andric /// Destination of the invoke's unwind.
1170b57cec5SDimitry Andric BasicBlock *OuterResumeDest;
1180b57cec5SDimitry Andric
1190b57cec5SDimitry Andric /// Destination for the callee's resume.
1200b57cec5SDimitry Andric BasicBlock *InnerResumeDest = nullptr;
1210b57cec5SDimitry Andric
1220b57cec5SDimitry Andric /// LandingPadInst associated with the invoke.
1230b57cec5SDimitry Andric LandingPadInst *CallerLPad = nullptr;
1240b57cec5SDimitry Andric
1250b57cec5SDimitry Andric /// PHI for EH values from landingpad insts.
1260b57cec5SDimitry Andric PHINode *InnerEHValuesPHI = nullptr;
1270b57cec5SDimitry Andric
1280b57cec5SDimitry Andric SmallVector<Value*, 8> UnwindDestPHIValues;
1290b57cec5SDimitry Andric
1300b57cec5SDimitry Andric public:
LandingPadInliningInfo(InvokeInst * II)1310b57cec5SDimitry Andric LandingPadInliningInfo(InvokeInst *II)
1320b57cec5SDimitry Andric : OuterResumeDest(II->getUnwindDest()) {
1330b57cec5SDimitry Andric // If there are PHI nodes in the unwind destination block, we need to keep
1340b57cec5SDimitry Andric // track of which values came into them from the invoke before removing
1350b57cec5SDimitry Andric // the edge from this block.
1360b57cec5SDimitry Andric BasicBlock *InvokeBB = II->getParent();
1370b57cec5SDimitry Andric BasicBlock::iterator I = OuterResumeDest->begin();
1380b57cec5SDimitry Andric for (; isa<PHINode>(I); ++I) {
1390b57cec5SDimitry Andric // Save the value to use for this edge.
1400b57cec5SDimitry Andric PHINode *PHI = cast<PHINode>(I);
1410b57cec5SDimitry Andric UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
1420b57cec5SDimitry Andric }
1430b57cec5SDimitry Andric
1440b57cec5SDimitry Andric CallerLPad = cast<LandingPadInst>(I);
1450b57cec5SDimitry Andric }
1460b57cec5SDimitry Andric
1470b57cec5SDimitry Andric /// The outer unwind destination is the target of
1480b57cec5SDimitry Andric /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const1490b57cec5SDimitry Andric BasicBlock *getOuterResumeDest() const {
1500b57cec5SDimitry Andric return OuterResumeDest;
1510b57cec5SDimitry Andric }
1520b57cec5SDimitry Andric
1530b57cec5SDimitry Andric BasicBlock *getInnerResumeDest();
1540b57cec5SDimitry Andric
getLandingPadInst() const1550b57cec5SDimitry Andric LandingPadInst *getLandingPadInst() const { return CallerLPad; }
1560b57cec5SDimitry Andric
1570b57cec5SDimitry Andric /// Forward the 'resume' instruction to the caller's landing pad block.
1580b57cec5SDimitry Andric /// When the landing pad block has only one predecessor, this is
1590b57cec5SDimitry Andric /// a simple branch. When there is more than one predecessor, we need to
1600b57cec5SDimitry Andric /// split the landing pad block after the landingpad instruction and jump
1610b57cec5SDimitry Andric /// to there.
1620b57cec5SDimitry Andric void forwardResume(ResumeInst *RI,
1630b57cec5SDimitry Andric SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
1640b57cec5SDimitry Andric
1650b57cec5SDimitry Andric /// Add incoming-PHI values to the unwind destination block for the given
1660b57cec5SDimitry Andric /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const1670b57cec5SDimitry Andric void addIncomingPHIValuesFor(BasicBlock *BB) const {
1680b57cec5SDimitry Andric addIncomingPHIValuesForInto(BB, OuterResumeDest);
1690b57cec5SDimitry Andric }
1700b57cec5SDimitry Andric
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const1710b57cec5SDimitry Andric void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
1720b57cec5SDimitry Andric BasicBlock::iterator I = dest->begin();
1730b57cec5SDimitry Andric for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
1740b57cec5SDimitry Andric PHINode *phi = cast<PHINode>(I);
1750b57cec5SDimitry Andric phi->addIncoming(UnwindDestPHIValues[i], src);
1760b57cec5SDimitry Andric }
1770b57cec5SDimitry Andric }
1780b57cec5SDimitry Andric };
1790b57cec5SDimitry Andric
1800b57cec5SDimitry Andric } // end anonymous namespace
1810b57cec5SDimitry Andric
1820b57cec5SDimitry Andric /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()1830b57cec5SDimitry Andric BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
1840b57cec5SDimitry Andric if (InnerResumeDest) return InnerResumeDest;
1850b57cec5SDimitry Andric
1860b57cec5SDimitry Andric // Split the landing pad.
1870b57cec5SDimitry Andric BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
1880b57cec5SDimitry Andric InnerResumeDest =
1890b57cec5SDimitry Andric OuterResumeDest->splitBasicBlock(SplitPoint,
1900b57cec5SDimitry Andric OuterResumeDest->getName() + ".body");
1910b57cec5SDimitry Andric
1920b57cec5SDimitry Andric // The number of incoming edges we expect to the inner landing pad.
1930b57cec5SDimitry Andric const unsigned PHICapacity = 2;
1940b57cec5SDimitry Andric
1950b57cec5SDimitry Andric // Create corresponding new PHIs for all the PHIs in the outer landing pad.
1965f757f3fSDimitry Andric BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
1970b57cec5SDimitry Andric BasicBlock::iterator I = OuterResumeDest->begin();
1980b57cec5SDimitry Andric for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
1990b57cec5SDimitry Andric PHINode *OuterPHI = cast<PHINode>(I);
2000b57cec5SDimitry Andric PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
2015f757f3fSDimitry Andric OuterPHI->getName() + ".lpad-body");
2025f757f3fSDimitry Andric InnerPHI->insertBefore(InsertPoint);
2030b57cec5SDimitry Andric OuterPHI->replaceAllUsesWith(InnerPHI);
2040b57cec5SDimitry Andric InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
2050b57cec5SDimitry Andric }
2060b57cec5SDimitry Andric
2070b57cec5SDimitry Andric // Create a PHI for the exception values.
2085f757f3fSDimitry Andric InnerEHValuesPHI =
2095f757f3fSDimitry Andric PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body");
2105f757f3fSDimitry Andric InnerEHValuesPHI->insertBefore(InsertPoint);
2110b57cec5SDimitry Andric CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
2120b57cec5SDimitry Andric InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
2130b57cec5SDimitry Andric
2140b57cec5SDimitry Andric // All done.
2150b57cec5SDimitry Andric return InnerResumeDest;
2160b57cec5SDimitry Andric }
2170b57cec5SDimitry Andric
2180b57cec5SDimitry Andric /// Forward the 'resume' instruction to the caller's landing pad block.
2190b57cec5SDimitry Andric /// When the landing pad block has only one predecessor, this is a simple
2200b57cec5SDimitry Andric /// branch. When there is more than one predecessor, we need to split the
2210b57cec5SDimitry Andric /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)2220b57cec5SDimitry Andric void LandingPadInliningInfo::forwardResume(
2230b57cec5SDimitry Andric ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
2240b57cec5SDimitry Andric BasicBlock *Dest = getInnerResumeDest();
2250b57cec5SDimitry Andric BasicBlock *Src = RI->getParent();
2260b57cec5SDimitry Andric
2270b57cec5SDimitry Andric BranchInst::Create(Dest, Src);
2280b57cec5SDimitry Andric
2290b57cec5SDimitry Andric // Update the PHIs in the destination. They were inserted in an order which
2300b57cec5SDimitry Andric // makes this work.
2310b57cec5SDimitry Andric addIncomingPHIValuesForInto(Src, Dest);
2320b57cec5SDimitry Andric
2330b57cec5SDimitry Andric InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
2340b57cec5SDimitry Andric RI->eraseFromParent();
2350b57cec5SDimitry Andric }
2360b57cec5SDimitry Andric
2370b57cec5SDimitry Andric /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)2380b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) {
2390b57cec5SDimitry Andric if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
2400b57cec5SDimitry Andric return FPI->getParentPad();
2410b57cec5SDimitry Andric return cast<CatchSwitchInst>(EHPad)->getParentPad();
2420b57cec5SDimitry Andric }
2430b57cec5SDimitry Andric
2440b57cec5SDimitry Andric using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
2450b57cec5SDimitry Andric
2460b57cec5SDimitry Andric /// Helper for getUnwindDestToken that does the descendant-ward part of
2470b57cec5SDimitry Andric /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)2480b57cec5SDimitry Andric static Value *getUnwindDestTokenHelper(Instruction *EHPad,
2490b57cec5SDimitry Andric UnwindDestMemoTy &MemoMap) {
2500b57cec5SDimitry Andric SmallVector<Instruction *, 8> Worklist(1, EHPad);
2510b57cec5SDimitry Andric
2520b57cec5SDimitry Andric while (!Worklist.empty()) {
2530b57cec5SDimitry Andric Instruction *CurrentPad = Worklist.pop_back_val();
2540b57cec5SDimitry Andric // We only put pads on the worklist that aren't in the MemoMap. When
2550b57cec5SDimitry Andric // we find an unwind dest for a pad we may update its ancestors, but
2560b57cec5SDimitry Andric // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
2570b57cec5SDimitry Andric // so they should never get updated while queued on the worklist.
2580b57cec5SDimitry Andric assert(!MemoMap.count(CurrentPad));
2590b57cec5SDimitry Andric Value *UnwindDestToken = nullptr;
2600b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
2610b57cec5SDimitry Andric if (CatchSwitch->hasUnwindDest()) {
2620b57cec5SDimitry Andric UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
2630b57cec5SDimitry Andric } else {
2640b57cec5SDimitry Andric // Catchswitch doesn't have a 'nounwind' variant, and one might be
2650b57cec5SDimitry Andric // annotated as "unwinds to caller" when really it's nounwind (see
2660b57cec5SDimitry Andric // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
2670b57cec5SDimitry Andric // parent's unwind dest from this. We can check its catchpads'
2680b57cec5SDimitry Andric // descendants, since they might include a cleanuppad with an
2690b57cec5SDimitry Andric // "unwinds to caller" cleanupret, which can be trusted.
2700b57cec5SDimitry Andric for (auto HI = CatchSwitch->handler_begin(),
2710b57cec5SDimitry Andric HE = CatchSwitch->handler_end();
2720b57cec5SDimitry Andric HI != HE && !UnwindDestToken; ++HI) {
2730b57cec5SDimitry Andric BasicBlock *HandlerBlock = *HI;
2740b57cec5SDimitry Andric auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
2750b57cec5SDimitry Andric for (User *Child : CatchPad->users()) {
2760b57cec5SDimitry Andric // Intentionally ignore invokes here -- since the catchswitch is
2770b57cec5SDimitry Andric // marked "unwind to caller", it would be a verifier error if it
2780b57cec5SDimitry Andric // contained an invoke which unwinds out of it, so any invoke we'd
2790b57cec5SDimitry Andric // encounter must unwind to some child of the catch.
2800b57cec5SDimitry Andric if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
2810b57cec5SDimitry Andric continue;
2820b57cec5SDimitry Andric
2830b57cec5SDimitry Andric Instruction *ChildPad = cast<Instruction>(Child);
2840b57cec5SDimitry Andric auto Memo = MemoMap.find(ChildPad);
2850b57cec5SDimitry Andric if (Memo == MemoMap.end()) {
2860b57cec5SDimitry Andric // Haven't figured out this child pad yet; queue it.
2870b57cec5SDimitry Andric Worklist.push_back(ChildPad);
2880b57cec5SDimitry Andric continue;
2890b57cec5SDimitry Andric }
2900b57cec5SDimitry Andric // We've already checked this child, but might have found that
2910b57cec5SDimitry Andric // it offers no proof either way.
2920b57cec5SDimitry Andric Value *ChildUnwindDestToken = Memo->second;
2930b57cec5SDimitry Andric if (!ChildUnwindDestToken)
2940b57cec5SDimitry Andric continue;
2950b57cec5SDimitry Andric // We already know the child's unwind dest, which can either
2960b57cec5SDimitry Andric // be ConstantTokenNone to indicate unwind to caller, or can
2970b57cec5SDimitry Andric // be another child of the catchpad. Only the former indicates
2980b57cec5SDimitry Andric // the unwind dest of the catchswitch.
2990b57cec5SDimitry Andric if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
3000b57cec5SDimitry Andric UnwindDestToken = ChildUnwindDestToken;
3010b57cec5SDimitry Andric break;
3020b57cec5SDimitry Andric }
3030b57cec5SDimitry Andric assert(getParentPad(ChildUnwindDestToken) == CatchPad);
3040b57cec5SDimitry Andric }
3050b57cec5SDimitry Andric }
3060b57cec5SDimitry Andric }
3070b57cec5SDimitry Andric } else {
3080b57cec5SDimitry Andric auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
3090b57cec5SDimitry Andric for (User *U : CleanupPad->users()) {
3100b57cec5SDimitry Andric if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
3110b57cec5SDimitry Andric if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
3120b57cec5SDimitry Andric UnwindDestToken = RetUnwindDest->getFirstNonPHI();
3130b57cec5SDimitry Andric else
3140b57cec5SDimitry Andric UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
3150b57cec5SDimitry Andric break;
3160b57cec5SDimitry Andric }
3170b57cec5SDimitry Andric Value *ChildUnwindDestToken;
3180b57cec5SDimitry Andric if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
3190b57cec5SDimitry Andric ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
3200b57cec5SDimitry Andric } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
3210b57cec5SDimitry Andric Instruction *ChildPad = cast<Instruction>(U);
3220b57cec5SDimitry Andric auto Memo = MemoMap.find(ChildPad);
3230b57cec5SDimitry Andric if (Memo == MemoMap.end()) {
3240b57cec5SDimitry Andric // Haven't resolved this child yet; queue it and keep searching.
3250b57cec5SDimitry Andric Worklist.push_back(ChildPad);
3260b57cec5SDimitry Andric continue;
3270b57cec5SDimitry Andric }
3280b57cec5SDimitry Andric // We've checked this child, but still need to ignore it if it
3290b57cec5SDimitry Andric // had no proof either way.
3300b57cec5SDimitry Andric ChildUnwindDestToken = Memo->second;
3310b57cec5SDimitry Andric if (!ChildUnwindDestToken)
3320b57cec5SDimitry Andric continue;
3330b57cec5SDimitry Andric } else {
3340b57cec5SDimitry Andric // Not a relevant user of the cleanuppad
3350b57cec5SDimitry Andric continue;
3360b57cec5SDimitry Andric }
3370b57cec5SDimitry Andric // In a well-formed program, the child/invoke must either unwind to
3380b57cec5SDimitry Andric // an(other) child of the cleanup, or exit the cleanup. In the
3390b57cec5SDimitry Andric // first case, continue searching.
3400b57cec5SDimitry Andric if (isa<Instruction>(ChildUnwindDestToken) &&
3410b57cec5SDimitry Andric getParentPad(ChildUnwindDestToken) == CleanupPad)
3420b57cec5SDimitry Andric continue;
3430b57cec5SDimitry Andric UnwindDestToken = ChildUnwindDestToken;
3440b57cec5SDimitry Andric break;
3450b57cec5SDimitry Andric }
3460b57cec5SDimitry Andric }
3470b57cec5SDimitry Andric // If we haven't found an unwind dest for CurrentPad, we may have queued its
3480b57cec5SDimitry Andric // children, so move on to the next in the worklist.
3490b57cec5SDimitry Andric if (!UnwindDestToken)
3500b57cec5SDimitry Andric continue;
3510b57cec5SDimitry Andric
3520b57cec5SDimitry Andric // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
3530b57cec5SDimitry Andric // any ancestors of CurrentPad up to but not including UnwindDestToken's
3540b57cec5SDimitry Andric // parent pad. Record this in the memo map, and check to see if the
3550b57cec5SDimitry Andric // original EHPad being queried is one of the ones exited.
3560b57cec5SDimitry Andric Value *UnwindParent;
3570b57cec5SDimitry Andric if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
3580b57cec5SDimitry Andric UnwindParent = getParentPad(UnwindPad);
3590b57cec5SDimitry Andric else
3600b57cec5SDimitry Andric UnwindParent = nullptr;
3610b57cec5SDimitry Andric bool ExitedOriginalPad = false;
3620b57cec5SDimitry Andric for (Instruction *ExitedPad = CurrentPad;
3630b57cec5SDimitry Andric ExitedPad && ExitedPad != UnwindParent;
3640b57cec5SDimitry Andric ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
3650b57cec5SDimitry Andric // Skip over catchpads since they just follow their catchswitches.
3660b57cec5SDimitry Andric if (isa<CatchPadInst>(ExitedPad))
3670b57cec5SDimitry Andric continue;
3680b57cec5SDimitry Andric MemoMap[ExitedPad] = UnwindDestToken;
3690b57cec5SDimitry Andric ExitedOriginalPad |= (ExitedPad == EHPad);
3700b57cec5SDimitry Andric }
3710b57cec5SDimitry Andric
3720b57cec5SDimitry Andric if (ExitedOriginalPad)
3730b57cec5SDimitry Andric return UnwindDestToken;
3740b57cec5SDimitry Andric
3750b57cec5SDimitry Andric // Continue the search.
3760b57cec5SDimitry Andric }
3770b57cec5SDimitry Andric
3780b57cec5SDimitry Andric // No definitive information is contained within this funclet.
3790b57cec5SDimitry Andric return nullptr;
3800b57cec5SDimitry Andric }
3810b57cec5SDimitry Andric
3820b57cec5SDimitry Andric /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
3830b57cec5SDimitry Andric /// return that pad instruction. If it unwinds to caller, return
3840b57cec5SDimitry Andric /// ConstantTokenNone. If it does not have a definitive unwind destination,
3850b57cec5SDimitry Andric /// return nullptr.
3860b57cec5SDimitry Andric ///
3870b57cec5SDimitry Andric /// This routine gets invoked for calls in funclets in inlinees when inlining
3880b57cec5SDimitry Andric /// an invoke. Since many funclets don't have calls inside them, it's queried
3890b57cec5SDimitry Andric /// on-demand rather than building a map of pads to unwind dests up front.
3900b57cec5SDimitry Andric /// Determining a funclet's unwind dest may require recursively searching its
3910b57cec5SDimitry Andric /// descendants, and also ancestors and cousins if the descendants don't provide
3920b57cec5SDimitry Andric /// an answer. Since most funclets will have their unwind dest immediately
3930b57cec5SDimitry Andric /// available as the unwind dest of a catchswitch or cleanupret, this routine
3940b57cec5SDimitry Andric /// searches top-down from the given pad and then up. To avoid worst-case
3950b57cec5SDimitry Andric /// quadratic run-time given that approach, it uses a memo map to avoid
3960b57cec5SDimitry Andric /// re-processing funclet trees. The callers that rewrite the IR as they go
3970b57cec5SDimitry Andric /// take advantage of this, for correctness, by checking/forcing rewritten
3980b57cec5SDimitry Andric /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)3990b57cec5SDimitry Andric static Value *getUnwindDestToken(Instruction *EHPad,
4000b57cec5SDimitry Andric UnwindDestMemoTy &MemoMap) {
4010b57cec5SDimitry Andric // Catchpads unwind to the same place as their catchswitch;
4020b57cec5SDimitry Andric // redirct any queries on catchpads so the code below can
4030b57cec5SDimitry Andric // deal with just catchswitches and cleanuppads.
4040b57cec5SDimitry Andric if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
4050b57cec5SDimitry Andric EHPad = CPI->getCatchSwitch();
4060b57cec5SDimitry Andric
4070b57cec5SDimitry Andric // Check if we've already determined the unwind dest for this pad.
4080b57cec5SDimitry Andric auto Memo = MemoMap.find(EHPad);
4090b57cec5SDimitry Andric if (Memo != MemoMap.end())
4100b57cec5SDimitry Andric return Memo->second;
4110b57cec5SDimitry Andric
4120b57cec5SDimitry Andric // Search EHPad and, if necessary, its descendants.
4130b57cec5SDimitry Andric Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
4140b57cec5SDimitry Andric assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
4150b57cec5SDimitry Andric if (UnwindDestToken)
4160b57cec5SDimitry Andric return UnwindDestToken;
4170b57cec5SDimitry Andric
4180b57cec5SDimitry Andric // No information is available for this EHPad from itself or any of its
4190b57cec5SDimitry Andric // descendants. An unwind all the way out to a pad in the caller would
4200b57cec5SDimitry Andric // need also to agree with the unwind dest of the parent funclet, so
4210b57cec5SDimitry Andric // search up the chain to try to find a funclet with information. Put
4220b57cec5SDimitry Andric // null entries in the memo map to avoid re-processing as we go up.
4230b57cec5SDimitry Andric MemoMap[EHPad] = nullptr;
4240b57cec5SDimitry Andric #ifndef NDEBUG
4250b57cec5SDimitry Andric SmallPtrSet<Instruction *, 4> TempMemos;
4260b57cec5SDimitry Andric TempMemos.insert(EHPad);
4270b57cec5SDimitry Andric #endif
4280b57cec5SDimitry Andric Instruction *LastUselessPad = EHPad;
4290b57cec5SDimitry Andric Value *AncestorToken;
4300b57cec5SDimitry Andric for (AncestorToken = getParentPad(EHPad);
4310b57cec5SDimitry Andric auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
4320b57cec5SDimitry Andric AncestorToken = getParentPad(AncestorToken)) {
4330b57cec5SDimitry Andric // Skip over catchpads since they just follow their catchswitches.
4340b57cec5SDimitry Andric if (isa<CatchPadInst>(AncestorPad))
4350b57cec5SDimitry Andric continue;
4360b57cec5SDimitry Andric // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
4370b57cec5SDimitry Andric // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
4380b57cec5SDimitry Andric // call to getUnwindDestToken, that would mean that AncestorPad had no
4390b57cec5SDimitry Andric // information in itself, its descendants, or its ancestors. If that
4400b57cec5SDimitry Andric // were the case, then we should also have recorded the lack of information
4410b57cec5SDimitry Andric // for the descendant that we're coming from. So assert that we don't
4420b57cec5SDimitry Andric // find a null entry in the MemoMap for AncestorPad.
4430b57cec5SDimitry Andric assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
4440b57cec5SDimitry Andric auto AncestorMemo = MemoMap.find(AncestorPad);
4450b57cec5SDimitry Andric if (AncestorMemo == MemoMap.end()) {
4460b57cec5SDimitry Andric UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
4470b57cec5SDimitry Andric } else {
4480b57cec5SDimitry Andric UnwindDestToken = AncestorMemo->second;
4490b57cec5SDimitry Andric }
4500b57cec5SDimitry Andric if (UnwindDestToken)
4510b57cec5SDimitry Andric break;
4520b57cec5SDimitry Andric LastUselessPad = AncestorPad;
4530b57cec5SDimitry Andric MemoMap[LastUselessPad] = nullptr;
4540b57cec5SDimitry Andric #ifndef NDEBUG
4550b57cec5SDimitry Andric TempMemos.insert(LastUselessPad);
4560b57cec5SDimitry Andric #endif
4570b57cec5SDimitry Andric }
4580b57cec5SDimitry Andric
4590b57cec5SDimitry Andric // We know that getUnwindDestTokenHelper was called on LastUselessPad and
4600b57cec5SDimitry Andric // returned nullptr (and likewise for EHPad and any of its ancestors up to
4610b57cec5SDimitry Andric // LastUselessPad), so LastUselessPad has no information from below. Since
4620b57cec5SDimitry Andric // getUnwindDestTokenHelper must investigate all downward paths through
4630b57cec5SDimitry Andric // no-information nodes to prove that a node has no information like this,
4640b57cec5SDimitry Andric // and since any time it finds information it records it in the MemoMap for
4650b57cec5SDimitry Andric // not just the immediately-containing funclet but also any ancestors also
4660b57cec5SDimitry Andric // exited, it must be the case that, walking downward from LastUselessPad,
4670b57cec5SDimitry Andric // visiting just those nodes which have not been mapped to an unwind dest
4680b57cec5SDimitry Andric // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
4690b57cec5SDimitry Andric // they are just used to keep getUnwindDestTokenHelper from repeating work),
4700b57cec5SDimitry Andric // any node visited must have been exhaustively searched with no information
4710b57cec5SDimitry Andric // for it found.
4720b57cec5SDimitry Andric SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
4730b57cec5SDimitry Andric while (!Worklist.empty()) {
4740b57cec5SDimitry Andric Instruction *UselessPad = Worklist.pop_back_val();
4750b57cec5SDimitry Andric auto Memo = MemoMap.find(UselessPad);
4760b57cec5SDimitry Andric if (Memo != MemoMap.end() && Memo->second) {
4770b57cec5SDimitry Andric // Here the name 'UselessPad' is a bit of a misnomer, because we've found
4780b57cec5SDimitry Andric // that it is a funclet that does have information about unwinding to
4790b57cec5SDimitry Andric // a particular destination; its parent was a useless pad.
4800b57cec5SDimitry Andric // Since its parent has no information, the unwind edge must not escape
4810b57cec5SDimitry Andric // the parent, and must target a sibling of this pad. This local unwind
4820b57cec5SDimitry Andric // gives us no information about EHPad. Leave it and the subtree rooted
4830b57cec5SDimitry Andric // at it alone.
4840b57cec5SDimitry Andric assert(getParentPad(Memo->second) == getParentPad(UselessPad));
4850b57cec5SDimitry Andric continue;
4860b57cec5SDimitry Andric }
4870b57cec5SDimitry Andric // We know we don't have information for UselesPad. If it has an entry in
4880b57cec5SDimitry Andric // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
4890b57cec5SDimitry Andric // added on this invocation of getUnwindDestToken; if a previous invocation
4900b57cec5SDimitry Andric // recorded nullptr, it would have had to prove that the ancestors of
4910b57cec5SDimitry Andric // UselessPad, which include LastUselessPad, had no information, and that
4920b57cec5SDimitry Andric // in turn would have required proving that the descendants of
4930b57cec5SDimitry Andric // LastUselesPad, which include EHPad, have no information about
4940b57cec5SDimitry Andric // LastUselessPad, which would imply that EHPad was mapped to nullptr in
4950b57cec5SDimitry Andric // the MemoMap on that invocation, which isn't the case if we got here.
4960b57cec5SDimitry Andric assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
4970b57cec5SDimitry Andric // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
4980b57cec5SDimitry Andric // information that we'd be contradicting by making a map entry for it
4990b57cec5SDimitry Andric // (which is something that getUnwindDestTokenHelper must have proved for
5000b57cec5SDimitry Andric // us to get here). Just assert on is direct users here; the checks in
5010b57cec5SDimitry Andric // this downward walk at its descendants will verify that they don't have
5020b57cec5SDimitry Andric // any unwind edges that exit 'UselessPad' either (i.e. they either have no
5030b57cec5SDimitry Andric // unwind edges or unwind to a sibling).
5040b57cec5SDimitry Andric MemoMap[UselessPad] = UnwindDestToken;
5050b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
5060b57cec5SDimitry Andric assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
5070b57cec5SDimitry Andric for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
5080b57cec5SDimitry Andric auto *CatchPad = HandlerBlock->getFirstNonPHI();
5090b57cec5SDimitry Andric for (User *U : CatchPad->users()) {
5100b57cec5SDimitry Andric assert(
5110b57cec5SDimitry Andric (!isa<InvokeInst>(U) ||
5120b57cec5SDimitry Andric (getParentPad(
5130b57cec5SDimitry Andric cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
5140b57cec5SDimitry Andric CatchPad)) &&
5150b57cec5SDimitry Andric "Expected useless pad");
5160b57cec5SDimitry Andric if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
5170b57cec5SDimitry Andric Worklist.push_back(cast<Instruction>(U));
5180b57cec5SDimitry Andric }
5190b57cec5SDimitry Andric }
5200b57cec5SDimitry Andric } else {
5210b57cec5SDimitry Andric assert(isa<CleanupPadInst>(UselessPad));
5220b57cec5SDimitry Andric for (User *U : UselessPad->users()) {
5230b57cec5SDimitry Andric assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
5240b57cec5SDimitry Andric assert((!isa<InvokeInst>(U) ||
5250b57cec5SDimitry Andric (getParentPad(
5260b57cec5SDimitry Andric cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
5270b57cec5SDimitry Andric UselessPad)) &&
5280b57cec5SDimitry Andric "Expected useless pad");
5290b57cec5SDimitry Andric if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
5300b57cec5SDimitry Andric Worklist.push_back(cast<Instruction>(U));
5310b57cec5SDimitry Andric }
5320b57cec5SDimitry Andric }
5330b57cec5SDimitry Andric }
5340b57cec5SDimitry Andric
5350b57cec5SDimitry Andric return UnwindDestToken;
5360b57cec5SDimitry Andric }
5370b57cec5SDimitry Andric
5380b57cec5SDimitry Andric /// When we inline a basic block into an invoke,
5390b57cec5SDimitry Andric /// we have to turn all of the calls that can throw into invokes.
5400b57cec5SDimitry Andric /// This function analyze BB to see if there are any calls, and if so,
5410b57cec5SDimitry Andric /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
5420b57cec5SDimitry Andric /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)5430b57cec5SDimitry Andric static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
5440b57cec5SDimitry Andric BasicBlock *BB, BasicBlock *UnwindEdge,
5450b57cec5SDimitry Andric UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
546349cc55cSDimitry Andric for (Instruction &I : llvm::make_early_inc_range(*BB)) {
5470b57cec5SDimitry Andric // We only need to check for function calls: inlined invoke
5480b57cec5SDimitry Andric // instructions require no special handling.
549349cc55cSDimitry Andric CallInst *CI = dyn_cast<CallInst>(&I);
5500b57cec5SDimitry Andric
551fe6060f1SDimitry Andric if (!CI || CI->doesNotThrow())
5520b57cec5SDimitry Andric continue;
5530b57cec5SDimitry Andric
5540b57cec5SDimitry Andric // We do not need to (and in fact, cannot) convert possibly throwing calls
5550b57cec5SDimitry Andric // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
5560b57cec5SDimitry Andric // invokes. The caller's "segment" of the deoptimization continuation
5570b57cec5SDimitry Andric // attached to the newly inlined @llvm.experimental_deoptimize
5580b57cec5SDimitry Andric // (resp. @llvm.experimental.guard) call should contain the exception
5590b57cec5SDimitry Andric // handling logic, if any.
5600b57cec5SDimitry Andric if (auto *F = CI->getCalledFunction())
5610b57cec5SDimitry Andric if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
5620b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_guard)
5630b57cec5SDimitry Andric continue;
5640b57cec5SDimitry Andric
5650b57cec5SDimitry Andric if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
5660b57cec5SDimitry Andric // This call is nested inside a funclet. If that funclet has an unwind
5670b57cec5SDimitry Andric // destination within the inlinee, then unwinding out of this call would
5680b57cec5SDimitry Andric // be UB. Rewriting this call to an invoke which targets the inlined
5690b57cec5SDimitry Andric // invoke's unwind dest would give the call's parent funclet multiple
5700b57cec5SDimitry Andric // unwind destinations, which is something that subsequent EH table
5710b57cec5SDimitry Andric // generation can't handle and that the veirifer rejects. So when we
5720b57cec5SDimitry Andric // see such a call, leave it as a call.
5730b57cec5SDimitry Andric auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
5740b57cec5SDimitry Andric Value *UnwindDestToken =
5750b57cec5SDimitry Andric getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
5760b57cec5SDimitry Andric if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
5770b57cec5SDimitry Andric continue;
5780b57cec5SDimitry Andric #ifndef NDEBUG
5790b57cec5SDimitry Andric Instruction *MemoKey;
5800b57cec5SDimitry Andric if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
5810b57cec5SDimitry Andric MemoKey = CatchPad->getCatchSwitch();
5820b57cec5SDimitry Andric else
5830b57cec5SDimitry Andric MemoKey = FuncletPad;
5840b57cec5SDimitry Andric assert(FuncletUnwindMap->count(MemoKey) &&
5850b57cec5SDimitry Andric (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
5860b57cec5SDimitry Andric "must get memoized to avoid confusing later searches");
5870b57cec5SDimitry Andric #endif // NDEBUG
5880b57cec5SDimitry Andric }
5890b57cec5SDimitry Andric
5900b57cec5SDimitry Andric changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
5910b57cec5SDimitry Andric return BB;
5920b57cec5SDimitry Andric }
5930b57cec5SDimitry Andric return nullptr;
5940b57cec5SDimitry Andric }
5950b57cec5SDimitry Andric
5960b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls
5970b57cec5SDimitry Andric /// in the body of the inlined function into invokes.
5980b57cec5SDimitry Andric ///
5990b57cec5SDimitry Andric /// II is the invoke instruction being inlined. FirstNewBlock is the first
6000b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function),
6010b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)6020b57cec5SDimitry Andric static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
6030b57cec5SDimitry Andric ClonedCodeInfo &InlinedCodeInfo) {
6040b57cec5SDimitry Andric BasicBlock *InvokeDest = II->getUnwindDest();
6050b57cec5SDimitry Andric
6060b57cec5SDimitry Andric Function *Caller = FirstNewBlock->getParent();
6070b57cec5SDimitry Andric
6080b57cec5SDimitry Andric // The inlined code is currently at the end of the function, scan from the
6090b57cec5SDimitry Andric // start of the inlined code to its end, checking for stuff we need to
6100b57cec5SDimitry Andric // rewrite.
6110b57cec5SDimitry Andric LandingPadInliningInfo Invoke(II);
6120b57cec5SDimitry Andric
6130b57cec5SDimitry Andric // Get all of the inlined landing pad instructions.
6140b57cec5SDimitry Andric SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
6150b57cec5SDimitry Andric for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
6160b57cec5SDimitry Andric I != E; ++I)
6170b57cec5SDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
6180b57cec5SDimitry Andric InlinedLPads.insert(II->getLandingPadInst());
6190b57cec5SDimitry Andric
6200b57cec5SDimitry Andric // Append the clauses from the outer landing pad instruction into the inlined
6210b57cec5SDimitry Andric // landing pad instructions.
6220b57cec5SDimitry Andric LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
6230b57cec5SDimitry Andric for (LandingPadInst *InlinedLPad : InlinedLPads) {
6240b57cec5SDimitry Andric unsigned OuterNum = OuterLPad->getNumClauses();
6250b57cec5SDimitry Andric InlinedLPad->reserveClauses(OuterNum);
6260b57cec5SDimitry Andric for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
6270b57cec5SDimitry Andric InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
6280b57cec5SDimitry Andric if (OuterLPad->isCleanup())
6290b57cec5SDimitry Andric InlinedLPad->setCleanup(true);
6300b57cec5SDimitry Andric }
6310b57cec5SDimitry Andric
6320b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
6330b57cec5SDimitry Andric BB != E; ++BB) {
6340b57cec5SDimitry Andric if (InlinedCodeInfo.ContainsCalls)
6350b57cec5SDimitry Andric if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
6360b57cec5SDimitry Andric &*BB, Invoke.getOuterResumeDest()))
6370b57cec5SDimitry Andric // Update any PHI nodes in the exceptional block to indicate that there
6380b57cec5SDimitry Andric // is now a new entry in them.
6390b57cec5SDimitry Andric Invoke.addIncomingPHIValuesFor(NewBB);
6400b57cec5SDimitry Andric
6410b57cec5SDimitry Andric // Forward any resumes that are remaining here.
6420b57cec5SDimitry Andric if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
6430b57cec5SDimitry Andric Invoke.forwardResume(RI, InlinedLPads);
6440b57cec5SDimitry Andric }
6450b57cec5SDimitry Andric
6460b57cec5SDimitry Andric // Now that everything is happy, we have one final detail. The PHI nodes in
6470b57cec5SDimitry Andric // the exception destination block still have entries due to the original
6480b57cec5SDimitry Andric // invoke instruction. Eliminate these entries (which might even delete the
6490b57cec5SDimitry Andric // PHI node) now.
6500b57cec5SDimitry Andric InvokeDest->removePredecessor(II->getParent());
6510b57cec5SDimitry Andric }
6520b57cec5SDimitry Andric
6530b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls
6540b57cec5SDimitry Andric /// in the body of the inlined function into invokes.
6550b57cec5SDimitry Andric ///
6560b57cec5SDimitry Andric /// II is the invoke instruction being inlined. FirstNewBlock is the first
6570b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function),
6580b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)6590b57cec5SDimitry Andric static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
6600b57cec5SDimitry Andric ClonedCodeInfo &InlinedCodeInfo) {
6610b57cec5SDimitry Andric BasicBlock *UnwindDest = II->getUnwindDest();
6620b57cec5SDimitry Andric Function *Caller = FirstNewBlock->getParent();
6630b57cec5SDimitry Andric
6640b57cec5SDimitry Andric assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
6650b57cec5SDimitry Andric
6660b57cec5SDimitry Andric // If there are PHI nodes in the unwind destination block, we need to keep
6670b57cec5SDimitry Andric // track of which values came into them from the invoke before removing the
6680b57cec5SDimitry Andric // edge from this block.
6690b57cec5SDimitry Andric SmallVector<Value *, 8> UnwindDestPHIValues;
6700b57cec5SDimitry Andric BasicBlock *InvokeBB = II->getParent();
6711fd87a68SDimitry Andric for (PHINode &PHI : UnwindDest->phis()) {
6720b57cec5SDimitry Andric // Save the value to use for this edge.
6731fd87a68SDimitry Andric UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB));
6740b57cec5SDimitry Andric }
6750b57cec5SDimitry Andric
6760b57cec5SDimitry Andric // Add incoming-PHI values to the unwind destination block for the given basic
6770b57cec5SDimitry Andric // block, using the values for the original invoke's source block.
6780b57cec5SDimitry Andric auto UpdatePHINodes = [&](BasicBlock *Src) {
6790b57cec5SDimitry Andric BasicBlock::iterator I = UnwindDest->begin();
6800b57cec5SDimitry Andric for (Value *V : UnwindDestPHIValues) {
6810b57cec5SDimitry Andric PHINode *PHI = cast<PHINode>(I);
6820b57cec5SDimitry Andric PHI->addIncoming(V, Src);
6830b57cec5SDimitry Andric ++I;
6840b57cec5SDimitry Andric }
6850b57cec5SDimitry Andric };
6860b57cec5SDimitry Andric
6870b57cec5SDimitry Andric // This connects all the instructions which 'unwind to caller' to the invoke
6880b57cec5SDimitry Andric // destination.
6890b57cec5SDimitry Andric UnwindDestMemoTy FuncletUnwindMap;
6900b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
6910b57cec5SDimitry Andric BB != E; ++BB) {
6920b57cec5SDimitry Andric if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6930b57cec5SDimitry Andric if (CRI->unwindsToCaller()) {
6940b57cec5SDimitry Andric auto *CleanupPad = CRI->getCleanupPad();
6950fca6ea1SDimitry Andric CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI->getIterator());
6960b57cec5SDimitry Andric CRI->eraseFromParent();
6970b57cec5SDimitry Andric UpdatePHINodes(&*BB);
6980b57cec5SDimitry Andric // Finding a cleanupret with an unwind destination would confuse
6990b57cec5SDimitry Andric // subsequent calls to getUnwindDestToken, so map the cleanuppad
7000b57cec5SDimitry Andric // to short-circuit any such calls and recognize this as an "unwind
7010b57cec5SDimitry Andric // to caller" cleanup.
7020b57cec5SDimitry Andric assert(!FuncletUnwindMap.count(CleanupPad) ||
7030b57cec5SDimitry Andric isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
7040b57cec5SDimitry Andric FuncletUnwindMap[CleanupPad] =
7050b57cec5SDimitry Andric ConstantTokenNone::get(Caller->getContext());
7060b57cec5SDimitry Andric }
7070b57cec5SDimitry Andric }
7080b57cec5SDimitry Andric
7090b57cec5SDimitry Andric Instruction *I = BB->getFirstNonPHI();
7100b57cec5SDimitry Andric if (!I->isEHPad())
7110b57cec5SDimitry Andric continue;
7120b57cec5SDimitry Andric
7130b57cec5SDimitry Andric Instruction *Replacement = nullptr;
7140b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
7150b57cec5SDimitry Andric if (CatchSwitch->unwindsToCaller()) {
7160b57cec5SDimitry Andric Value *UnwindDestToken;
7170b57cec5SDimitry Andric if (auto *ParentPad =
7180b57cec5SDimitry Andric dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
7190b57cec5SDimitry Andric // This catchswitch is nested inside another funclet. If that
7200b57cec5SDimitry Andric // funclet has an unwind destination within the inlinee, then
7210b57cec5SDimitry Andric // unwinding out of this catchswitch would be UB. Rewriting this
7220b57cec5SDimitry Andric // catchswitch to unwind to the inlined invoke's unwind dest would
7230b57cec5SDimitry Andric // give the parent funclet multiple unwind destinations, which is
7240b57cec5SDimitry Andric // something that subsequent EH table generation can't handle and
7250b57cec5SDimitry Andric // that the veirifer rejects. So when we see such a call, leave it
7260b57cec5SDimitry Andric // as "unwind to caller".
7270b57cec5SDimitry Andric UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
7280b57cec5SDimitry Andric if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
7290b57cec5SDimitry Andric continue;
7300b57cec5SDimitry Andric } else {
7310b57cec5SDimitry Andric // This catchswitch has no parent to inherit constraints from, and
7320b57cec5SDimitry Andric // none of its descendants can have an unwind edge that exits it and
7330b57cec5SDimitry Andric // targets another funclet in the inlinee. It may or may not have a
7340b57cec5SDimitry Andric // descendant that definitively has an unwind to caller. In either
7350b57cec5SDimitry Andric // case, we'll have to assume that any unwinds out of it may need to
7360b57cec5SDimitry Andric // be routed to the caller, so treat it as though it has a definitive
7370b57cec5SDimitry Andric // unwind to caller.
7380b57cec5SDimitry Andric UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
7390b57cec5SDimitry Andric }
7400b57cec5SDimitry Andric auto *NewCatchSwitch = CatchSwitchInst::Create(
7410b57cec5SDimitry Andric CatchSwitch->getParentPad(), UnwindDest,
7420b57cec5SDimitry Andric CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
7430fca6ea1SDimitry Andric CatchSwitch->getIterator());
7440b57cec5SDimitry Andric for (BasicBlock *PadBB : CatchSwitch->handlers())
7450b57cec5SDimitry Andric NewCatchSwitch->addHandler(PadBB);
7460b57cec5SDimitry Andric // Propagate info for the old catchswitch over to the new one in
7470b57cec5SDimitry Andric // the unwind map. This also serves to short-circuit any subsequent
7480b57cec5SDimitry Andric // checks for the unwind dest of this catchswitch, which would get
7490b57cec5SDimitry Andric // confused if they found the outer handler in the callee.
7500b57cec5SDimitry Andric FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
7510b57cec5SDimitry Andric Replacement = NewCatchSwitch;
7520b57cec5SDimitry Andric }
7530b57cec5SDimitry Andric } else if (!isa<FuncletPadInst>(I)) {
7540b57cec5SDimitry Andric llvm_unreachable("unexpected EHPad!");
7550b57cec5SDimitry Andric }
7560b57cec5SDimitry Andric
7570b57cec5SDimitry Andric if (Replacement) {
7580b57cec5SDimitry Andric Replacement->takeName(I);
7590b57cec5SDimitry Andric I->replaceAllUsesWith(Replacement);
7600b57cec5SDimitry Andric I->eraseFromParent();
7610b57cec5SDimitry Andric UpdatePHINodes(&*BB);
7620b57cec5SDimitry Andric }
7630b57cec5SDimitry Andric }
7640b57cec5SDimitry Andric
7650b57cec5SDimitry Andric if (InlinedCodeInfo.ContainsCalls)
7660b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(),
7670b57cec5SDimitry Andric E = Caller->end();
7680b57cec5SDimitry Andric BB != E; ++BB)
7690b57cec5SDimitry Andric if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
7700b57cec5SDimitry Andric &*BB, UnwindDest, &FuncletUnwindMap))
7710b57cec5SDimitry Andric // Update any PHI nodes in the exceptional block to indicate that there
7720b57cec5SDimitry Andric // is now a new entry in them.
7730b57cec5SDimitry Andric UpdatePHINodes(NewBB);
7740b57cec5SDimitry Andric
7750b57cec5SDimitry Andric // Now that everything is happy, we have one final detail. The PHI nodes in
7760b57cec5SDimitry Andric // the exception destination block still have entries due to the original
7770b57cec5SDimitry Andric // invoke instruction. Eliminate these entries (which might even delete the
7780b57cec5SDimitry Andric // PHI node) now.
7790b57cec5SDimitry Andric UnwindDest->removePredecessor(InvokeBB);
7800b57cec5SDimitry Andric }
7810b57cec5SDimitry Andric
haveCommonPrefix(MDNode * MIBStackContext,MDNode * CallsiteStackContext)782bdd1243dSDimitry Andric static bool haveCommonPrefix(MDNode *MIBStackContext,
783bdd1243dSDimitry Andric MDNode *CallsiteStackContext) {
784bdd1243dSDimitry Andric assert(MIBStackContext->getNumOperands() > 0 &&
785bdd1243dSDimitry Andric CallsiteStackContext->getNumOperands() > 0);
786bdd1243dSDimitry Andric // Because of the context trimming performed during matching, the callsite
787bdd1243dSDimitry Andric // context could have more stack ids than the MIB. We match up to the end of
788bdd1243dSDimitry Andric // the shortest stack context.
789bdd1243dSDimitry Andric for (auto MIBStackIter = MIBStackContext->op_begin(),
790bdd1243dSDimitry Andric CallsiteStackIter = CallsiteStackContext->op_begin();
791bdd1243dSDimitry Andric MIBStackIter != MIBStackContext->op_end() &&
792bdd1243dSDimitry Andric CallsiteStackIter != CallsiteStackContext->op_end();
793bdd1243dSDimitry Andric MIBStackIter++, CallsiteStackIter++) {
794bdd1243dSDimitry Andric auto *Val1 = mdconst::dyn_extract<ConstantInt>(*MIBStackIter);
795bdd1243dSDimitry Andric auto *Val2 = mdconst::dyn_extract<ConstantInt>(*CallsiteStackIter);
796bdd1243dSDimitry Andric assert(Val1 && Val2);
797bdd1243dSDimitry Andric if (Val1->getZExtValue() != Val2->getZExtValue())
798bdd1243dSDimitry Andric return false;
799bdd1243dSDimitry Andric }
800bdd1243dSDimitry Andric return true;
801bdd1243dSDimitry Andric }
802bdd1243dSDimitry Andric
removeMemProfMetadata(CallBase * Call)803bdd1243dSDimitry Andric static void removeMemProfMetadata(CallBase *Call) {
804bdd1243dSDimitry Andric Call->setMetadata(LLVMContext::MD_memprof, nullptr);
805bdd1243dSDimitry Andric }
806bdd1243dSDimitry Andric
removeCallsiteMetadata(CallBase * Call)807bdd1243dSDimitry Andric static void removeCallsiteMetadata(CallBase *Call) {
808bdd1243dSDimitry Andric Call->setMetadata(LLVMContext::MD_callsite, nullptr);
809bdd1243dSDimitry Andric }
810bdd1243dSDimitry Andric
updateMemprofMetadata(CallBase * CI,const std::vector<Metadata * > & MIBList)811bdd1243dSDimitry Andric static void updateMemprofMetadata(CallBase *CI,
812bdd1243dSDimitry Andric const std::vector<Metadata *> &MIBList) {
813bdd1243dSDimitry Andric assert(!MIBList.empty());
814bdd1243dSDimitry Andric // Remove existing memprof, which will either be replaced or may not be needed
815bdd1243dSDimitry Andric // if we are able to use a single allocation type function attribute.
816bdd1243dSDimitry Andric removeMemProfMetadata(CI);
817bdd1243dSDimitry Andric CallStackTrie CallStack;
818bdd1243dSDimitry Andric for (Metadata *MIB : MIBList)
819bdd1243dSDimitry Andric CallStack.addCallStack(cast<MDNode>(MIB));
820bdd1243dSDimitry Andric bool MemprofMDAttached = CallStack.buildAndAttachMIBMetadata(CI);
821bdd1243dSDimitry Andric assert(MemprofMDAttached == CI->hasMetadata(LLVMContext::MD_memprof));
822bdd1243dSDimitry Andric if (!MemprofMDAttached)
823bdd1243dSDimitry Andric // If we used a function attribute remove the callsite metadata as well.
824bdd1243dSDimitry Andric removeCallsiteMetadata(CI);
825bdd1243dSDimitry Andric }
826bdd1243dSDimitry Andric
827bdd1243dSDimitry Andric // Update the metadata on the inlined copy ClonedCall of a call OrigCall in the
828bdd1243dSDimitry Andric // inlined callee body, based on the callsite metadata InlinedCallsiteMD from
829bdd1243dSDimitry Andric // the call that was inlined.
propagateMemProfHelper(const CallBase * OrigCall,CallBase * ClonedCall,MDNode * InlinedCallsiteMD)830bdd1243dSDimitry Andric static void propagateMemProfHelper(const CallBase *OrigCall,
831bdd1243dSDimitry Andric CallBase *ClonedCall,
832bdd1243dSDimitry Andric MDNode *InlinedCallsiteMD) {
833bdd1243dSDimitry Andric MDNode *OrigCallsiteMD = ClonedCall->getMetadata(LLVMContext::MD_callsite);
834bdd1243dSDimitry Andric MDNode *ClonedCallsiteMD = nullptr;
835bdd1243dSDimitry Andric // Check if the call originally had callsite metadata, and update it for the
836bdd1243dSDimitry Andric // new call in the inlined body.
837bdd1243dSDimitry Andric if (OrigCallsiteMD) {
838bdd1243dSDimitry Andric // The cloned call's context is now the concatenation of the original call's
839bdd1243dSDimitry Andric // callsite metadata and the callsite metadata on the call where it was
840bdd1243dSDimitry Andric // inlined.
841bdd1243dSDimitry Andric ClonedCallsiteMD = MDNode::concatenate(OrigCallsiteMD, InlinedCallsiteMD);
842bdd1243dSDimitry Andric ClonedCall->setMetadata(LLVMContext::MD_callsite, ClonedCallsiteMD);
843bdd1243dSDimitry Andric }
844bdd1243dSDimitry Andric
845bdd1243dSDimitry Andric // Update any memprof metadata on the cloned call.
846bdd1243dSDimitry Andric MDNode *OrigMemProfMD = ClonedCall->getMetadata(LLVMContext::MD_memprof);
847bdd1243dSDimitry Andric if (!OrigMemProfMD)
848bdd1243dSDimitry Andric return;
849bdd1243dSDimitry Andric // We currently expect that allocations with memprof metadata also have
850bdd1243dSDimitry Andric // callsite metadata for the allocation's part of the context.
851bdd1243dSDimitry Andric assert(OrigCallsiteMD);
852bdd1243dSDimitry Andric
853bdd1243dSDimitry Andric // New call's MIB list.
854bdd1243dSDimitry Andric std::vector<Metadata *> NewMIBList;
855bdd1243dSDimitry Andric
856bdd1243dSDimitry Andric // For each MIB metadata, check if its call stack context starts with the
857bdd1243dSDimitry Andric // new clone's callsite metadata. If so, that MIB goes onto the cloned call in
858bdd1243dSDimitry Andric // the inlined body. If not, it stays on the out-of-line original call.
859bdd1243dSDimitry Andric for (auto &MIBOp : OrigMemProfMD->operands()) {
860bdd1243dSDimitry Andric MDNode *MIB = dyn_cast<MDNode>(MIBOp);
861bdd1243dSDimitry Andric // Stack is first operand of MIB.
862bdd1243dSDimitry Andric MDNode *StackMD = getMIBStackNode(MIB);
863bdd1243dSDimitry Andric assert(StackMD);
864bdd1243dSDimitry Andric // See if the new cloned callsite context matches this profiled context.
865bdd1243dSDimitry Andric if (haveCommonPrefix(StackMD, ClonedCallsiteMD))
866bdd1243dSDimitry Andric // Add it to the cloned call's MIB list.
867bdd1243dSDimitry Andric NewMIBList.push_back(MIB);
868bdd1243dSDimitry Andric }
869bdd1243dSDimitry Andric if (NewMIBList.empty()) {
870bdd1243dSDimitry Andric removeMemProfMetadata(ClonedCall);
871bdd1243dSDimitry Andric removeCallsiteMetadata(ClonedCall);
872bdd1243dSDimitry Andric return;
873bdd1243dSDimitry Andric }
874bdd1243dSDimitry Andric if (NewMIBList.size() < OrigMemProfMD->getNumOperands())
875bdd1243dSDimitry Andric updateMemprofMetadata(ClonedCall, NewMIBList);
876bdd1243dSDimitry Andric }
877bdd1243dSDimitry Andric
878bdd1243dSDimitry Andric // Update memprof related metadata (!memprof and !callsite) based on the
879bdd1243dSDimitry Andric // inlining of Callee into the callsite at CB. The updates include merging the
880bdd1243dSDimitry Andric // inlined callee's callsite metadata with that of the inlined call,
881bdd1243dSDimitry Andric // and moving the subset of any memprof contexts to the inlined callee
882bdd1243dSDimitry Andric // allocations if they match the new inlined call stack.
883bdd1243dSDimitry Andric static void
propagateMemProfMetadata(Function * Callee,CallBase & CB,bool ContainsMemProfMetadata,const ValueMap<const Value *,WeakTrackingVH> & VMap)884bdd1243dSDimitry Andric propagateMemProfMetadata(Function *Callee, CallBase &CB,
885bdd1243dSDimitry Andric bool ContainsMemProfMetadata,
886bdd1243dSDimitry Andric const ValueMap<const Value *, WeakTrackingVH> &VMap) {
887bdd1243dSDimitry Andric MDNode *CallsiteMD = CB.getMetadata(LLVMContext::MD_callsite);
888bdd1243dSDimitry Andric // Only need to update if the inlined callsite had callsite metadata, or if
889bdd1243dSDimitry Andric // there was any memprof metadata inlined.
890bdd1243dSDimitry Andric if (!CallsiteMD && !ContainsMemProfMetadata)
891bdd1243dSDimitry Andric return;
892bdd1243dSDimitry Andric
893bdd1243dSDimitry Andric // Propagate metadata onto the cloned calls in the inlined callee.
894bdd1243dSDimitry Andric for (const auto &Entry : VMap) {
895bdd1243dSDimitry Andric // See if this is a call that has been inlined and remapped, and not
896bdd1243dSDimitry Andric // simplified away in the process.
897bdd1243dSDimitry Andric auto *OrigCall = dyn_cast_or_null<CallBase>(Entry.first);
898bdd1243dSDimitry Andric auto *ClonedCall = dyn_cast_or_null<CallBase>(Entry.second);
899bdd1243dSDimitry Andric if (!OrigCall || !ClonedCall)
900bdd1243dSDimitry Andric continue;
901bdd1243dSDimitry Andric // If the inlined callsite did not have any callsite metadata, then it isn't
902bdd1243dSDimitry Andric // involved in any profiled call contexts, and we can remove any memprof
903bdd1243dSDimitry Andric // metadata on the cloned call.
904bdd1243dSDimitry Andric if (!CallsiteMD) {
905bdd1243dSDimitry Andric removeMemProfMetadata(ClonedCall);
906bdd1243dSDimitry Andric removeCallsiteMetadata(ClonedCall);
907bdd1243dSDimitry Andric continue;
908bdd1243dSDimitry Andric }
909bdd1243dSDimitry Andric propagateMemProfHelper(OrigCall, ClonedCall, CallsiteMD);
910bdd1243dSDimitry Andric }
911bdd1243dSDimitry Andric }
912bdd1243dSDimitry Andric
913e8d8bef9SDimitry Andric /// When inlining a call site that has !llvm.mem.parallel_loop_access,
914e8d8bef9SDimitry Andric /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
915e8d8bef9SDimitry Andric /// be propagated to all memory-accessing cloned instructions.
PropagateCallSiteMetadata(CallBase & CB,Function::iterator FStart,Function::iterator FEnd)91623408297SDimitry Andric static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
91723408297SDimitry Andric Function::iterator FEnd) {
918e8d8bef9SDimitry Andric MDNode *MemParallelLoopAccess =
919e8d8bef9SDimitry Andric CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
920e8d8bef9SDimitry Andric MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
921e8d8bef9SDimitry Andric MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
922e8d8bef9SDimitry Andric MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
923e8d8bef9SDimitry Andric if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
9240b57cec5SDimitry Andric return;
9250b57cec5SDimitry Andric
92623408297SDimitry Andric for (BasicBlock &BB : make_range(FStart, FEnd)) {
92723408297SDimitry Andric for (Instruction &I : BB) {
928e8d8bef9SDimitry Andric // This metadata is only relevant for instructions that access memory.
92923408297SDimitry Andric if (!I.mayReadOrWriteMemory())
930e8d8bef9SDimitry Andric continue;
931e8d8bef9SDimitry Andric
932e8d8bef9SDimitry Andric if (MemParallelLoopAccess) {
933e8d8bef9SDimitry Andric // TODO: This probably should not overwrite MemParalleLoopAccess.
934e8d8bef9SDimitry Andric MemParallelLoopAccess = MDNode::concatenate(
93523408297SDimitry Andric I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
936e8d8bef9SDimitry Andric MemParallelLoopAccess);
93723408297SDimitry Andric I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
938e8d8bef9SDimitry Andric MemParallelLoopAccess);
939e8d8bef9SDimitry Andric }
940e8d8bef9SDimitry Andric
941e8d8bef9SDimitry Andric if (AccessGroup)
94223408297SDimitry Andric I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
94323408297SDimitry Andric I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
944e8d8bef9SDimitry Andric
945e8d8bef9SDimitry Andric if (AliasScope)
94623408297SDimitry Andric I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
94723408297SDimitry Andric I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
948e8d8bef9SDimitry Andric
949e8d8bef9SDimitry Andric if (NoAlias)
95023408297SDimitry Andric I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
95123408297SDimitry Andric I.getMetadata(LLVMContext::MD_noalias), NoAlias));
95223408297SDimitry Andric }
9530b57cec5SDimitry Andric }
9540b57cec5SDimitry Andric }
9550b57cec5SDimitry Andric
956972a253aSDimitry Andric /// Bundle operands of the inlined function must be added to inlined call sites.
PropagateOperandBundles(Function::iterator InlinedBB,Instruction * CallSiteEHPad)957972a253aSDimitry Andric static void PropagateOperandBundles(Function::iterator InlinedBB,
958972a253aSDimitry Andric Instruction *CallSiteEHPad) {
959972a253aSDimitry Andric for (Instruction &II : llvm::make_early_inc_range(*InlinedBB)) {
960972a253aSDimitry Andric CallBase *I = dyn_cast<CallBase>(&II);
961972a253aSDimitry Andric if (!I)
962972a253aSDimitry Andric continue;
963972a253aSDimitry Andric // Skip call sites which already have a "funclet" bundle.
964972a253aSDimitry Andric if (I->getOperandBundle(LLVMContext::OB_funclet))
965972a253aSDimitry Andric continue;
966972a253aSDimitry Andric // Skip call sites which are nounwind intrinsics (as long as they don't
967972a253aSDimitry Andric // lower into regular function calls in the course of IR transformations).
968972a253aSDimitry Andric auto *CalledFn =
969972a253aSDimitry Andric dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
970972a253aSDimitry Andric if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow() &&
971972a253aSDimitry Andric !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
972972a253aSDimitry Andric continue;
973972a253aSDimitry Andric
974972a253aSDimitry Andric SmallVector<OperandBundleDef, 1> OpBundles;
975972a253aSDimitry Andric I->getOperandBundlesAsDefs(OpBundles);
976972a253aSDimitry Andric OpBundles.emplace_back("funclet", CallSiteEHPad);
977972a253aSDimitry Andric
9780fca6ea1SDimitry Andric Instruction *NewInst = CallBase::Create(I, OpBundles, I->getIterator());
979972a253aSDimitry Andric NewInst->takeName(I);
980972a253aSDimitry Andric I->replaceAllUsesWith(NewInst);
981972a253aSDimitry Andric I->eraseFromParent();
982972a253aSDimitry Andric }
983972a253aSDimitry Andric }
984972a253aSDimitry Andric
985349cc55cSDimitry Andric namespace {
986e8d8bef9SDimitry Andric /// Utility for cloning !noalias and !alias.scope metadata. When a code region
987e8d8bef9SDimitry Andric /// using scoped alias metadata is inlined, the aliasing relationships may not
988e8d8bef9SDimitry Andric /// hold between the two version. It is necessary to create a deep clone of the
989e8d8bef9SDimitry Andric /// metadata, putting the two versions in separate scope domains.
990e8d8bef9SDimitry Andric class ScopedAliasMetadataDeepCloner {
991e8d8bef9SDimitry Andric using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
9920b57cec5SDimitry Andric SetVector<const MDNode *> MD;
993e8d8bef9SDimitry Andric MetadataMap MDMap;
994e8d8bef9SDimitry Andric void addRecursiveMetadataUses();
9950b57cec5SDimitry Andric
996e8d8bef9SDimitry Andric public:
997e8d8bef9SDimitry Andric ScopedAliasMetadataDeepCloner(const Function *F);
9980b57cec5SDimitry Andric
999e8d8bef9SDimitry Andric /// Create a new clone of the scoped alias metadata, which will be used by
1000e8d8bef9SDimitry Andric /// subsequent remap() calls.
1001e8d8bef9SDimitry Andric void clone();
1002e8d8bef9SDimitry Andric
100323408297SDimitry Andric /// Remap instructions in the given range from the original to the cloned
1004e8d8bef9SDimitry Andric /// metadata.
100523408297SDimitry Andric void remap(Function::iterator FStart, Function::iterator FEnd);
1006e8d8bef9SDimitry Andric };
1007349cc55cSDimitry Andric } // namespace
1008e8d8bef9SDimitry Andric
ScopedAliasMetadataDeepCloner(const Function * F)1009e8d8bef9SDimitry Andric ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
1010e8d8bef9SDimitry Andric const Function *F) {
1011e8d8bef9SDimitry Andric for (const BasicBlock &BB : *F) {
1012e8d8bef9SDimitry Andric for (const Instruction &I : BB) {
1013e8d8bef9SDimitry Andric if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
10140b57cec5SDimitry Andric MD.insert(M);
1015e8d8bef9SDimitry Andric if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
10160b57cec5SDimitry Andric MD.insert(M);
1017e8d8bef9SDimitry Andric
1018e8d8bef9SDimitry Andric // We also need to clone the metadata in noalias intrinsics.
1019e8d8bef9SDimitry Andric if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1020e8d8bef9SDimitry Andric MD.insert(Decl->getScopeList());
1021e8d8bef9SDimitry Andric }
1022e8d8bef9SDimitry Andric }
1023e8d8bef9SDimitry Andric addRecursiveMetadataUses();
10240b57cec5SDimitry Andric }
10250b57cec5SDimitry Andric
addRecursiveMetadataUses()1026e8d8bef9SDimitry Andric void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
10270b57cec5SDimitry Andric SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
10280b57cec5SDimitry Andric while (!Queue.empty()) {
10290b57cec5SDimitry Andric const MDNode *M = cast<MDNode>(Queue.pop_back_val());
1030e8d8bef9SDimitry Andric for (const Metadata *Op : M->operands())
1031e8d8bef9SDimitry Andric if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
1032e8d8bef9SDimitry Andric if (MD.insert(OpMD))
1033e8d8bef9SDimitry Andric Queue.push_back(OpMD);
1034e8d8bef9SDimitry Andric }
10350b57cec5SDimitry Andric }
10360b57cec5SDimitry Andric
clone()1037e8d8bef9SDimitry Andric void ScopedAliasMetadataDeepCloner::clone() {
1038e8d8bef9SDimitry Andric assert(MDMap.empty() && "clone() already called ?");
1039e8d8bef9SDimitry Andric
10400b57cec5SDimitry Andric SmallVector<TempMDTuple, 16> DummyNodes;
10410b57cec5SDimitry Andric for (const MDNode *I : MD) {
1042bdd1243dSDimitry Andric DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), std::nullopt));
10430b57cec5SDimitry Andric MDMap[I].reset(DummyNodes.back().get());
10440b57cec5SDimitry Andric }
10450b57cec5SDimitry Andric
10460b57cec5SDimitry Andric // Create new metadata nodes to replace the dummy nodes, replacing old
10470b57cec5SDimitry Andric // metadata references with either a dummy node or an already-created new
10480b57cec5SDimitry Andric // node.
10490b57cec5SDimitry Andric SmallVector<Metadata *, 4> NewOps;
1050e8d8bef9SDimitry Andric for (const MDNode *I : MD) {
1051e8d8bef9SDimitry Andric for (const Metadata *Op : I->operands()) {
1052e8d8bef9SDimitry Andric if (const MDNode *M = dyn_cast<MDNode>(Op))
10530b57cec5SDimitry Andric NewOps.push_back(MDMap[M]);
10540b57cec5SDimitry Andric else
1055e8d8bef9SDimitry Andric NewOps.push_back(const_cast<Metadata *>(Op));
10560b57cec5SDimitry Andric }
10570b57cec5SDimitry Andric
1058e8d8bef9SDimitry Andric MDNode *NewM = MDNode::get(I->getContext(), NewOps);
10590b57cec5SDimitry Andric MDTuple *TempM = cast<MDTuple>(MDMap[I]);
10600b57cec5SDimitry Andric assert(TempM->isTemporary() && "Expected temporary node");
10610b57cec5SDimitry Andric
10620b57cec5SDimitry Andric TempM->replaceAllUsesWith(NewM);
1063e8d8bef9SDimitry Andric NewOps.clear();
1064e8d8bef9SDimitry Andric }
10650b57cec5SDimitry Andric }
10660b57cec5SDimitry Andric
remap(Function::iterator FStart,Function::iterator FEnd)106723408297SDimitry Andric void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
106823408297SDimitry Andric Function::iterator FEnd) {
1069e8d8bef9SDimitry Andric if (MDMap.empty())
1070e8d8bef9SDimitry Andric return; // Nothing to do.
1071e8d8bef9SDimitry Andric
107223408297SDimitry Andric for (BasicBlock &BB : make_range(FStart, FEnd)) {
107323408297SDimitry Andric for (Instruction &I : BB) {
107423408297SDimitry Andric // TODO: The null checks for the MDMap.lookup() results should no longer
107523408297SDimitry Andric // be necessary.
107623408297SDimitry Andric if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
1077d409305fSDimitry Andric if (MDNode *MNew = MDMap.lookup(M))
107823408297SDimitry Andric I.setMetadata(LLVMContext::MD_alias_scope, MNew);
10790b57cec5SDimitry Andric
108023408297SDimitry Andric if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
1081d409305fSDimitry Andric if (MDNode *MNew = MDMap.lookup(M))
108223408297SDimitry Andric I.setMetadata(LLVMContext::MD_noalias, MNew);
1083e8d8bef9SDimitry Andric
108423408297SDimitry Andric if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1085d409305fSDimitry Andric if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
1086d409305fSDimitry Andric Decl->setScopeList(MNew);
10870b57cec5SDimitry Andric }
10880b57cec5SDimitry Andric }
108923408297SDimitry Andric }
10900b57cec5SDimitry Andric
10910b57cec5SDimitry Andric /// If the inlined function has noalias arguments,
10920b57cec5SDimitry Andric /// then add new alias scopes for each noalias argument, tag the mapped noalias
10930b57cec5SDimitry Andric /// parameters with noalias metadata specifying the new scope, and tag all
10940b57cec5SDimitry Andric /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallBase & CB,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR,ClonedCodeInfo & InlinedFunctionInfo)10955ffd83dbSDimitry Andric static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
1096fe6060f1SDimitry Andric const DataLayout &DL, AAResults *CalleeAAR,
1097fe6060f1SDimitry Andric ClonedCodeInfo &InlinedFunctionInfo) {
10980b57cec5SDimitry Andric if (!EnableNoAliasConversion)
10990b57cec5SDimitry Andric return;
11000b57cec5SDimitry Andric
11015ffd83dbSDimitry Andric const Function *CalledFunc = CB.getCalledFunction();
11020b57cec5SDimitry Andric SmallVector<const Argument *, 4> NoAliasArgs;
11030b57cec5SDimitry Andric
11040b57cec5SDimitry Andric for (const Argument &Arg : CalledFunc->args())
11055ffd83dbSDimitry Andric if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
11060b57cec5SDimitry Andric NoAliasArgs.push_back(&Arg);
11070b57cec5SDimitry Andric
11080b57cec5SDimitry Andric if (NoAliasArgs.empty())
11090b57cec5SDimitry Andric return;
11100b57cec5SDimitry Andric
11110b57cec5SDimitry Andric // To do a good job, if a noalias variable is captured, we need to know if
11120b57cec5SDimitry Andric // the capture point dominates the particular use we're considering.
11130b57cec5SDimitry Andric DominatorTree DT;
11140b57cec5SDimitry Andric DT.recalculate(const_cast<Function&>(*CalledFunc));
11150b57cec5SDimitry Andric
11160b57cec5SDimitry Andric // noalias indicates that pointer values based on the argument do not alias
11170b57cec5SDimitry Andric // pointer values which are not based on it. So we add a new "scope" for each
11180b57cec5SDimitry Andric // noalias function argument. Accesses using pointers based on that argument
11190b57cec5SDimitry Andric // become part of that alias scope, accesses using pointers not based on that
11200b57cec5SDimitry Andric // argument are tagged as noalias with that scope.
11210b57cec5SDimitry Andric
11220b57cec5SDimitry Andric DenseMap<const Argument *, MDNode *> NewScopes;
11230b57cec5SDimitry Andric MDBuilder MDB(CalledFunc->getContext());
11240b57cec5SDimitry Andric
11250b57cec5SDimitry Andric // Create a new scope domain for this function.
11260b57cec5SDimitry Andric MDNode *NewDomain =
11270b57cec5SDimitry Andric MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
11280b57cec5SDimitry Andric for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
11290b57cec5SDimitry Andric const Argument *A = NoAliasArgs[i];
11300b57cec5SDimitry Andric
11315ffd83dbSDimitry Andric std::string Name = std::string(CalledFunc->getName());
11320b57cec5SDimitry Andric if (A->hasName()) {
11330b57cec5SDimitry Andric Name += ": %";
11340b57cec5SDimitry Andric Name += A->getName();
11350b57cec5SDimitry Andric } else {
11360b57cec5SDimitry Andric Name += ": argument ";
11370b57cec5SDimitry Andric Name += utostr(i);
11380b57cec5SDimitry Andric }
11390b57cec5SDimitry Andric
11400b57cec5SDimitry Andric // Note: We always create a new anonymous root here. This is true regardless
11410b57cec5SDimitry Andric // of the linkage of the callee because the aliasing "scope" is not just a
11420b57cec5SDimitry Andric // property of the callee, but also all control dependencies in the caller.
11430b57cec5SDimitry Andric MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
11440b57cec5SDimitry Andric NewScopes.insert(std::make_pair(A, NewScope));
1145e8d8bef9SDimitry Andric
1146e8d8bef9SDimitry Andric if (UseNoAliasIntrinsic) {
1147e8d8bef9SDimitry Andric // Introduce a llvm.experimental.noalias.scope.decl for the noalias
1148e8d8bef9SDimitry Andric // argument.
1149e8d8bef9SDimitry Andric MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
1150e8d8bef9SDimitry Andric auto *NoAliasDecl =
1151e8d8bef9SDimitry Andric IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
1152e8d8bef9SDimitry Andric // Ignore the result for now. The result will be used when the
1153e8d8bef9SDimitry Andric // llvm.noalias intrinsic is introduced.
1154e8d8bef9SDimitry Andric (void)NoAliasDecl;
1155e8d8bef9SDimitry Andric }
11560b57cec5SDimitry Andric }
11570b57cec5SDimitry Andric
11580b57cec5SDimitry Andric // Iterate over all new instructions in the map; for all memory-access
11590b57cec5SDimitry Andric // instructions, add the alias scope metadata.
11600b57cec5SDimitry Andric for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
11610b57cec5SDimitry Andric VMI != VMIE; ++VMI) {
11620b57cec5SDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
11630b57cec5SDimitry Andric if (!VMI->second)
11640b57cec5SDimitry Andric continue;
11650b57cec5SDimitry Andric
11660b57cec5SDimitry Andric Instruction *NI = dyn_cast<Instruction>(VMI->second);
1167fe6060f1SDimitry Andric if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
11680b57cec5SDimitry Andric continue;
11690b57cec5SDimitry Andric
11700b57cec5SDimitry Andric bool IsArgMemOnlyCall = false, IsFuncCall = false;
11710b57cec5SDimitry Andric SmallVector<const Value *, 2> PtrArgs;
11720b57cec5SDimitry Andric
11730b57cec5SDimitry Andric if (const LoadInst *LI = dyn_cast<LoadInst>(I))
11740b57cec5SDimitry Andric PtrArgs.push_back(LI->getPointerOperand());
11750b57cec5SDimitry Andric else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
11760b57cec5SDimitry Andric PtrArgs.push_back(SI->getPointerOperand());
11770b57cec5SDimitry Andric else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
11780b57cec5SDimitry Andric PtrArgs.push_back(VAAI->getPointerOperand());
11790b57cec5SDimitry Andric else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
11800b57cec5SDimitry Andric PtrArgs.push_back(CXI->getPointerOperand());
11810b57cec5SDimitry Andric else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
11820b57cec5SDimitry Andric PtrArgs.push_back(RMWI->getPointerOperand());
11830b57cec5SDimitry Andric else if (const auto *Call = dyn_cast<CallBase>(I)) {
11840b57cec5SDimitry Andric // If we know that the call does not access memory, then we'll still
11850b57cec5SDimitry Andric // know that about the inlined clone of this call site, and we don't
11860b57cec5SDimitry Andric // need to add metadata.
11870b57cec5SDimitry Andric if (Call->doesNotAccessMemory())
11880b57cec5SDimitry Andric continue;
11890b57cec5SDimitry Andric
11900b57cec5SDimitry Andric IsFuncCall = true;
11910b57cec5SDimitry Andric if (CalleeAAR) {
1192bdd1243dSDimitry Andric MemoryEffects ME = CalleeAAR->getMemoryEffects(Call);
1193fe6060f1SDimitry Andric
1194fe6060f1SDimitry Andric // We'll retain this knowledge without additional metadata.
1195bdd1243dSDimitry Andric if (ME.onlyAccessesInaccessibleMem())
1196fe6060f1SDimitry Andric continue;
1197fe6060f1SDimitry Andric
1198bdd1243dSDimitry Andric if (ME.onlyAccessesArgPointees())
11990b57cec5SDimitry Andric IsArgMemOnlyCall = true;
12000b57cec5SDimitry Andric }
12010b57cec5SDimitry Andric
12020b57cec5SDimitry Andric for (Value *Arg : Call->args()) {
120381ad6265SDimitry Andric // Only care about pointer arguments. If a noalias argument is
120481ad6265SDimitry Andric // accessed through a non-pointer argument, it must be captured
120581ad6265SDimitry Andric // first (e.g. via ptrtoint), and we protect against captures below.
120681ad6265SDimitry Andric if (!Arg->getType()->isPointerTy())
12070b57cec5SDimitry Andric continue;
12080b57cec5SDimitry Andric
12090b57cec5SDimitry Andric PtrArgs.push_back(Arg);
12100b57cec5SDimitry Andric }
12110b57cec5SDimitry Andric }
12120b57cec5SDimitry Andric
12130b57cec5SDimitry Andric // If we found no pointers, then this instruction is not suitable for
12140b57cec5SDimitry Andric // pairing with an instruction to receive aliasing metadata.
12150b57cec5SDimitry Andric // However, if this is a call, this we might just alias with none of the
12160b57cec5SDimitry Andric // noalias arguments.
12170b57cec5SDimitry Andric if (PtrArgs.empty() && !IsFuncCall)
12180b57cec5SDimitry Andric continue;
12190b57cec5SDimitry Andric
12200b57cec5SDimitry Andric // It is possible that there is only one underlying object, but you
12210b57cec5SDimitry Andric // need to go through several PHIs to see it, and thus could be
12220b57cec5SDimitry Andric // repeated in the Objects list.
12230b57cec5SDimitry Andric SmallPtrSet<const Value *, 4> ObjSet;
12240b57cec5SDimitry Andric SmallVector<Metadata *, 4> Scopes, NoAliases;
12250b57cec5SDimitry Andric
12260b57cec5SDimitry Andric for (const Value *V : PtrArgs) {
12270b57cec5SDimitry Andric SmallVector<const Value *, 4> Objects;
1228e8d8bef9SDimitry Andric getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
12290b57cec5SDimitry Andric
12300b57cec5SDimitry Andric for (const Value *O : Objects)
12310b57cec5SDimitry Andric ObjSet.insert(O);
12320b57cec5SDimitry Andric }
12330b57cec5SDimitry Andric
12340b57cec5SDimitry Andric // Figure out if we're derived from anything that is not a noalias
12350b57cec5SDimitry Andric // argument.
123681ad6265SDimitry Andric bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false,
123781ad6265SDimitry Andric UsesUnknownObject = false;
12380b57cec5SDimitry Andric for (const Value *V : ObjSet) {
12390b57cec5SDimitry Andric // Is this value a constant that cannot be derived from any pointer
12400b57cec5SDimitry Andric // value (we need to exclude constant expressions, for example, that
12410b57cec5SDimitry Andric // are formed from arithmetic on global symbols).
12420b57cec5SDimitry Andric bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
12430b57cec5SDimitry Andric isa<ConstantPointerNull>(V) ||
12440b57cec5SDimitry Andric isa<ConstantDataVector>(V) || isa<UndefValue>(V);
12450b57cec5SDimitry Andric if (IsNonPtrConst)
12460b57cec5SDimitry Andric continue;
12470b57cec5SDimitry Andric
12480b57cec5SDimitry Andric // If this is anything other than a noalias argument, then we cannot
12490b57cec5SDimitry Andric // completely describe the aliasing properties using alias.scope
12500b57cec5SDimitry Andric // metadata (and, thus, won't add any).
12510b57cec5SDimitry Andric if (const Argument *A = dyn_cast<Argument>(V)) {
12525ffd83dbSDimitry Andric if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
12530b57cec5SDimitry Andric UsesAliasingPtr = true;
12540b57cec5SDimitry Andric } else {
12550b57cec5SDimitry Andric UsesAliasingPtr = true;
12560b57cec5SDimitry Andric }
12570b57cec5SDimitry Andric
125881ad6265SDimitry Andric if (isEscapeSource(V)) {
125981ad6265SDimitry Andric // An escape source can only alias with a noalias argument if it has
126081ad6265SDimitry Andric // been captured beforehand.
126181ad6265SDimitry Andric RequiresNoCaptureBefore = true;
126281ad6265SDimitry Andric } else if (!isa<Argument>(V) && !isIdentifiedObject(V)) {
126381ad6265SDimitry Andric // If this is neither an escape source, nor some identified object
126481ad6265SDimitry Andric // (which cannot directly alias a noalias argument), nor some other
126581ad6265SDimitry Andric // argument (which, by definition, also cannot alias a noalias
126681ad6265SDimitry Andric // argument), conservatively do not make any assumptions.
126781ad6265SDimitry Andric UsesUnknownObject = true;
12680b57cec5SDimitry Andric }
126981ad6265SDimitry Andric }
127081ad6265SDimitry Andric
127181ad6265SDimitry Andric // Nothing we can do if the used underlying object cannot be reliably
127281ad6265SDimitry Andric // determined.
127381ad6265SDimitry Andric if (UsesUnknownObject)
127481ad6265SDimitry Andric continue;
12750b57cec5SDimitry Andric
12760b57cec5SDimitry Andric // A function call can always get captured noalias pointers (via other
12770b57cec5SDimitry Andric // parameters, globals, etc.).
12780b57cec5SDimitry Andric if (IsFuncCall && !IsArgMemOnlyCall)
127981ad6265SDimitry Andric RequiresNoCaptureBefore = true;
12800b57cec5SDimitry Andric
12810b57cec5SDimitry Andric // First, we want to figure out all of the sets with which we definitely
12820b57cec5SDimitry Andric // don't alias. Iterate over all noalias set, and add those for which:
12830b57cec5SDimitry Andric // 1. The noalias argument is not in the set of objects from which we
12840b57cec5SDimitry Andric // definitely derive.
12850b57cec5SDimitry Andric // 2. The noalias argument has not yet been captured.
12860b57cec5SDimitry Andric // An arbitrary function that might load pointers could see captured
12870b57cec5SDimitry Andric // noalias arguments via other noalias arguments or globals, and so we
12880b57cec5SDimitry Andric // must always check for prior capture.
12890b57cec5SDimitry Andric for (const Argument *A : NoAliasArgs) {
129081ad6265SDimitry Andric if (ObjSet.contains(A))
129181ad6265SDimitry Andric continue; // May be based on a noalias argument.
129281ad6265SDimitry Andric
129381ad6265SDimitry Andric // It might be tempting to skip the PointerMayBeCapturedBefore check if
129481ad6265SDimitry Andric // A->hasNoCaptureAttr() is true, but this is incorrect because
129581ad6265SDimitry Andric // nocapture only guarantees that no copies outlive the function, not
12960b57cec5SDimitry Andric // that the value cannot be locally captured.
129781ad6265SDimitry Andric if (!RequiresNoCaptureBefore ||
129881ad6265SDimitry Andric !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false,
129981ad6265SDimitry Andric /* StoreCaptures */ false, I, &DT))
13000b57cec5SDimitry Andric NoAliases.push_back(NewScopes[A]);
13010b57cec5SDimitry Andric }
13020b57cec5SDimitry Andric
13030b57cec5SDimitry Andric if (!NoAliases.empty())
13040b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_noalias,
13050b57cec5SDimitry Andric MDNode::concatenate(
13060b57cec5SDimitry Andric NI->getMetadata(LLVMContext::MD_noalias),
13070b57cec5SDimitry Andric MDNode::get(CalledFunc->getContext(), NoAliases)));
13080b57cec5SDimitry Andric
13090b57cec5SDimitry Andric // Next, we want to figure out all of the sets to which we might belong.
13100b57cec5SDimitry Andric // We might belong to a set if the noalias argument is in the set of
13110b57cec5SDimitry Andric // underlying objects. If there is some non-noalias argument in our list
13120b57cec5SDimitry Andric // of underlying objects, then we cannot add a scope because the fact
13130b57cec5SDimitry Andric // that some access does not alias with any set of our noalias arguments
13140b57cec5SDimitry Andric // cannot itself guarantee that it does not alias with this access
13150b57cec5SDimitry Andric // (because there is some pointer of unknown origin involved and the
13160b57cec5SDimitry Andric // other access might also depend on this pointer). We also cannot add
13170b57cec5SDimitry Andric // scopes to arbitrary functions unless we know they don't access any
13180b57cec5SDimitry Andric // non-parameter pointer-values.
13190b57cec5SDimitry Andric bool CanAddScopes = !UsesAliasingPtr;
13200b57cec5SDimitry Andric if (CanAddScopes && IsFuncCall)
13210b57cec5SDimitry Andric CanAddScopes = IsArgMemOnlyCall;
13220b57cec5SDimitry Andric
13230b57cec5SDimitry Andric if (CanAddScopes)
13240b57cec5SDimitry Andric for (const Argument *A : NoAliasArgs) {
13250b57cec5SDimitry Andric if (ObjSet.count(A))
13260b57cec5SDimitry Andric Scopes.push_back(NewScopes[A]);
13270b57cec5SDimitry Andric }
13280b57cec5SDimitry Andric
13290b57cec5SDimitry Andric if (!Scopes.empty())
13300b57cec5SDimitry Andric NI->setMetadata(
13310b57cec5SDimitry Andric LLVMContext::MD_alias_scope,
13320b57cec5SDimitry Andric MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
13330b57cec5SDimitry Andric MDNode::get(CalledFunc->getContext(), Scopes)));
13340b57cec5SDimitry Andric }
13350b57cec5SDimitry Andric }
13360b57cec5SDimitry Andric }
13370b57cec5SDimitry Andric
MayContainThrowingOrExitingCallAfterCB(CallBase * Begin,ReturnInst * End)13385f757f3fSDimitry Andric static bool MayContainThrowingOrExitingCallAfterCB(CallBase *Begin,
13395f757f3fSDimitry Andric ReturnInst *End) {
13405ffd83dbSDimitry Andric
13415ffd83dbSDimitry Andric assert(Begin->getParent() == End->getParent() &&
13425ffd83dbSDimitry Andric "Expected to be in same basic block!");
13435f757f3fSDimitry Andric auto BeginIt = Begin->getIterator();
13445f757f3fSDimitry Andric assert(BeginIt != End->getIterator() && "Non-empty BB has empty iterator");
1345349cc55cSDimitry Andric return !llvm::isGuaranteedToTransferExecutionToSuccessor(
13465f757f3fSDimitry Andric ++BeginIt, End->getIterator(), InlinerAttributeWindow + 1);
13475ffd83dbSDimitry Andric }
13485ffd83dbSDimitry Andric
13490fca6ea1SDimitry Andric // Add attributes from CB params and Fn attributes that can always be propagated
13500fca6ea1SDimitry Andric // to the corresponding argument / inner callbases.
AddParamAndFnBasicAttributes(const CallBase & CB,ValueToValueMapTy & VMap,ClonedCodeInfo & InlinedFunctionInfo)13510fca6ea1SDimitry Andric static void AddParamAndFnBasicAttributes(const CallBase &CB,
13526e516c87SDimitry Andric ValueToValueMapTy &VMap,
13536e516c87SDimitry Andric ClonedCodeInfo &InlinedFunctionInfo) {
13540fca6ea1SDimitry Andric auto *CalledFunction = CB.getCalledFunction();
13550fca6ea1SDimitry Andric auto &Context = CalledFunction->getContext();
13560fca6ea1SDimitry Andric
13570fca6ea1SDimitry Andric // Collect valid attributes for all params.
13580fca6ea1SDimitry Andric SmallVector<AttrBuilder> ValidParamAttrs;
13590fca6ea1SDimitry Andric bool HasAttrToPropagate = false;
13600fca6ea1SDimitry Andric
13610fca6ea1SDimitry Andric for (unsigned I = 0, E = CB.arg_size(); I < E; ++I) {
13620fca6ea1SDimitry Andric ValidParamAttrs.emplace_back(AttrBuilder{CB.getContext()});
13630fca6ea1SDimitry Andric // Access attributes can be propagated to any param with the same underlying
13640fca6ea1SDimitry Andric // object as the argument.
13650fca6ea1SDimitry Andric if (CB.paramHasAttr(I, Attribute::ReadNone))
13660fca6ea1SDimitry Andric ValidParamAttrs.back().addAttribute(Attribute::ReadNone);
13670fca6ea1SDimitry Andric if (CB.paramHasAttr(I, Attribute::ReadOnly))
13680fca6ea1SDimitry Andric ValidParamAttrs.back().addAttribute(Attribute::ReadOnly);
13690fca6ea1SDimitry Andric HasAttrToPropagate |= ValidParamAttrs.back().hasAttributes();
13700fca6ea1SDimitry Andric }
13710fca6ea1SDimitry Andric
13720fca6ea1SDimitry Andric // Won't be able to propagate anything.
13730fca6ea1SDimitry Andric if (!HasAttrToPropagate)
13740fca6ea1SDimitry Andric return;
13750fca6ea1SDimitry Andric
13760fca6ea1SDimitry Andric for (BasicBlock &BB : *CalledFunction) {
13770fca6ea1SDimitry Andric for (Instruction &Ins : BB) {
13780fca6ea1SDimitry Andric const auto *InnerCB = dyn_cast<CallBase>(&Ins);
13790fca6ea1SDimitry Andric if (!InnerCB)
13800fca6ea1SDimitry Andric continue;
13810fca6ea1SDimitry Andric auto *NewInnerCB = dyn_cast_or_null<CallBase>(VMap.lookup(InnerCB));
13820fca6ea1SDimitry Andric if (!NewInnerCB)
13830fca6ea1SDimitry Andric continue;
13846e516c87SDimitry Andric // The InnerCB might have be simplified during the inlining
13856e516c87SDimitry Andric // process which can make propagation incorrect.
13866e516c87SDimitry Andric if (InlinedFunctionInfo.isSimplified(InnerCB, NewInnerCB))
13876e516c87SDimitry Andric continue;
13886e516c87SDimitry Andric
13890fca6ea1SDimitry Andric AttributeList AL = NewInnerCB->getAttributes();
13900fca6ea1SDimitry Andric for (unsigned I = 0, E = InnerCB->arg_size(); I < E; ++I) {
13910fca6ea1SDimitry Andric // Check if the underlying value for the parameter is an argument.
13920fca6ea1SDimitry Andric const Value *UnderlyingV =
13930fca6ea1SDimitry Andric getUnderlyingObject(InnerCB->getArgOperand(I));
13940fca6ea1SDimitry Andric const Argument *Arg = dyn_cast<Argument>(UnderlyingV);
13950fca6ea1SDimitry Andric if (!Arg)
13960fca6ea1SDimitry Andric continue;
13970fca6ea1SDimitry Andric
1398*d686ce93SDimitry Andric if (NewInnerCB->paramHasAttr(I, Attribute::ByVal))
13990fca6ea1SDimitry Andric // It's unsound to propagate memory attributes to byval arguments.
14000fca6ea1SDimitry Andric // Even if CalledFunction doesn't e.g. write to the argument,
14010fca6ea1SDimitry Andric // the call to NewInnerCB may write to its by-value copy.
14020fca6ea1SDimitry Andric continue;
14030fca6ea1SDimitry Andric
14040fca6ea1SDimitry Andric unsigned ArgNo = Arg->getArgNo();
14050fca6ea1SDimitry Andric // If so, propagate its access attributes.
14060fca6ea1SDimitry Andric AL = AL.addParamAttributes(Context, I, ValidParamAttrs[ArgNo]);
14070fca6ea1SDimitry Andric // We can have conflicting attributes from the inner callsite and
14080fca6ea1SDimitry Andric // to-be-inlined callsite. In that case, choose the most
14090fca6ea1SDimitry Andric // restrictive.
14100fca6ea1SDimitry Andric
14110fca6ea1SDimitry Andric // readonly + writeonly means we can never deref so make readnone.
14120fca6ea1SDimitry Andric if (AL.hasParamAttr(I, Attribute::ReadOnly) &&
14130fca6ea1SDimitry Andric AL.hasParamAttr(I, Attribute::WriteOnly))
14140fca6ea1SDimitry Andric AL = AL.addParamAttribute(Context, I, Attribute::ReadNone);
14150fca6ea1SDimitry Andric
14160fca6ea1SDimitry Andric // If have readnone, need to clear readonly/writeonly
14170fca6ea1SDimitry Andric if (AL.hasParamAttr(I, Attribute::ReadNone)) {
14180fca6ea1SDimitry Andric AL = AL.removeParamAttribute(Context, I, Attribute::ReadOnly);
14190fca6ea1SDimitry Andric AL = AL.removeParamAttribute(Context, I, Attribute::WriteOnly);
14200fca6ea1SDimitry Andric }
14210fca6ea1SDimitry Andric
14220fca6ea1SDimitry Andric // Writable cannot exist in conjunction w/ readonly/readnone
14230fca6ea1SDimitry Andric if (AL.hasParamAttr(I, Attribute::ReadOnly) ||
14240fca6ea1SDimitry Andric AL.hasParamAttr(I, Attribute::ReadNone))
14250fca6ea1SDimitry Andric AL = AL.removeParamAttribute(Context, I, Attribute::Writable);
14260fca6ea1SDimitry Andric }
14270fca6ea1SDimitry Andric NewInnerCB->setAttributes(AL);
14280fca6ea1SDimitry Andric }
14290fca6ea1SDimitry Andric }
14300fca6ea1SDimitry Andric }
14310fca6ea1SDimitry Andric
14325ffd83dbSDimitry Andric // Only allow these white listed attributes to be propagated back to the
14335ffd83dbSDimitry Andric // callee. This is because other attributes may only be valid on the call
14345ffd83dbSDimitry Andric // itself, i.e. attributes such as signext and zeroext.
14355f757f3fSDimitry Andric
14365f757f3fSDimitry Andric // Attributes that are always okay to propagate as if they are violated its
14375f757f3fSDimitry Andric // immediate UB.
IdentifyValidUBGeneratingAttributes(CallBase & CB)14385f757f3fSDimitry Andric static AttrBuilder IdentifyValidUBGeneratingAttributes(CallBase &CB) {
14395f757f3fSDimitry Andric AttrBuilder Valid(CB.getContext());
14405f757f3fSDimitry Andric if (auto DerefBytes = CB.getRetDereferenceableBytes())
14415ffd83dbSDimitry Andric Valid.addDereferenceableAttr(DerefBytes);
14425f757f3fSDimitry Andric if (auto DerefOrNullBytes = CB.getRetDereferenceableOrNullBytes())
14435ffd83dbSDimitry Andric Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
14445f757f3fSDimitry Andric if (CB.hasRetAttr(Attribute::NoAlias))
14455ffd83dbSDimitry Andric Valid.addAttribute(Attribute::NoAlias);
14465f757f3fSDimitry Andric if (CB.hasRetAttr(Attribute::NoUndef))
14475f757f3fSDimitry Andric Valid.addAttribute(Attribute::NoUndef);
14485f757f3fSDimitry Andric return Valid;
14495f757f3fSDimitry Andric }
14505f757f3fSDimitry Andric
14515f757f3fSDimitry Andric // Attributes that need additional checks as propagating them may change
14525f757f3fSDimitry Andric // behavior or cause new UB.
IdentifyValidPoisonGeneratingAttributes(CallBase & CB)14535f757f3fSDimitry Andric static AttrBuilder IdentifyValidPoisonGeneratingAttributes(CallBase &CB) {
14545f757f3fSDimitry Andric AttrBuilder Valid(CB.getContext());
14555f757f3fSDimitry Andric if (CB.hasRetAttr(Attribute::NonNull))
14565ffd83dbSDimitry Andric Valid.addAttribute(Attribute::NonNull);
14575f757f3fSDimitry Andric if (CB.hasRetAttr(Attribute::Alignment))
14585f757f3fSDimitry Andric Valid.addAlignmentAttr(CB.getRetAlign());
14590fca6ea1SDimitry Andric if (std::optional<ConstantRange> Range = CB.getRange())
14600fca6ea1SDimitry Andric Valid.addRangeAttr(*Range);
14615ffd83dbSDimitry Andric return Valid;
14625ffd83dbSDimitry Andric }
14635ffd83dbSDimitry Andric
AddReturnAttributes(CallBase & CB,ValueToValueMapTy & VMap,ClonedCodeInfo & InlinedFunctionInfo)14646e516c87SDimitry Andric static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap,
14656e516c87SDimitry Andric ClonedCodeInfo &InlinedFunctionInfo) {
14665f757f3fSDimitry Andric AttrBuilder ValidUB = IdentifyValidUBGeneratingAttributes(CB);
14675f757f3fSDimitry Andric AttrBuilder ValidPG = IdentifyValidPoisonGeneratingAttributes(CB);
14685f757f3fSDimitry Andric if (!ValidUB.hasAttributes() && !ValidPG.hasAttributes())
14695ffd83dbSDimitry Andric return;
14705ffd83dbSDimitry Andric auto *CalledFunction = CB.getCalledFunction();
14715ffd83dbSDimitry Andric auto &Context = CalledFunction->getContext();
14725ffd83dbSDimitry Andric
14735ffd83dbSDimitry Andric for (auto &BB : *CalledFunction) {
14745ffd83dbSDimitry Andric auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
14755ffd83dbSDimitry Andric if (!RI || !isa<CallBase>(RI->getOperand(0)))
14765ffd83dbSDimitry Andric continue;
14775ffd83dbSDimitry Andric auto *RetVal = cast<CallBase>(RI->getOperand(0));
14784824e7fdSDimitry Andric // Check that the cloned RetVal exists and is a call, otherwise we cannot
14794824e7fdSDimitry Andric // add the attributes on the cloned RetVal. Simplification during inlining
14804824e7fdSDimitry Andric // could have transformed the cloned instruction.
14815ffd83dbSDimitry Andric auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
14825ffd83dbSDimitry Andric if (!NewRetVal)
14835ffd83dbSDimitry Andric continue;
14846e516c87SDimitry Andric
14856e516c87SDimitry Andric // The RetVal might have be simplified during the inlining
14866e516c87SDimitry Andric // process which can make propagation incorrect.
14876e516c87SDimitry Andric if (InlinedFunctionInfo.isSimplified(RetVal, NewRetVal))
14886e516c87SDimitry Andric continue;
14895ffd83dbSDimitry Andric // Backward propagation of attributes to the returned value may be incorrect
14905ffd83dbSDimitry Andric // if it is control flow dependent.
14915ffd83dbSDimitry Andric // Consider:
14925ffd83dbSDimitry Andric // @callee {
14935ffd83dbSDimitry Andric // %rv = call @foo()
14945ffd83dbSDimitry Andric // %rv2 = call @bar()
14955ffd83dbSDimitry Andric // if (%rv2 != null)
14965ffd83dbSDimitry Andric // return %rv2
14975ffd83dbSDimitry Andric // if (%rv == null)
14985ffd83dbSDimitry Andric // exit()
14995ffd83dbSDimitry Andric // return %rv
15005ffd83dbSDimitry Andric // }
15015ffd83dbSDimitry Andric // caller() {
15025ffd83dbSDimitry Andric // %val = call nonnull @callee()
15035ffd83dbSDimitry Andric // }
15045ffd83dbSDimitry Andric // Here we cannot add the nonnull attribute on either foo or bar. So, we
15055ffd83dbSDimitry Andric // limit the check to both RetVal and RI are in the same basic block and
15065ffd83dbSDimitry Andric // there are no throwing/exiting instructions between these instructions.
15075ffd83dbSDimitry Andric if (RI->getParent() != RetVal->getParent() ||
15085f757f3fSDimitry Andric MayContainThrowingOrExitingCallAfterCB(RetVal, RI))
15095ffd83dbSDimitry Andric continue;
15105ffd83dbSDimitry Andric // Add to the existing attributes of NewRetVal, i.e. the cloned call
15115ffd83dbSDimitry Andric // instruction.
15125ffd83dbSDimitry Andric // NB! When we have the same attribute already existing on NewRetVal, but
15135ffd83dbSDimitry Andric // with a differing value, the AttributeList's merge API honours the already
15145ffd83dbSDimitry Andric // existing attribute value (i.e. attributes such as dereferenceable,
15155ffd83dbSDimitry Andric // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
15165ffd83dbSDimitry Andric AttributeList AL = NewRetVal->getAttributes();
15175f757f3fSDimitry Andric if (ValidUB.getDereferenceableBytes() < AL.getRetDereferenceableBytes())
15185f757f3fSDimitry Andric ValidUB.removeAttribute(Attribute::Dereferenceable);
15195f757f3fSDimitry Andric if (ValidUB.getDereferenceableOrNullBytes() <
15205f757f3fSDimitry Andric AL.getRetDereferenceableOrNullBytes())
15215f757f3fSDimitry Andric ValidUB.removeAttribute(Attribute::DereferenceableOrNull);
15225f757f3fSDimitry Andric AttributeList NewAL = AL.addRetAttributes(Context, ValidUB);
15235f757f3fSDimitry Andric // Attributes that may generate poison returns are a bit tricky. If we
15245f757f3fSDimitry Andric // propagate them, other uses of the callsite might have their behavior
15255f757f3fSDimitry Andric // change or cause UB (if they have noundef) b.c of the new potential
15265f757f3fSDimitry Andric // poison.
15275f757f3fSDimitry Andric // Take the following three cases:
15285f757f3fSDimitry Andric //
15295f757f3fSDimitry Andric // 1)
15305f757f3fSDimitry Andric // define nonnull ptr @foo() {
15315f757f3fSDimitry Andric // %p = call ptr @bar()
15325f757f3fSDimitry Andric // call void @use(ptr %p) willreturn nounwind
15335f757f3fSDimitry Andric // ret ptr %p
15345f757f3fSDimitry Andric // }
15355f757f3fSDimitry Andric //
15365f757f3fSDimitry Andric // 2)
15375f757f3fSDimitry Andric // define noundef nonnull ptr @foo() {
15385f757f3fSDimitry Andric // %p = call ptr @bar()
15395f757f3fSDimitry Andric // call void @use(ptr %p) willreturn nounwind
15405f757f3fSDimitry Andric // ret ptr %p
15415f757f3fSDimitry Andric // }
15425f757f3fSDimitry Andric //
15435f757f3fSDimitry Andric // 3)
15445f757f3fSDimitry Andric // define nonnull ptr @foo() {
15455f757f3fSDimitry Andric // %p = call noundef ptr @bar()
15465f757f3fSDimitry Andric // ret ptr %p
15475f757f3fSDimitry Andric // }
15485f757f3fSDimitry Andric //
15495f757f3fSDimitry Andric // In case 1, we can't propagate nonnull because poison value in @use may
15505f757f3fSDimitry Andric // change behavior or trigger UB.
15515f757f3fSDimitry Andric // In case 2, we don't need to be concerned about propagating nonnull, as
15525f757f3fSDimitry Andric // any new poison at @use will trigger UB anyways.
15535f757f3fSDimitry Andric // In case 3, we can never propagate nonnull because it may create UB due to
15545f757f3fSDimitry Andric // the noundef on @bar.
15555f757f3fSDimitry Andric if (ValidPG.getAlignment().valueOrOne() < AL.getRetAlignment().valueOrOne())
15565f757f3fSDimitry Andric ValidPG.removeAttribute(Attribute::Alignment);
15575f757f3fSDimitry Andric if (ValidPG.hasAttributes()) {
15580fca6ea1SDimitry Andric Attribute CBRange = ValidPG.getAttribute(Attribute::Range);
15590fca6ea1SDimitry Andric if (CBRange.isValid()) {
15600fca6ea1SDimitry Andric Attribute NewRange = AL.getRetAttr(Attribute::Range);
15610fca6ea1SDimitry Andric if (NewRange.isValid()) {
15620fca6ea1SDimitry Andric ValidPG.addRangeAttr(
15630fca6ea1SDimitry Andric CBRange.getRange().intersectWith(NewRange.getRange()));
15640fca6ea1SDimitry Andric }
15650fca6ea1SDimitry Andric }
15665f757f3fSDimitry Andric // Three checks.
15675f757f3fSDimitry Andric // If the callsite has `noundef`, then a poison due to violating the
15685f757f3fSDimitry Andric // return attribute will create UB anyways so we can always propagate.
15695f757f3fSDimitry Andric // Otherwise, if the return value (callee to be inlined) has `noundef`, we
15705f757f3fSDimitry Andric // can't propagate as a new poison return will cause UB.
15715f757f3fSDimitry Andric // Finally, check if the return value has no uses whose behavior may
15725f757f3fSDimitry Andric // change/may cause UB if we potentially return poison. At the moment this
15735f757f3fSDimitry Andric // is implemented overly conservatively with a single-use check.
15745f757f3fSDimitry Andric // TODO: Update the single-use check to iterate through uses and only bail
15755f757f3fSDimitry Andric // if we have a potentially dangerous use.
15765f757f3fSDimitry Andric
15775f757f3fSDimitry Andric if (CB.hasRetAttr(Attribute::NoUndef) ||
15785f757f3fSDimitry Andric (RetVal->hasOneUse() && !RetVal->hasRetAttr(Attribute::NoUndef)))
15795f757f3fSDimitry Andric NewAL = NewAL.addRetAttributes(Context, ValidPG);
15805f757f3fSDimitry Andric }
15815ffd83dbSDimitry Andric NewRetVal->setAttributes(NewAL);
15825ffd83dbSDimitry Andric }
15835ffd83dbSDimitry Andric }
15845ffd83dbSDimitry Andric
15850b57cec5SDimitry Andric /// If the inlined function has non-byval align arguments, then
15860b57cec5SDimitry Andric /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallBase & CB,InlineFunctionInfo & IFI)15875ffd83dbSDimitry Andric static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
15880b57cec5SDimitry Andric if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
15890b57cec5SDimitry Andric return;
15900b57cec5SDimitry Andric
15915ffd83dbSDimitry Andric AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
15920fca6ea1SDimitry Andric auto &DL = CB.getDataLayout();
15930b57cec5SDimitry Andric
15940b57cec5SDimitry Andric // To avoid inserting redundant assumptions, we should check for assumptions
15950b57cec5SDimitry Andric // already in the caller. To do this, we might need a DT of the caller.
15960b57cec5SDimitry Andric DominatorTree DT;
15970b57cec5SDimitry Andric bool DTCalculated = false;
15980b57cec5SDimitry Andric
15995ffd83dbSDimitry Andric Function *CalledFunc = CB.getCalledFunction();
16000b57cec5SDimitry Andric for (Argument &Arg : CalledFunc->args()) {
1601bdd1243dSDimitry Andric if (!Arg.getType()->isPointerTy() || Arg.hasPassPointeeByValueCopyAttr() ||
1602bdd1243dSDimitry Andric Arg.hasNUses(0))
1603bdd1243dSDimitry Andric continue;
1604bdd1243dSDimitry Andric MaybeAlign Alignment = Arg.getParamAlign();
1605bdd1243dSDimitry Andric if (!Alignment)
1606bdd1243dSDimitry Andric continue;
1607bdd1243dSDimitry Andric
16080b57cec5SDimitry Andric if (!DTCalculated) {
16095ffd83dbSDimitry Andric DT.recalculate(*CB.getCaller());
16100b57cec5SDimitry Andric DTCalculated = true;
16110b57cec5SDimitry Andric }
16120b57cec5SDimitry Andric // If we can already prove the asserted alignment in the context of the
16130b57cec5SDimitry Andric // caller, then don't bother inserting the assumption.
16145ffd83dbSDimitry Andric Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1615bdd1243dSDimitry Andric if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= *Alignment)
16160b57cec5SDimitry Andric continue;
16170b57cec5SDimitry Andric
1618bdd1243dSDimitry Andric CallInst *NewAsmp = IRBuilder<>(&CB).CreateAlignmentAssumption(
1619bdd1243dSDimitry Andric DL, ArgVal, Alignment->value());
1620fe6060f1SDimitry Andric AC->registerAssumption(cast<AssumeInst>(NewAsmp));
16210b57cec5SDimitry Andric }
16220b57cec5SDimitry Andric }
16230b57cec5SDimitry Andric
HandleByValArgumentInit(Type * ByValType,Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI,Function * CalledFunc)1624349cc55cSDimitry Andric static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
1625349cc55cSDimitry Andric Module *M, BasicBlock *InsertBlock,
162606c3fb27SDimitry Andric InlineFunctionInfo &IFI,
162706c3fb27SDimitry Andric Function *CalledFunc) {
16280b57cec5SDimitry Andric IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
16290b57cec5SDimitry Andric
1630349cc55cSDimitry Andric Value *Size =
1631349cc55cSDimitry Andric Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
16320b57cec5SDimitry Andric
16330b57cec5SDimitry Andric // Always generate a memcpy of alignment 1 here because we don't know
16340b57cec5SDimitry Andric // the alignment of the src pointer. Other optimizations can infer
16350b57cec5SDimitry Andric // better alignment.
163606c3fb27SDimitry Andric CallInst *CI = Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
16375ffd83dbSDimitry Andric /*SrcAlign*/ Align(1), Size);
163806c3fb27SDimitry Andric
163906c3fb27SDimitry Andric // The verifier requires that all calls of debug-info-bearing functions
164006c3fb27SDimitry Andric // from debug-info-bearing functions have a debug location (for inlining
164106c3fb27SDimitry Andric // purposes). Assign a dummy location to satisfy the constraint.
164206c3fb27SDimitry Andric if (!CI->getDebugLoc() && InsertBlock->getParent()->getSubprogram())
164306c3fb27SDimitry Andric if (DISubprogram *SP = CalledFunc->getSubprogram())
164406c3fb27SDimitry Andric CI->setDebugLoc(DILocation::get(SP->getContext(), 0, 0, SP));
16450b57cec5SDimitry Andric }
16460b57cec5SDimitry Andric
16470b57cec5SDimitry Andric /// When inlining a call site that has a byval argument,
16480b57cec5SDimitry Andric /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Type * ByValType,Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,MaybeAlign ByValAlignment)1649349cc55cSDimitry Andric static Value *HandleByValArgument(Type *ByValType, Value *Arg,
1650349cc55cSDimitry Andric Instruction *TheCall,
16510b57cec5SDimitry Andric const Function *CalledFunc,
16520b57cec5SDimitry Andric InlineFunctionInfo &IFI,
1653bdd1243dSDimitry Andric MaybeAlign ByValAlignment) {
16540b57cec5SDimitry Andric Function *Caller = TheCall->getFunction();
16550fca6ea1SDimitry Andric const DataLayout &DL = Caller->getDataLayout();
16560b57cec5SDimitry Andric
16570b57cec5SDimitry Andric // If the called function is readonly, then it could not mutate the caller's
16580b57cec5SDimitry Andric // copy of the byval'd memory. In this case, it is safe to elide the copy and
16590b57cec5SDimitry Andric // temporary.
16600b57cec5SDimitry Andric if (CalledFunc->onlyReadsMemory()) {
16610b57cec5SDimitry Andric // If the byval argument has a specified alignment that is greater than the
16620b57cec5SDimitry Andric // passed in pointer, then we either have to round up the input pointer or
16630b57cec5SDimitry Andric // give up on this transformation.
1664bdd1243dSDimitry Andric if (ByValAlignment.valueOrOne() == 1)
16650b57cec5SDimitry Andric return Arg;
16660b57cec5SDimitry Andric
16670b57cec5SDimitry Andric AssumptionCache *AC =
16685ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
16690b57cec5SDimitry Andric
16700b57cec5SDimitry Andric // If the pointer is already known to be sufficiently aligned, or if we can
16710b57cec5SDimitry Andric // round it up to a larger alignment, then we don't need a temporary.
1672bdd1243dSDimitry Andric if (getOrEnforceKnownAlignment(Arg, *ByValAlignment, DL, TheCall, AC) >=
1673bdd1243dSDimitry Andric *ByValAlignment)
16740b57cec5SDimitry Andric return Arg;
16750b57cec5SDimitry Andric
16760b57cec5SDimitry Andric // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
16770b57cec5SDimitry Andric // for code quality, but rarely happens and is required for correctness.
16780b57cec5SDimitry Andric }
16790b57cec5SDimitry Andric
16800b57cec5SDimitry Andric // Create the alloca. If we have DataLayout, use nice alignment.
1681bdd1243dSDimitry Andric Align Alignment = DL.getPrefTypeAlign(ByValType);
16820b57cec5SDimitry Andric
16830b57cec5SDimitry Andric // If the byval had an alignment specified, we *must* use at least that
16840b57cec5SDimitry Andric // alignment, as it is required by the byval argument (and uses of the
16850b57cec5SDimitry Andric // pointer inside the callee).
1686bdd1243dSDimitry Andric if (ByValAlignment)
1687bdd1243dSDimitry Andric Alignment = std::max(Alignment, *ByValAlignment);
16880b57cec5SDimitry Andric
16890fca6ea1SDimitry Andric AllocaInst *NewAlloca =
16900fca6ea1SDimitry Andric new AllocaInst(ByValType, Arg->getType()->getPointerAddressSpace(),
16915f757f3fSDimitry Andric nullptr, Alignment, Arg->getName());
16925f757f3fSDimitry Andric NewAlloca->insertBefore(Caller->begin()->begin());
16935f757f3fSDimitry Andric IFI.StaticAllocas.push_back(NewAlloca);
16940b57cec5SDimitry Andric
16950b57cec5SDimitry Andric // Uses of the argument in the function should use our new alloca
16960b57cec5SDimitry Andric // instead.
16970b57cec5SDimitry Andric return NewAlloca;
16980b57cec5SDimitry Andric }
16990b57cec5SDimitry Andric
17000b57cec5SDimitry Andric // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)17010b57cec5SDimitry Andric static bool isUsedByLifetimeMarker(Value *V) {
17020b57cec5SDimitry Andric for (User *U : V->users())
17030b57cec5SDimitry Andric if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
17040b57cec5SDimitry Andric if (II->isLifetimeStartOrEnd())
17050b57cec5SDimitry Andric return true;
17060b57cec5SDimitry Andric return false;
17070b57cec5SDimitry Andric }
17080b57cec5SDimitry Andric
17090b57cec5SDimitry Andric // Check whether the given alloca already has
17100b57cec5SDimitry Andric // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)17110b57cec5SDimitry Andric static bool hasLifetimeMarkers(AllocaInst *AI) {
17120b57cec5SDimitry Andric Type *Ty = AI->getType();
17135f757f3fSDimitry Andric Type *Int8PtrTy =
17145f757f3fSDimitry Andric PointerType::get(Ty->getContext(), Ty->getPointerAddressSpace());
17150b57cec5SDimitry Andric if (Ty == Int8PtrTy)
17160b57cec5SDimitry Andric return isUsedByLifetimeMarker(AI);
17170b57cec5SDimitry Andric
17180b57cec5SDimitry Andric // Do a scan to find all the casts to i8*.
17190b57cec5SDimitry Andric for (User *U : AI->users()) {
17200b57cec5SDimitry Andric if (U->getType() != Int8PtrTy) continue;
17210b57cec5SDimitry Andric if (U->stripPointerCasts() != AI) continue;
17220b57cec5SDimitry Andric if (isUsedByLifetimeMarker(U))
17230b57cec5SDimitry Andric return true;
17240b57cec5SDimitry Andric }
17250b57cec5SDimitry Andric return false;
17260b57cec5SDimitry Andric }
17270b57cec5SDimitry Andric
17280b57cec5SDimitry Andric /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
17290b57cec5SDimitry Andric /// block. Allocas used in inalloca calls and allocas of dynamic array size
17300b57cec5SDimitry Andric /// cannot be static.
allocaWouldBeStaticInEntry(const AllocaInst * AI)17310b57cec5SDimitry Andric static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
17320b57cec5SDimitry Andric return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
17330b57cec5SDimitry Andric }
17340b57cec5SDimitry Andric
17350b57cec5SDimitry Andric /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
17360b57cec5SDimitry Andric /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
inlineDebugLoc(DebugLoc OrigDL,DILocation * InlinedAt,LLVMContext & Ctx,DenseMap<const MDNode *,MDNode * > & IANodes)17370b57cec5SDimitry Andric static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
17380b57cec5SDimitry Andric LLVMContext &Ctx,
17390b57cec5SDimitry Andric DenseMap<const MDNode *, MDNode *> &IANodes) {
17400b57cec5SDimitry Andric auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1741e8d8bef9SDimitry Andric return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1742e8d8bef9SDimitry Andric OrigDL.getScope(), IA);
17430b57cec5SDimitry Andric }
17440b57cec5SDimitry Andric
17450b57cec5SDimitry Andric /// Update inlined instructions' line numbers to
17460b57cec5SDimitry Andric /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall,bool CalleeHasDebugInfo)17470b57cec5SDimitry Andric static void fixupLineNumbers(Function *Fn, Function::iterator FI,
17480b57cec5SDimitry Andric Instruction *TheCall, bool CalleeHasDebugInfo) {
17490b57cec5SDimitry Andric const DebugLoc &TheCallDL = TheCall->getDebugLoc();
17500b57cec5SDimitry Andric if (!TheCallDL)
17510b57cec5SDimitry Andric return;
17520b57cec5SDimitry Andric
17530b57cec5SDimitry Andric auto &Ctx = Fn->getContext();
17540b57cec5SDimitry Andric DILocation *InlinedAtNode = TheCallDL;
17550b57cec5SDimitry Andric
17560b57cec5SDimitry Andric // Create a unique call site, not to be confused with any other call from the
17570b57cec5SDimitry Andric // same location.
17580b57cec5SDimitry Andric InlinedAtNode = DILocation::getDistinct(
17590b57cec5SDimitry Andric Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
17600b57cec5SDimitry Andric InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
17610b57cec5SDimitry Andric
17620b57cec5SDimitry Andric // Cache the inlined-at nodes as they're built so they are reused, without
17630b57cec5SDimitry Andric // this every instruction's inlined-at chain would become distinct from each
17640b57cec5SDimitry Andric // other.
17650b57cec5SDimitry Andric DenseMap<const MDNode *, MDNode *> IANodes;
17660b57cec5SDimitry Andric
1767480093f4SDimitry Andric // Check if we are not generating inline line tables and want to use
1768480093f4SDimitry Andric // the call site location instead.
1769480093f4SDimitry Andric bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1770480093f4SDimitry Andric
17715f757f3fSDimitry Andric // Helper-util for updating the metadata attached to an instruction.
17725f757f3fSDimitry Andric auto UpdateInst = [&](Instruction &I) {
17730b57cec5SDimitry Andric // Loop metadata needs to be updated so that the start and end locs
17740b57cec5SDimitry Andric // reference inlined-at locations.
1775fe6060f1SDimitry Andric auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1776fe6060f1SDimitry Andric &IANodes](Metadata *MD) -> Metadata * {
1777fe6060f1SDimitry Andric if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1778fe6060f1SDimitry Andric return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1779fe6060f1SDimitry Andric return MD;
17805ffd83dbSDimitry Andric };
17815f757f3fSDimitry Andric updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
17820b57cec5SDimitry Andric
1783480093f4SDimitry Andric if (!NoInlineLineTables)
17845f757f3fSDimitry Andric if (DebugLoc DL = I.getDebugLoc()) {
17850b57cec5SDimitry Andric DebugLoc IDL =
17865f757f3fSDimitry Andric inlineDebugLoc(DL, InlinedAtNode, I.getContext(), IANodes);
17875f757f3fSDimitry Andric I.setDebugLoc(IDL);
17885f757f3fSDimitry Andric return;
17890b57cec5SDimitry Andric }
17900b57cec5SDimitry Andric
1791480093f4SDimitry Andric if (CalleeHasDebugInfo && !NoInlineLineTables)
17925f757f3fSDimitry Andric return;
17930b57cec5SDimitry Andric
1794480093f4SDimitry Andric // If the inlined instruction has no line number, or if inline info
1795480093f4SDimitry Andric // is not being generated, make it look as if it originates from the call
1796480093f4SDimitry Andric // location. This is important for ((__always_inline, __nodebug__))
1797480093f4SDimitry Andric // functions which must use caller location for all instructions in their
1798480093f4SDimitry Andric // function body.
17990b57cec5SDimitry Andric
18000b57cec5SDimitry Andric // Don't update static allocas, as they may get moved later.
18015f757f3fSDimitry Andric if (auto *AI = dyn_cast<AllocaInst>(&I))
18020b57cec5SDimitry Andric if (allocaWouldBeStaticInEntry(AI))
18035f757f3fSDimitry Andric return;
18040b57cec5SDimitry Andric
180506c3fb27SDimitry Andric // Do not force a debug loc for pseudo probes, since they do not need to
180606c3fb27SDimitry Andric // be debuggable, and also they are expected to have a zero/null dwarf
180706c3fb27SDimitry Andric // discriminator at this point which could be violated otherwise.
18085f757f3fSDimitry Andric if (isa<PseudoProbeInst>(I))
18095f757f3fSDimitry Andric return;
181006c3fb27SDimitry Andric
18115f757f3fSDimitry Andric I.setDebugLoc(TheCallDL);
18125f757f3fSDimitry Andric };
18135f757f3fSDimitry Andric
18145f757f3fSDimitry Andric // Helper-util for updating debug-info records attached to instructions.
18150fca6ea1SDimitry Andric auto UpdateDVR = [&](DbgRecord *DVR) {
18160fca6ea1SDimitry Andric assert(DVR->getDebugLoc() && "Debug Value must have debug loc");
18175f757f3fSDimitry Andric if (NoInlineLineTables) {
18180fca6ea1SDimitry Andric DVR->setDebugLoc(TheCallDL);
18195f757f3fSDimitry Andric return;
18205f757f3fSDimitry Andric }
18210fca6ea1SDimitry Andric DebugLoc DL = DVR->getDebugLoc();
18225f757f3fSDimitry Andric DebugLoc IDL =
18235f757f3fSDimitry Andric inlineDebugLoc(DL, InlinedAtNode,
18240fca6ea1SDimitry Andric DVR->getMarker()->getParent()->getContext(), IANodes);
18250fca6ea1SDimitry Andric DVR->setDebugLoc(IDL);
18265f757f3fSDimitry Andric };
18275f757f3fSDimitry Andric
18285f757f3fSDimitry Andric // Iterate over all instructions, updating metadata and debug-info records.
18295f757f3fSDimitry Andric for (; FI != Fn->end(); ++FI) {
18300fca6ea1SDimitry Andric for (Instruction &I : *FI) {
18310fca6ea1SDimitry Andric UpdateInst(I);
18320fca6ea1SDimitry Andric for (DbgRecord &DVR : I.getDbgRecordRange()) {
18330fca6ea1SDimitry Andric UpdateDVR(&DVR);
18345f757f3fSDimitry Andric }
18350b57cec5SDimitry Andric }
1836480093f4SDimitry Andric
1837480093f4SDimitry Andric // Remove debug info intrinsics if we're not keeping inline info.
1838480093f4SDimitry Andric if (NoInlineLineTables) {
1839480093f4SDimitry Andric BasicBlock::iterator BI = FI->begin();
1840480093f4SDimitry Andric while (BI != FI->end()) {
1841480093f4SDimitry Andric if (isa<DbgInfoIntrinsic>(BI)) {
1842480093f4SDimitry Andric BI = BI->eraseFromParent();
1843480093f4SDimitry Andric continue;
18445f757f3fSDimitry Andric } else {
18450fca6ea1SDimitry Andric BI->dropDbgRecords();
1846480093f4SDimitry Andric }
1847480093f4SDimitry Andric ++BI;
1848480093f4SDimitry Andric }
1849480093f4SDimitry Andric }
18500b57cec5SDimitry Andric }
18510b57cec5SDimitry Andric }
18520b57cec5SDimitry Andric
1853bdd1243dSDimitry Andric #undef DEBUG_TYPE
1854bdd1243dSDimitry Andric #define DEBUG_TYPE "assignment-tracking"
1855bdd1243dSDimitry Andric /// Find Alloca and linked DbgAssignIntrinsic for locals escaped by \p CB.
collectEscapedLocals(const DataLayout & DL,const CallBase & CB)1856bdd1243dSDimitry Andric static at::StorageToVarsMap collectEscapedLocals(const DataLayout &DL,
1857bdd1243dSDimitry Andric const CallBase &CB) {
1858bdd1243dSDimitry Andric at::StorageToVarsMap EscapedLocals;
1859bdd1243dSDimitry Andric SmallPtrSet<const Value *, 4> SeenBases;
1860bdd1243dSDimitry Andric
1861bdd1243dSDimitry Andric LLVM_DEBUG(
1862bdd1243dSDimitry Andric errs() << "# Finding caller local variables escaped by callee\n");
1863bdd1243dSDimitry Andric for (const Value *Arg : CB.args()) {
1864bdd1243dSDimitry Andric LLVM_DEBUG(errs() << "INSPECT: " << *Arg << "\n");
1865bdd1243dSDimitry Andric if (!Arg->getType()->isPointerTy()) {
1866bdd1243dSDimitry Andric LLVM_DEBUG(errs() << " | SKIP: Not a pointer\n");
1867bdd1243dSDimitry Andric continue;
1868bdd1243dSDimitry Andric }
1869bdd1243dSDimitry Andric
1870bdd1243dSDimitry Andric const Instruction *I = dyn_cast<Instruction>(Arg);
1871bdd1243dSDimitry Andric if (!I) {
1872bdd1243dSDimitry Andric LLVM_DEBUG(errs() << " | SKIP: Not result of instruction\n");
1873bdd1243dSDimitry Andric continue;
1874bdd1243dSDimitry Andric }
1875bdd1243dSDimitry Andric
1876bdd1243dSDimitry Andric // Walk back to the base storage.
1877bdd1243dSDimitry Andric assert(Arg->getType()->isPtrOrPtrVectorTy());
1878bdd1243dSDimitry Andric APInt TmpOffset(DL.getIndexTypeSizeInBits(Arg->getType()), 0, false);
1879bdd1243dSDimitry Andric const AllocaInst *Base = dyn_cast<AllocaInst>(
1880bdd1243dSDimitry Andric Arg->stripAndAccumulateConstantOffsets(DL, TmpOffset, true));
1881bdd1243dSDimitry Andric if (!Base) {
1882bdd1243dSDimitry Andric LLVM_DEBUG(errs() << " | SKIP: Couldn't walk back to base storage\n");
1883bdd1243dSDimitry Andric continue;
1884bdd1243dSDimitry Andric }
1885bdd1243dSDimitry Andric
1886bdd1243dSDimitry Andric assert(Base);
1887bdd1243dSDimitry Andric LLVM_DEBUG(errs() << " | BASE: " << *Base << "\n");
1888bdd1243dSDimitry Andric // We only need to process each base address once - skip any duplicates.
1889bdd1243dSDimitry Andric if (!SeenBases.insert(Base).second)
1890bdd1243dSDimitry Andric continue;
1891bdd1243dSDimitry Andric
1892bdd1243dSDimitry Andric // Find all local variables associated with the backing storage.
18937a6dacacSDimitry Andric auto CollectAssignsForStorage = [&](auto *DbgAssign) {
1894bdd1243dSDimitry Andric // Skip variables from inlined functions - they are not local variables.
18957a6dacacSDimitry Andric if (DbgAssign->getDebugLoc().getInlinedAt())
18967a6dacacSDimitry Andric return;
18977a6dacacSDimitry Andric LLVM_DEBUG(errs() << " > DEF : " << *DbgAssign << "\n");
18987a6dacacSDimitry Andric EscapedLocals[Base].insert(at::VarRecord(DbgAssign));
18997a6dacacSDimitry Andric };
19007a6dacacSDimitry Andric for_each(at::getAssignmentMarkers(Base), CollectAssignsForStorage);
19010fca6ea1SDimitry Andric for_each(at::getDVRAssignmentMarkers(Base), CollectAssignsForStorage);
1902bdd1243dSDimitry Andric }
1903bdd1243dSDimitry Andric return EscapedLocals;
1904bdd1243dSDimitry Andric }
1905bdd1243dSDimitry Andric
trackInlinedStores(Function::iterator Start,Function::iterator End,const CallBase & CB)1906bdd1243dSDimitry Andric static void trackInlinedStores(Function::iterator Start, Function::iterator End,
1907bdd1243dSDimitry Andric const CallBase &CB) {
1908bdd1243dSDimitry Andric LLVM_DEBUG(errs() << "trackInlinedStores into "
1909bdd1243dSDimitry Andric << Start->getParent()->getName() << " from "
1910bdd1243dSDimitry Andric << CB.getCalledFunction()->getName() << "\n");
1911bdd1243dSDimitry Andric std::unique_ptr<DataLayout> DL = std::make_unique<DataLayout>(CB.getModule());
1912bdd1243dSDimitry Andric at::trackAssignments(Start, End, collectEscapedLocals(*DL, CB), *DL);
1913bdd1243dSDimitry Andric }
1914bdd1243dSDimitry Andric
1915bdd1243dSDimitry Andric /// Update inlined instructions' DIAssignID metadata. We need to do this
1916bdd1243dSDimitry Andric /// otherwise a function inlined more than once into the same function
1917bdd1243dSDimitry Andric /// will cause DIAssignID to be shared by many instructions.
fixupAssignments(Function::iterator Start,Function::iterator End)1918bdd1243dSDimitry Andric static void fixupAssignments(Function::iterator Start, Function::iterator End) {
1919bdd1243dSDimitry Andric DenseMap<DIAssignID *, DIAssignID *> Map;
1920bdd1243dSDimitry Andric // Loop over all the inlined instructions. If we find a DIAssignID
1921bdd1243dSDimitry Andric // attachment or use, replace it with a new version.
1922bdd1243dSDimitry Andric for (auto BBI = Start; BBI != End; ++BBI) {
19230fca6ea1SDimitry Andric for (Instruction &I : *BBI)
19240fca6ea1SDimitry Andric at::remapAssignID(Map, I);
1925bdd1243dSDimitry Andric }
1926bdd1243dSDimitry Andric }
1927bdd1243dSDimitry Andric #undef DEBUG_TYPE
1928bdd1243dSDimitry Andric #define DEBUG_TYPE "inline-function"
1929bdd1243dSDimitry Andric
19300b57cec5SDimitry Andric /// Update the block frequencies of the caller after a callee has been inlined.
19310b57cec5SDimitry Andric ///
19320b57cec5SDimitry Andric /// Each block cloned into the caller has its block frequency scaled by the
19330b57cec5SDimitry Andric /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
19340b57cec5SDimitry Andric /// callee's entry block gets the same frequency as the callsite block and the
19350b57cec5SDimitry Andric /// relative frequencies of all cloned blocks remain the same after cloning.
updateCallerBFI(BasicBlock * CallSiteBlock,const ValueToValueMapTy & VMap,BlockFrequencyInfo * CallerBFI,BlockFrequencyInfo * CalleeBFI,const BasicBlock & CalleeEntryBlock)19360b57cec5SDimitry Andric static void updateCallerBFI(BasicBlock *CallSiteBlock,
19370b57cec5SDimitry Andric const ValueToValueMapTy &VMap,
19380b57cec5SDimitry Andric BlockFrequencyInfo *CallerBFI,
19390b57cec5SDimitry Andric BlockFrequencyInfo *CalleeBFI,
19400b57cec5SDimitry Andric const BasicBlock &CalleeEntryBlock) {
19410b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1942480093f4SDimitry Andric for (auto Entry : VMap) {
19430b57cec5SDimitry Andric if (!isa<BasicBlock>(Entry.first) || !Entry.second)
19440b57cec5SDimitry Andric continue;
19450b57cec5SDimitry Andric auto *OrigBB = cast<BasicBlock>(Entry.first);
19460b57cec5SDimitry Andric auto *ClonedBB = cast<BasicBlock>(Entry.second);
19475f757f3fSDimitry Andric BlockFrequency Freq = CalleeBFI->getBlockFreq(OrigBB);
19480b57cec5SDimitry Andric if (!ClonedBBs.insert(ClonedBB).second) {
19490b57cec5SDimitry Andric // Multiple blocks in the callee might get mapped to one cloned block in
19500b57cec5SDimitry Andric // the caller since we prune the callee as we clone it. When that happens,
19510b57cec5SDimitry Andric // we want to use the maximum among the original blocks' frequencies.
19525f757f3fSDimitry Andric BlockFrequency NewFreq = CallerBFI->getBlockFreq(ClonedBB);
19530b57cec5SDimitry Andric if (NewFreq > Freq)
19540b57cec5SDimitry Andric Freq = NewFreq;
19550b57cec5SDimitry Andric }
19560b57cec5SDimitry Andric CallerBFI->setBlockFreq(ClonedBB, Freq);
19570b57cec5SDimitry Andric }
19580b57cec5SDimitry Andric BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
19590b57cec5SDimitry Andric CallerBFI->setBlockFreqAndScale(
19605f757f3fSDimitry Andric EntryClone, CallerBFI->getBlockFreq(CallSiteBlock), ClonedBBs);
19610b57cec5SDimitry Andric }
19620b57cec5SDimitry Andric
19630b57cec5SDimitry Andric /// Update the branch metadata for cloned call instructions.
updateCallProfile(Function * Callee,const ValueToValueMapTy & VMap,const ProfileCount & CalleeEntryCount,const CallBase & TheCall,ProfileSummaryInfo * PSI,BlockFrequencyInfo * CallerBFI)19640b57cec5SDimitry Andric static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
19650b57cec5SDimitry Andric const ProfileCount &CalleeEntryCount,
19665ffd83dbSDimitry Andric const CallBase &TheCall, ProfileSummaryInfo *PSI,
19670b57cec5SDimitry Andric BlockFrequencyInfo *CallerBFI) {
1968349cc55cSDimitry Andric if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
19690b57cec5SDimitry Andric return;
1970bdd1243dSDimitry Andric auto CallSiteCount =
1971bdd1243dSDimitry Andric PSI ? PSI->getProfileCount(TheCall, CallerBFI) : std::nullopt;
19720b57cec5SDimitry Andric int64_t CallCount =
197381ad6265SDimitry Andric std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount());
19740b57cec5SDimitry Andric updateProfileCallee(Callee, -CallCount, &VMap);
19750b57cec5SDimitry Andric }
19760b57cec5SDimitry Andric
updateProfileCallee(Function * Callee,int64_t EntryDelta,const ValueMap<const Value *,WeakTrackingVH> * VMap)19770b57cec5SDimitry Andric void llvm::updateProfileCallee(
1978349cc55cSDimitry Andric Function *Callee, int64_t EntryDelta,
19790b57cec5SDimitry Andric const ValueMap<const Value *, WeakTrackingVH> *VMap) {
19800b57cec5SDimitry Andric auto CalleeCount = Callee->getEntryCount();
198181ad6265SDimitry Andric if (!CalleeCount)
19820b57cec5SDimitry Andric return;
19830b57cec5SDimitry Andric
1984349cc55cSDimitry Andric const uint64_t PriorEntryCount = CalleeCount->getCount();
19850b57cec5SDimitry Andric
19860b57cec5SDimitry Andric // Since CallSiteCount is an estimate, it could exceed the original callee
19870b57cec5SDimitry Andric // count and has to be set to 0 so guard against underflow.
1988349cc55cSDimitry Andric const uint64_t NewEntryCount =
1989349cc55cSDimitry Andric (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
1990349cc55cSDimitry Andric ? 0
1991349cc55cSDimitry Andric : PriorEntryCount + EntryDelta;
19920b57cec5SDimitry Andric
19930fca6ea1SDimitry Andric auto updateVTableProfWeight = [](CallBase *CB, const uint64_t NewEntryCount,
19940fca6ea1SDimitry Andric const uint64_t PriorEntryCount) {
19950fca6ea1SDimitry Andric Instruction *VPtr = PGOIndirectCallVisitor::tryGetVTableInstruction(CB);
19960fca6ea1SDimitry Andric if (VPtr)
19970fca6ea1SDimitry Andric scaleProfData(*VPtr, NewEntryCount, PriorEntryCount);
19980fca6ea1SDimitry Andric };
19990fca6ea1SDimitry Andric
20000b57cec5SDimitry Andric // During inlining ?
20010b57cec5SDimitry Andric if (VMap) {
2002349cc55cSDimitry Andric uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
20030fca6ea1SDimitry Andric for (auto Entry : *VMap) {
20040b57cec5SDimitry Andric if (isa<CallInst>(Entry.first))
20050fca6ea1SDimitry Andric if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) {
2006349cc55cSDimitry Andric CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
20070fca6ea1SDimitry Andric updateVTableProfWeight(CI, CloneEntryCount, PriorEntryCount);
20080fca6ea1SDimitry Andric }
20090fca6ea1SDimitry Andric
20100fca6ea1SDimitry Andric if (isa<InvokeInst>(Entry.first))
20110fca6ea1SDimitry Andric if (auto *II = dyn_cast_or_null<InvokeInst>(Entry.second)) {
20120fca6ea1SDimitry Andric II->updateProfWeight(CloneEntryCount, PriorEntryCount);
20130fca6ea1SDimitry Andric updateVTableProfWeight(II, CloneEntryCount, PriorEntryCount);
20140fca6ea1SDimitry Andric }
20150fca6ea1SDimitry Andric }
20160b57cec5SDimitry Andric }
2017480093f4SDimitry Andric
2018349cc55cSDimitry Andric if (EntryDelta) {
2019349cc55cSDimitry Andric Callee->setEntryCount(NewEntryCount);
2020480093f4SDimitry Andric
20210b57cec5SDimitry Andric for (BasicBlock &BB : *Callee)
20220b57cec5SDimitry Andric // No need to update the callsite if it is pruned during inlining.
20230b57cec5SDimitry Andric if (!VMap || VMap->count(&BB))
20240fca6ea1SDimitry Andric for (Instruction &I : BB) {
20250fca6ea1SDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2026349cc55cSDimitry Andric CI->updateProfWeight(NewEntryCount, PriorEntryCount);
20270fca6ea1SDimitry Andric updateVTableProfWeight(CI, NewEntryCount, PriorEntryCount);
20280fca6ea1SDimitry Andric }
20290fca6ea1SDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
20300fca6ea1SDimitry Andric II->updateProfWeight(NewEntryCount, PriorEntryCount);
20310fca6ea1SDimitry Andric updateVTableProfWeight(II, NewEntryCount, PriorEntryCount);
20320fca6ea1SDimitry Andric }
20330fca6ea1SDimitry Andric }
20340b57cec5SDimitry Andric }
2035480093f4SDimitry Andric }
20360b57cec5SDimitry Andric
2037fe6060f1SDimitry Andric /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
2038fe6060f1SDimitry Andric /// result is implicitly consumed by a call to retainRV or claimRV immediately
2039fe6060f1SDimitry Andric /// after the call. This function inlines the retainRV/claimRV calls.
2040fe6060f1SDimitry Andric ///
2041fe6060f1SDimitry Andric /// There are three cases to consider:
2042fe6060f1SDimitry Andric ///
2043fe6060f1SDimitry Andric /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
2044fe6060f1SDimitry Andric /// object in the callee return block, the autoreleaseRV call and the
2045fe6060f1SDimitry Andric /// retainRV/claimRV call in the caller cancel out. If the call in the caller
2046fe6060f1SDimitry Andric /// is a claimRV call, a call to objc_release is emitted.
2047fe6060f1SDimitry Andric ///
2048fe6060f1SDimitry Andric /// 2. If there is a call in the callee return block that doesn't have operand
2049fe6060f1SDimitry Andric /// bundle "clang.arc.attachedcall", the operand bundle on the original call
2050fe6060f1SDimitry Andric /// is transferred to the call in the callee.
2051fe6060f1SDimitry Andric ///
2052fe6060f1SDimitry Andric /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
2053fe6060f1SDimitry Andric /// a retainRV call.
2054fe6060f1SDimitry Andric static void
inlineRetainOrClaimRVCalls(CallBase & CB,objcarc::ARCInstKind RVCallKind,const SmallVectorImpl<ReturnInst * > & Returns)2055349cc55cSDimitry Andric inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
2056fe6060f1SDimitry Andric const SmallVectorImpl<ReturnInst *> &Returns) {
2057fe6060f1SDimitry Andric Module *Mod = CB.getModule();
2058349cc55cSDimitry Andric assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
2059349cc55cSDimitry Andric bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
206004eeddc0SDimitry Andric IsUnsafeClaimRV = !IsRetainRV;
2061fe6060f1SDimitry Andric
2062fe6060f1SDimitry Andric for (auto *RI : Returns) {
2063fe6060f1SDimitry Andric Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
2064fe6060f1SDimitry Andric bool InsertRetainCall = IsRetainRV;
2065fe6060f1SDimitry Andric IRBuilder<> Builder(RI->getContext());
2066fe6060f1SDimitry Andric
2067fe6060f1SDimitry Andric // Walk backwards through the basic block looking for either a matching
2068fe6060f1SDimitry Andric // autoreleaseRV call or an unannotated call.
2069349cc55cSDimitry Andric auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
2070349cc55cSDimitry Andric RI->getParent()->rend());
2071349cc55cSDimitry Andric for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
2072fe6060f1SDimitry Andric // Ignore casts.
2073349cc55cSDimitry Andric if (isa<CastInst>(I))
2074fe6060f1SDimitry Andric continue;
2075fe6060f1SDimitry Andric
2076349cc55cSDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2077349cc55cSDimitry Andric if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
2078349cc55cSDimitry Andric !II->hasNUses(0) ||
2079349cc55cSDimitry Andric objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
2080349cc55cSDimitry Andric break;
2081349cc55cSDimitry Andric
2082fe6060f1SDimitry Andric // If we've found a matching authoreleaseRV call:
2083fe6060f1SDimitry Andric // - If claimRV is attached to the call, insert a call to objc_release
2084fe6060f1SDimitry Andric // and erase the autoreleaseRV call.
2085fe6060f1SDimitry Andric // - If retainRV is attached to the call, just erase the autoreleaseRV
2086fe6060f1SDimitry Andric // call.
208704eeddc0SDimitry Andric if (IsUnsafeClaimRV) {
2088fe6060f1SDimitry Andric Builder.SetInsertPoint(II);
2089fe6060f1SDimitry Andric Function *IFn =
2090fe6060f1SDimitry Andric Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
20915f757f3fSDimitry Andric Builder.CreateCall(IFn, RetOpnd, "");
2092fe6060f1SDimitry Andric }
2093fe6060f1SDimitry Andric II->eraseFromParent();
2094fe6060f1SDimitry Andric InsertRetainCall = false;
2095349cc55cSDimitry Andric break;
2096fe6060f1SDimitry Andric }
2097349cc55cSDimitry Andric
2098349cc55cSDimitry Andric auto *CI = dyn_cast<CallInst>(&I);
2099349cc55cSDimitry Andric
2100349cc55cSDimitry Andric if (!CI)
2101349cc55cSDimitry Andric break;
2102349cc55cSDimitry Andric
2103349cc55cSDimitry Andric if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
2104349cc55cSDimitry Andric objcarc::hasAttachedCallOpBundle(CI))
2105349cc55cSDimitry Andric break;
2106349cc55cSDimitry Andric
2107fe6060f1SDimitry Andric // If we've found an unannotated call that defines RetOpnd, add a
2108fe6060f1SDimitry Andric // "clang.arc.attachedcall" operand bundle.
2109349cc55cSDimitry Andric Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
2110fe6060f1SDimitry Andric OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
2111fe6060f1SDimitry Andric auto *NewCall = CallBase::addOperandBundle(
21120fca6ea1SDimitry Andric CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI->getIterator());
2113fe6060f1SDimitry Andric NewCall->copyMetadata(*CI);
2114fe6060f1SDimitry Andric CI->replaceAllUsesWith(NewCall);
2115fe6060f1SDimitry Andric CI->eraseFromParent();
2116fe6060f1SDimitry Andric InsertRetainCall = false;
2117fe6060f1SDimitry Andric break;
2118fe6060f1SDimitry Andric }
2119fe6060f1SDimitry Andric
2120fe6060f1SDimitry Andric if (InsertRetainCall) {
2121fe6060f1SDimitry Andric // The retainRV is attached to the call and we've failed to find a
2122fe6060f1SDimitry Andric // matching autoreleaseRV or an annotated call in the callee. Emit a call
2123fe6060f1SDimitry Andric // to objc_retain.
2124fe6060f1SDimitry Andric Builder.SetInsertPoint(RI);
2125fe6060f1SDimitry Andric Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
21265f757f3fSDimitry Andric Builder.CreateCall(IFn, RetOpnd, "");
2127fe6060f1SDimitry Andric }
2128fe6060f1SDimitry Andric }
2129fe6060f1SDimitry Andric }
2130fe6060f1SDimitry Andric
21310b57cec5SDimitry Andric /// This function inlines the called function into the basic block of the
21320b57cec5SDimitry Andric /// caller. This returns false if it is not possible to inline this call.
21330b57cec5SDimitry Andric /// The program is still in a well defined state if this occurs though.
21340b57cec5SDimitry Andric ///
21350b57cec5SDimitry Andric /// Note that this only does one level of inlining. For example, if the
21360b57cec5SDimitry Andric /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
21370b57cec5SDimitry Andric /// exists in the instruction stream. Similarly this will inline a recursive
21380b57cec5SDimitry Andric /// function by one level.
InlineFunction(CallBase & CB,InlineFunctionInfo & IFI,bool MergeAttributes,AAResults * CalleeAAR,bool InsertLifetime,Function * ForwardVarArgsTo)21395ffd83dbSDimitry Andric llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
2140bdd1243dSDimitry Andric bool MergeAttributes,
21410b57cec5SDimitry Andric AAResults *CalleeAAR,
21420b57cec5SDimitry Andric bool InsertLifetime,
21430b57cec5SDimitry Andric Function *ForwardVarArgsTo) {
21445ffd83dbSDimitry Andric assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
21450b57cec5SDimitry Andric
21460b57cec5SDimitry Andric // FIXME: we don't inline callbr yet.
21475ffd83dbSDimitry Andric if (isa<CallBrInst>(CB))
21485ffd83dbSDimitry Andric return InlineResult::failure("We don't inline callbr yet.");
21490b57cec5SDimitry Andric
21500b57cec5SDimitry Andric // If IFI has any state in it, zap it before we fill it in.
21510b57cec5SDimitry Andric IFI.reset();
21520b57cec5SDimitry Andric
21535ffd83dbSDimitry Andric Function *CalledFunc = CB.getCalledFunction();
21540b57cec5SDimitry Andric if (!CalledFunc || // Can't inline external function or indirect
21550b57cec5SDimitry Andric CalledFunc->isDeclaration()) // call!
21565ffd83dbSDimitry Andric return InlineResult::failure("external or indirect");
21570b57cec5SDimitry Andric
21580b57cec5SDimitry Andric // The inliner does not know how to inline through calls with operand bundles
21590b57cec5SDimitry Andric // in general ...
21605f757f3fSDimitry Andric Value *ConvergenceControlToken = nullptr;
21615ffd83dbSDimitry Andric if (CB.hasOperandBundles()) {
21625ffd83dbSDimitry Andric for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
21635f757f3fSDimitry Andric auto OBUse = CB.getOperandBundleAt(i);
21645f757f3fSDimitry Andric uint32_t Tag = OBUse.getTagID();
21650b57cec5SDimitry Andric // ... but it knows how to inline through "deopt" operand bundles ...
21660b57cec5SDimitry Andric if (Tag == LLVMContext::OB_deopt)
21670b57cec5SDimitry Andric continue;
21680b57cec5SDimitry Andric // ... and "funclet" operand bundles.
21690b57cec5SDimitry Andric if (Tag == LLVMContext::OB_funclet)
21700b57cec5SDimitry Andric continue;
2171fe6060f1SDimitry Andric if (Tag == LLVMContext::OB_clang_arc_attachedcall)
2172fe6060f1SDimitry Andric continue;
2173bdd1243dSDimitry Andric if (Tag == LLVMContext::OB_kcfi)
2174bdd1243dSDimitry Andric continue;
21755f757f3fSDimitry Andric if (Tag == LLVMContext::OB_convergencectrl) {
21765f757f3fSDimitry Andric ConvergenceControlToken = OBUse.Inputs[0].get();
21775f757f3fSDimitry Andric continue;
21785f757f3fSDimitry Andric }
21790b57cec5SDimitry Andric
21805ffd83dbSDimitry Andric return InlineResult::failure("unsupported operand bundle");
21810b57cec5SDimitry Andric }
21820b57cec5SDimitry Andric }
21830b57cec5SDimitry Andric
21845f757f3fSDimitry Andric // FIXME: The check below is redundant and incomplete. According to spec, if a
21855f757f3fSDimitry Andric // convergent call is missing a token, then the caller is using uncontrolled
21865f757f3fSDimitry Andric // convergence. If the callee has an entry intrinsic, then the callee is using
21875f757f3fSDimitry Andric // controlled convergence, and the call cannot be inlined. A proper
21885f757f3fSDimitry Andric // implemenation of this check requires a whole new analysis that identifies
21895f757f3fSDimitry Andric // convergence in every function. For now, we skip that and just do this one
21905f757f3fSDimitry Andric // cursory check. The underlying assumption is that in a compiler flow that
21915f757f3fSDimitry Andric // fully implements convergence control tokens, there is no mixing of
21925f757f3fSDimitry Andric // controlled and uncontrolled convergent operations in the whole program.
21935f757f3fSDimitry Andric if (CB.isConvergent()) {
21945f757f3fSDimitry Andric auto *I = CalledFunc->getEntryBlock().getFirstNonPHI();
21955f757f3fSDimitry Andric if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) {
21965f757f3fSDimitry Andric if (IntrinsicCall->getIntrinsicID() ==
21975f757f3fSDimitry Andric Intrinsic::experimental_convergence_entry) {
21985f757f3fSDimitry Andric if (!ConvergenceControlToken) {
21995f757f3fSDimitry Andric return InlineResult::failure(
22005f757f3fSDimitry Andric "convergent call needs convergencectrl operand");
22015f757f3fSDimitry Andric }
22025f757f3fSDimitry Andric }
22035f757f3fSDimitry Andric }
22045f757f3fSDimitry Andric }
22055f757f3fSDimitry Andric
22060b57cec5SDimitry Andric // If the call to the callee cannot throw, set the 'nounwind' flag on any
22070b57cec5SDimitry Andric // calls that we inline.
22085ffd83dbSDimitry Andric bool MarkNoUnwind = CB.doesNotThrow();
22090b57cec5SDimitry Andric
22105ffd83dbSDimitry Andric BasicBlock *OrigBB = CB.getParent();
22110b57cec5SDimitry Andric Function *Caller = OrigBB->getParent();
22120b57cec5SDimitry Andric
22130b57cec5SDimitry Andric // GC poses two hazards to inlining, which only occur when the callee has GC:
22140b57cec5SDimitry Andric // 1. If the caller has no GC, then the callee's GC must be propagated to the
22150b57cec5SDimitry Andric // caller.
22160b57cec5SDimitry Andric // 2. If the caller has a differing GC, it is invalid to inline.
22170b57cec5SDimitry Andric if (CalledFunc->hasGC()) {
22180b57cec5SDimitry Andric if (!Caller->hasGC())
22190b57cec5SDimitry Andric Caller->setGC(CalledFunc->getGC());
22200b57cec5SDimitry Andric else if (CalledFunc->getGC() != Caller->getGC())
22215ffd83dbSDimitry Andric return InlineResult::failure("incompatible GC");
22220b57cec5SDimitry Andric }
22230b57cec5SDimitry Andric
22240b57cec5SDimitry Andric // Get the personality function from the callee if it contains a landing pad.
22250b57cec5SDimitry Andric Constant *CalledPersonality =
22260b57cec5SDimitry Andric CalledFunc->hasPersonalityFn()
22270b57cec5SDimitry Andric ? CalledFunc->getPersonalityFn()->stripPointerCasts()
22280b57cec5SDimitry Andric : nullptr;
22290b57cec5SDimitry Andric
22300b57cec5SDimitry Andric // Find the personality function used by the landing pads of the caller. If it
22310b57cec5SDimitry Andric // exists, then check to see that it matches the personality function used in
22320b57cec5SDimitry Andric // the callee.
22330b57cec5SDimitry Andric Constant *CallerPersonality =
22340b57cec5SDimitry Andric Caller->hasPersonalityFn()
22350b57cec5SDimitry Andric ? Caller->getPersonalityFn()->stripPointerCasts()
22360b57cec5SDimitry Andric : nullptr;
22370b57cec5SDimitry Andric if (CalledPersonality) {
22380b57cec5SDimitry Andric if (!CallerPersonality)
22390b57cec5SDimitry Andric Caller->setPersonalityFn(CalledPersonality);
22400b57cec5SDimitry Andric // If the personality functions match, then we can perform the
22410b57cec5SDimitry Andric // inlining. Otherwise, we can't inline.
22420b57cec5SDimitry Andric // TODO: This isn't 100% true. Some personality functions are proper
22430b57cec5SDimitry Andric // supersets of others and can be used in place of the other.
22440b57cec5SDimitry Andric else if (CalledPersonality != CallerPersonality)
22455ffd83dbSDimitry Andric return InlineResult::failure("incompatible personality");
22460b57cec5SDimitry Andric }
22470b57cec5SDimitry Andric
22480b57cec5SDimitry Andric // We need to figure out which funclet the callsite was in so that we may
22490b57cec5SDimitry Andric // properly nest the callee.
22500b57cec5SDimitry Andric Instruction *CallSiteEHPad = nullptr;
22510b57cec5SDimitry Andric if (CallerPersonality) {
22520b57cec5SDimitry Andric EHPersonality Personality = classifyEHPersonality(CallerPersonality);
22530b57cec5SDimitry Andric if (isScopedEHPersonality(Personality)) {
2254bdd1243dSDimitry Andric std::optional<OperandBundleUse> ParentFunclet =
22555ffd83dbSDimitry Andric CB.getOperandBundle(LLVMContext::OB_funclet);
22560b57cec5SDimitry Andric if (ParentFunclet)
22570b57cec5SDimitry Andric CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
22580b57cec5SDimitry Andric
22590b57cec5SDimitry Andric // OK, the inlining site is legal. What about the target function?
22600b57cec5SDimitry Andric
22610b57cec5SDimitry Andric if (CallSiteEHPad) {
22620b57cec5SDimitry Andric if (Personality == EHPersonality::MSVC_CXX) {
22630b57cec5SDimitry Andric // The MSVC personality cannot tolerate catches getting inlined into
22640b57cec5SDimitry Andric // cleanup funclets.
22650b57cec5SDimitry Andric if (isa<CleanupPadInst>(CallSiteEHPad)) {
22660b57cec5SDimitry Andric // Ok, the call site is within a cleanuppad. Let's check the callee
22670b57cec5SDimitry Andric // for catchpads.
22680b57cec5SDimitry Andric for (const BasicBlock &CalledBB : *CalledFunc) {
22690b57cec5SDimitry Andric if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
22705ffd83dbSDimitry Andric return InlineResult::failure("catch in cleanup funclet");
22710b57cec5SDimitry Andric }
22720b57cec5SDimitry Andric }
22730b57cec5SDimitry Andric } else if (isAsynchronousEHPersonality(Personality)) {
22740b57cec5SDimitry Andric // SEH is even less tolerant, there may not be any sort of exceptional
22750b57cec5SDimitry Andric // funclet in the callee.
22760b57cec5SDimitry Andric for (const BasicBlock &CalledBB : *CalledFunc) {
22770b57cec5SDimitry Andric if (CalledBB.isEHPad())
22785ffd83dbSDimitry Andric return InlineResult::failure("SEH in cleanup funclet");
22790b57cec5SDimitry Andric }
22800b57cec5SDimitry Andric }
22810b57cec5SDimitry Andric }
22820b57cec5SDimitry Andric }
22830b57cec5SDimitry Andric }
22840b57cec5SDimitry Andric
22850b57cec5SDimitry Andric // Determine if we are dealing with a call in an EHPad which does not unwind
22860b57cec5SDimitry Andric // to caller.
22870b57cec5SDimitry Andric bool EHPadForCallUnwindsLocally = false;
22885ffd83dbSDimitry Andric if (CallSiteEHPad && isa<CallInst>(CB)) {
22890b57cec5SDimitry Andric UnwindDestMemoTy FuncletUnwindMap;
22900b57cec5SDimitry Andric Value *CallSiteUnwindDestToken =
22910b57cec5SDimitry Andric getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
22920b57cec5SDimitry Andric
22930b57cec5SDimitry Andric EHPadForCallUnwindsLocally =
22940b57cec5SDimitry Andric CallSiteUnwindDestToken &&
22950b57cec5SDimitry Andric !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
22960b57cec5SDimitry Andric }
22970b57cec5SDimitry Andric
22980b57cec5SDimitry Andric // Get an iterator to the last basic block in the function, which will have
22990b57cec5SDimitry Andric // the new function inlined after it.
23000b57cec5SDimitry Andric Function::iterator LastBlock = --Caller->end();
23010b57cec5SDimitry Andric
23020b57cec5SDimitry Andric // Make sure to capture all of the return instructions from the cloned
23030b57cec5SDimitry Andric // function.
23040b57cec5SDimitry Andric SmallVector<ReturnInst*, 8> Returns;
23050b57cec5SDimitry Andric ClonedCodeInfo InlinedFunctionInfo;
23060b57cec5SDimitry Andric Function::iterator FirstNewBlock;
23070b57cec5SDimitry Andric
23080b57cec5SDimitry Andric { // Scope to destroy VMap after cloning.
23090b57cec5SDimitry Andric ValueToValueMapTy VMap;
2310349cc55cSDimitry Andric struct ByValInit {
2311349cc55cSDimitry Andric Value *Dst;
2312349cc55cSDimitry Andric Value *Src;
2313349cc55cSDimitry Andric Type *Ty;
2314349cc55cSDimitry Andric };
23150b57cec5SDimitry Andric // Keep a list of pair (dst, src) to emit byval initializations.
2316349cc55cSDimitry Andric SmallVector<ByValInit, 4> ByValInits;
23170b57cec5SDimitry Andric
2318e8d8bef9SDimitry Andric // When inlining a function that contains noalias scope metadata,
2319e8d8bef9SDimitry Andric // this metadata needs to be cloned so that the inlined blocks
2320e8d8bef9SDimitry Andric // have different "unique scopes" at every call site.
2321e8d8bef9SDimitry Andric // Track the metadata that must be cloned. Do this before other changes to
2322e8d8bef9SDimitry Andric // the function, so that we do not get in trouble when inlining caller ==
2323e8d8bef9SDimitry Andric // callee.
2324e8d8bef9SDimitry Andric ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
2325e8d8bef9SDimitry Andric
23260fca6ea1SDimitry Andric auto &DL = Caller->getDataLayout();
23270b57cec5SDimitry Andric
23280b57cec5SDimitry Andric // Calculate the vector of arguments to pass into the function cloner, which
23290b57cec5SDimitry Andric // matches up the formal to the actual argument values.
23305ffd83dbSDimitry Andric auto AI = CB.arg_begin();
23310b57cec5SDimitry Andric unsigned ArgNo = 0;
23320b57cec5SDimitry Andric for (Function::arg_iterator I = CalledFunc->arg_begin(),
23330b57cec5SDimitry Andric E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
23340b57cec5SDimitry Andric Value *ActualArg = *AI;
23350b57cec5SDimitry Andric
23360b57cec5SDimitry Andric // When byval arguments actually inlined, we need to make the copy implied
23370b57cec5SDimitry Andric // by them explicit. However, we don't do this if the callee is readonly
23380b57cec5SDimitry Andric // or readnone, because the copy would be unneeded: the callee doesn't
23390b57cec5SDimitry Andric // modify the struct.
23405ffd83dbSDimitry Andric if (CB.isByValArgument(ArgNo)) {
2341349cc55cSDimitry Andric ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
2342349cc55cSDimitry Andric &CB, CalledFunc, IFI,
2343bdd1243dSDimitry Andric CalledFunc->getParamAlign(ArgNo));
23440b57cec5SDimitry Andric if (ActualArg != *AI)
2345349cc55cSDimitry Andric ByValInits.push_back(
2346349cc55cSDimitry Andric {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
23470b57cec5SDimitry Andric }
23480b57cec5SDimitry Andric
23490b57cec5SDimitry Andric VMap[&*I] = ActualArg;
23500b57cec5SDimitry Andric }
23510b57cec5SDimitry Andric
23525ffd83dbSDimitry Andric // TODO: Remove this when users have been updated to the assume bundles.
23530b57cec5SDimitry Andric // Add alignment assumptions if necessary. We do this before the inlined
23540b57cec5SDimitry Andric // instructions are actually cloned into the caller so that we can easily
23550b57cec5SDimitry Andric // check what will be known at the start of the inlined code.
23565ffd83dbSDimitry Andric AddAlignmentAssumptions(CB, IFI);
23575ffd83dbSDimitry Andric
23585ffd83dbSDimitry Andric AssumptionCache *AC =
23595ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
23605ffd83dbSDimitry Andric
23615ffd83dbSDimitry Andric /// Preserve all attributes on of the call and its parameters.
23625ffd83dbSDimitry Andric salvageKnowledge(&CB, AC);
23630b57cec5SDimitry Andric
23640b57cec5SDimitry Andric // We want the inliner to prune the code as it copies. We would LOVE to
23650b57cec5SDimitry Andric // have no dead or constant instructions leftover after inlining occurs
23660b57cec5SDimitry Andric // (which can happen, e.g., because an argument was constant), but we'll be
23670b57cec5SDimitry Andric // happy with whatever the cloner can do.
23680b57cec5SDimitry Andric CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
23690b57cec5SDimitry Andric /*ModuleLevelChanges=*/false, Returns, ".i",
2370fe6060f1SDimitry Andric &InlinedFunctionInfo);
23710b57cec5SDimitry Andric // Remember the first block that is newly cloned over.
23720b57cec5SDimitry Andric FirstNewBlock = LastBlock; ++FirstNewBlock;
23730b57cec5SDimitry Andric
2374fe6060f1SDimitry Andric // Insert retainRV/clainRV runtime calls.
2375349cc55cSDimitry Andric objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
2376349cc55cSDimitry Andric if (RVCallKind != objcarc::ARCInstKind::None)
2377349cc55cSDimitry Andric inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
2378fe6060f1SDimitry Andric
2379fe6060f1SDimitry Andric // Updated caller/callee profiles only when requested. For sample loader
2380fe6060f1SDimitry Andric // inlining, the context-sensitive inlinee profile doesn't need to be
2381fe6060f1SDimitry Andric // subtracted from callee profile, and the inlined clone also doesn't need
2382fe6060f1SDimitry Andric // to be scaled based on call site count.
2383fe6060f1SDimitry Andric if (IFI.UpdateProfile) {
23840b57cec5SDimitry Andric if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
23850b57cec5SDimitry Andric // Update the BFI of blocks cloned into the caller.
23860b57cec5SDimitry Andric updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
23870b57cec5SDimitry Andric CalledFunc->front());
23880b57cec5SDimitry Andric
2389349cc55cSDimitry Andric if (auto Profile = CalledFunc->getEntryCount())
2390349cc55cSDimitry Andric updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
2391349cc55cSDimitry Andric IFI.CallerBFI);
2392fe6060f1SDimitry Andric }
23930b57cec5SDimitry Andric
23940b57cec5SDimitry Andric // Inject byval arguments initialization.
2395349cc55cSDimitry Andric for (ByValInit &Init : ByValInits)
2396349cc55cSDimitry Andric HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
239706c3fb27SDimitry Andric &*FirstNewBlock, IFI, CalledFunc);
23980b57cec5SDimitry Andric
2399bdd1243dSDimitry Andric std::optional<OperandBundleUse> ParentDeopt =
24005ffd83dbSDimitry Andric CB.getOperandBundle(LLVMContext::OB_deopt);
24010b57cec5SDimitry Andric if (ParentDeopt) {
24020b57cec5SDimitry Andric SmallVector<OperandBundleDef, 2> OpDefs;
24030b57cec5SDimitry Andric
24040b57cec5SDimitry Andric for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
24055ffd83dbSDimitry Andric CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
24065ffd83dbSDimitry Andric if (!ICS)
24075ffd83dbSDimitry Andric continue; // instruction was DCE'd or RAUW'ed to undef
24080b57cec5SDimitry Andric
24090b57cec5SDimitry Andric OpDefs.clear();
24100b57cec5SDimitry Andric
24115ffd83dbSDimitry Andric OpDefs.reserve(ICS->getNumOperandBundles());
24120b57cec5SDimitry Andric
24135ffd83dbSDimitry Andric for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
24145ffd83dbSDimitry Andric ++COBi) {
24155ffd83dbSDimitry Andric auto ChildOB = ICS->getOperandBundleAt(COBi);
24160b57cec5SDimitry Andric if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
24170b57cec5SDimitry Andric // If the inlined call has other operand bundles, let them be
24180b57cec5SDimitry Andric OpDefs.emplace_back(ChildOB);
24190b57cec5SDimitry Andric continue;
24200b57cec5SDimitry Andric }
24210b57cec5SDimitry Andric
24220b57cec5SDimitry Andric // It may be useful to separate this logic (of handling operand
24230b57cec5SDimitry Andric // bundles) out to a separate "policy" component if this gets crowded.
24240b57cec5SDimitry Andric // Prepend the parent's deoptimization continuation to the newly
24250b57cec5SDimitry Andric // inlined call's deoptimization continuation.
24260b57cec5SDimitry Andric std::vector<Value *> MergedDeoptArgs;
24270b57cec5SDimitry Andric MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
24280b57cec5SDimitry Andric ChildOB.Inputs.size());
24290b57cec5SDimitry Andric
2430e8d8bef9SDimitry Andric llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2431e8d8bef9SDimitry Andric llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
24320b57cec5SDimitry Andric
24330b57cec5SDimitry Andric OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
24340b57cec5SDimitry Andric }
24350b57cec5SDimitry Andric
24360fca6ea1SDimitry Andric Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS->getIterator());
24370b57cec5SDimitry Andric
24380b57cec5SDimitry Andric // Note: the RAUW does the appropriate fixup in VMap, so we need to do
24390b57cec5SDimitry Andric // this even if the call returns void.
24405ffd83dbSDimitry Andric ICS->replaceAllUsesWith(NewI);
24410b57cec5SDimitry Andric
24420b57cec5SDimitry Andric VH = nullptr;
24435ffd83dbSDimitry Andric ICS->eraseFromParent();
24440b57cec5SDimitry Andric }
24450b57cec5SDimitry Andric }
24460b57cec5SDimitry Andric
24470b57cec5SDimitry Andric // For 'nodebug' functions, the associated DISubprogram is always null.
24480b57cec5SDimitry Andric // Conservatively avoid propagating the callsite debug location to
24490b57cec5SDimitry Andric // instructions inlined from a function whose DISubprogram is not null.
24505ffd83dbSDimitry Andric fixupLineNumbers(Caller, FirstNewBlock, &CB,
24510b57cec5SDimitry Andric CalledFunc->getSubprogram() != nullptr);
24520b57cec5SDimitry Andric
2453bdd1243dSDimitry Andric if (isAssignmentTrackingEnabled(*Caller->getParent())) {
2454bdd1243dSDimitry Andric // Interpret inlined stores to caller-local variables as assignments.
2455bdd1243dSDimitry Andric trackInlinedStores(FirstNewBlock, Caller->end(), CB);
2456bdd1243dSDimitry Andric
2457bdd1243dSDimitry Andric // Update DIAssignID metadata attachments and uses so that they are
2458bdd1243dSDimitry Andric // unique to this inlined instance.
2459bdd1243dSDimitry Andric fixupAssignments(FirstNewBlock, Caller->end());
2460bdd1243dSDimitry Andric }
2461bdd1243dSDimitry Andric
2462e8d8bef9SDimitry Andric // Now clone the inlined noalias scope metadata.
2463e8d8bef9SDimitry Andric SAMetadataCloner.clone();
246423408297SDimitry Andric SAMetadataCloner.remap(FirstNewBlock, Caller->end());
24650b57cec5SDimitry Andric
24660b57cec5SDimitry Andric // Add noalias metadata if necessary.
2467fe6060f1SDimitry Andric AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
24685ffd83dbSDimitry Andric
24695ffd83dbSDimitry Andric // Clone return attributes on the callsite into the calls within the inlined
24705ffd83dbSDimitry Andric // function which feed into its return value.
24716e516c87SDimitry Andric AddReturnAttributes(CB, VMap, InlinedFunctionInfo);
24720b57cec5SDimitry Andric
24730fca6ea1SDimitry Andric // Clone attributes on the params of the callsite to calls within the
24740fca6ea1SDimitry Andric // inlined function which use the same param.
24756e516c87SDimitry Andric AddParamAndFnBasicAttributes(CB, VMap, InlinedFunctionInfo);
24760fca6ea1SDimitry Andric
2477bdd1243dSDimitry Andric propagateMemProfMetadata(CalledFunc, CB,
2478bdd1243dSDimitry Andric InlinedFunctionInfo.ContainsMemProfMetadata, VMap);
2479bdd1243dSDimitry Andric
2480e8d8bef9SDimitry Andric // Propagate metadata on the callsite if necessary.
248123408297SDimitry Andric PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
24820b57cec5SDimitry Andric
24830b57cec5SDimitry Andric // Register any cloned assumptions.
24840b57cec5SDimitry Andric if (IFI.GetAssumptionCache)
24850b57cec5SDimitry Andric for (BasicBlock &NewBlock :
24860b57cec5SDimitry Andric make_range(FirstNewBlock->getIterator(), Caller->end()))
24875ffd83dbSDimitry Andric for (Instruction &I : NewBlock)
248806c3fb27SDimitry Andric if (auto *II = dyn_cast<AssumeInst>(&I))
24895ffd83dbSDimitry Andric IFI.GetAssumptionCache(*Caller).registerAssumption(II);
24900b57cec5SDimitry Andric }
24910b57cec5SDimitry Andric
24925f757f3fSDimitry Andric if (ConvergenceControlToken) {
24935f757f3fSDimitry Andric auto *I = FirstNewBlock->getFirstNonPHI();
24945f757f3fSDimitry Andric if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) {
24955f757f3fSDimitry Andric if (IntrinsicCall->getIntrinsicID() ==
24965f757f3fSDimitry Andric Intrinsic::experimental_convergence_entry) {
24975f757f3fSDimitry Andric IntrinsicCall->replaceAllUsesWith(ConvergenceControlToken);
24985f757f3fSDimitry Andric IntrinsicCall->eraseFromParent();
24995f757f3fSDimitry Andric }
25005f757f3fSDimitry Andric }
25015f757f3fSDimitry Andric }
25025f757f3fSDimitry Andric
25030b57cec5SDimitry Andric // If there are any alloca instructions in the block that used to be the entry
25040b57cec5SDimitry Andric // block for the callee, move them to the entry block of the caller. First
25050b57cec5SDimitry Andric // calculate which instruction they should be inserted before. We insert the
25060b57cec5SDimitry Andric // instructions at the end of the current alloca list.
25070b57cec5SDimitry Andric {
25080b57cec5SDimitry Andric BasicBlock::iterator InsertPoint = Caller->begin()->begin();
25090b57cec5SDimitry Andric for (BasicBlock::iterator I = FirstNewBlock->begin(),
25100b57cec5SDimitry Andric E = FirstNewBlock->end(); I != E; ) {
25110b57cec5SDimitry Andric AllocaInst *AI = dyn_cast<AllocaInst>(I++);
25120b57cec5SDimitry Andric if (!AI) continue;
25130b57cec5SDimitry Andric
25140b57cec5SDimitry Andric // If the alloca is now dead, remove it. This often occurs due to code
25150b57cec5SDimitry Andric // specialization.
25160b57cec5SDimitry Andric if (AI->use_empty()) {
25170b57cec5SDimitry Andric AI->eraseFromParent();
25180b57cec5SDimitry Andric continue;
25190b57cec5SDimitry Andric }
25200b57cec5SDimitry Andric
25210b57cec5SDimitry Andric if (!allocaWouldBeStaticInEntry(AI))
25220b57cec5SDimitry Andric continue;
25230b57cec5SDimitry Andric
25240b57cec5SDimitry Andric // Keep track of the static allocas that we inline into the caller.
25250b57cec5SDimitry Andric IFI.StaticAllocas.push_back(AI);
25260b57cec5SDimitry Andric
25270b57cec5SDimitry Andric // Scan for the block of allocas that we can move over, and move them
25280b57cec5SDimitry Andric // all at once.
25290b57cec5SDimitry Andric while (isa<AllocaInst>(I) &&
2530480093f4SDimitry Andric !cast<AllocaInst>(I)->use_empty() &&
25310b57cec5SDimitry Andric allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
25320b57cec5SDimitry Andric IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
25330b57cec5SDimitry Andric ++I;
25340b57cec5SDimitry Andric }
25350b57cec5SDimitry Andric
25360b57cec5SDimitry Andric // Transfer all of the allocas over in a block. Using splice means
25370b57cec5SDimitry Andric // that the instructions aren't removed from the symbol table, then
25380b57cec5SDimitry Andric // reinserted.
25395f757f3fSDimitry Andric I.setTailBit(true);
2540bdd1243dSDimitry Andric Caller->getEntryBlock().splice(InsertPoint, &*FirstNewBlock,
2541bdd1243dSDimitry Andric AI->getIterator(), I);
25420b57cec5SDimitry Andric }
25430b57cec5SDimitry Andric }
25440b57cec5SDimitry Andric
25450b57cec5SDimitry Andric SmallVector<Value*,4> VarArgsToForward;
25460b57cec5SDimitry Andric SmallVector<AttributeSet, 4> VarArgsAttrs;
25470b57cec5SDimitry Andric for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2548349cc55cSDimitry Andric i < CB.arg_size(); i++) {
25495ffd83dbSDimitry Andric VarArgsToForward.push_back(CB.getArgOperand(i));
2550349cc55cSDimitry Andric VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
25510b57cec5SDimitry Andric }
25520b57cec5SDimitry Andric
25530b57cec5SDimitry Andric bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
25540b57cec5SDimitry Andric if (InlinedFunctionInfo.ContainsCalls) {
25550b57cec5SDimitry Andric CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
25565ffd83dbSDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(&CB))
25570b57cec5SDimitry Andric CallSiteTailKind = CI->getTailCallKind();
25580b57cec5SDimitry Andric
25590b57cec5SDimitry Andric // For inlining purposes, the "notail" marker is the same as no marker.
25600b57cec5SDimitry Andric if (CallSiteTailKind == CallInst::TCK_NoTail)
25610b57cec5SDimitry Andric CallSiteTailKind = CallInst::TCK_None;
25620b57cec5SDimitry Andric
25630b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
25640b57cec5SDimitry Andric ++BB) {
2565349cc55cSDimitry Andric for (Instruction &I : llvm::make_early_inc_range(*BB)) {
25660b57cec5SDimitry Andric CallInst *CI = dyn_cast<CallInst>(&I);
25670b57cec5SDimitry Andric if (!CI)
25680b57cec5SDimitry Andric continue;
25690b57cec5SDimitry Andric
25700b57cec5SDimitry Andric // Forward varargs from inlined call site to calls to the
25710b57cec5SDimitry Andric // ForwardVarArgsTo function, if requested, and to musttail calls.
25720b57cec5SDimitry Andric if (!VarArgsToForward.empty() &&
25730b57cec5SDimitry Andric ((ForwardVarArgsTo &&
25740b57cec5SDimitry Andric CI->getCalledFunction() == ForwardVarArgsTo) ||
25750b57cec5SDimitry Andric CI->isMustTailCall())) {
25760b57cec5SDimitry Andric // Collect attributes for non-vararg parameters.
25770b57cec5SDimitry Andric AttributeList Attrs = CI->getAttributes();
25780b57cec5SDimitry Andric SmallVector<AttributeSet, 8> ArgAttrs;
25790b57cec5SDimitry Andric if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
25800b57cec5SDimitry Andric for (unsigned ArgNo = 0;
25810b57cec5SDimitry Andric ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2582349cc55cSDimitry Andric ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
25830b57cec5SDimitry Andric }
25840b57cec5SDimitry Andric
25850b57cec5SDimitry Andric // Add VarArg attributes.
25860b57cec5SDimitry Andric ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2587349cc55cSDimitry Andric Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
2588349cc55cSDimitry Andric Attrs.getRetAttrs(), ArgAttrs);
25890b57cec5SDimitry Andric // Add VarArgs to existing parameters.
2590349cc55cSDimitry Andric SmallVector<Value *, 6> Params(CI->args());
25910b57cec5SDimitry Andric Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
25920b57cec5SDimitry Andric CallInst *NewCI = CallInst::Create(
25930fca6ea1SDimitry Andric CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI->getIterator());
25940b57cec5SDimitry Andric NewCI->setDebugLoc(CI->getDebugLoc());
25950b57cec5SDimitry Andric NewCI->setAttributes(Attrs);
25960b57cec5SDimitry Andric NewCI->setCallingConv(CI->getCallingConv());
25970b57cec5SDimitry Andric CI->replaceAllUsesWith(NewCI);
25980b57cec5SDimitry Andric CI->eraseFromParent();
25990b57cec5SDimitry Andric CI = NewCI;
26000b57cec5SDimitry Andric }
26010b57cec5SDimitry Andric
26020b57cec5SDimitry Andric if (Function *F = CI->getCalledFunction())
26030b57cec5SDimitry Andric InlinedDeoptimizeCalls |=
26040b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
26050b57cec5SDimitry Andric
26060b57cec5SDimitry Andric // We need to reduce the strength of any inlined tail calls. For
26070b57cec5SDimitry Andric // musttail, we have to avoid introducing potential unbounded stack
26080b57cec5SDimitry Andric // growth. For example, if functions 'f' and 'g' are mutually recursive
26090b57cec5SDimitry Andric // with musttail, we can inline 'g' into 'f' so long as we preserve
26100b57cec5SDimitry Andric // musttail on the cloned call to 'f'. If either the inlined call site
26110b57cec5SDimitry Andric // or the cloned call site is *not* musttail, the program already has
26120b57cec5SDimitry Andric // one frame of stack growth, so it's safe to remove musttail. Here is
26130b57cec5SDimitry Andric // a table of example transformations:
26140b57cec5SDimitry Andric //
26150b57cec5SDimitry Andric // f -> musttail g -> musttail f ==> f -> musttail f
26160b57cec5SDimitry Andric // f -> musttail g -> tail f ==> f -> tail f
26170b57cec5SDimitry Andric // f -> g -> musttail f ==> f -> f
26180b57cec5SDimitry Andric // f -> g -> tail f ==> f -> f
26190b57cec5SDimitry Andric //
26200b57cec5SDimitry Andric // Inlined notail calls should remain notail calls.
26210b57cec5SDimitry Andric CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
26220b57cec5SDimitry Andric if (ChildTCK != CallInst::TCK_NoTail)
26230b57cec5SDimitry Andric ChildTCK = std::min(CallSiteTailKind, ChildTCK);
26240b57cec5SDimitry Andric CI->setTailCallKind(ChildTCK);
26250b57cec5SDimitry Andric InlinedMustTailCalls |= CI->isMustTailCall();
26260b57cec5SDimitry Andric
2627fcaf7f86SDimitry Andric // Call sites inlined through a 'nounwind' call site should be
2628fcaf7f86SDimitry Andric // 'nounwind' as well. However, avoid marking call sites explicitly
2629fcaf7f86SDimitry Andric // where possible. This helps expose more opportunities for CSE after
2630fcaf7f86SDimitry Andric // inlining, commonly when the callee is an intrinsic.
2631fcaf7f86SDimitry Andric if (MarkNoUnwind && !CI->doesNotThrow())
26320b57cec5SDimitry Andric CI->setDoesNotThrow();
26330b57cec5SDimitry Andric }
26340b57cec5SDimitry Andric }
26350b57cec5SDimitry Andric }
26360b57cec5SDimitry Andric
26370b57cec5SDimitry Andric // Leave lifetime markers for the static alloca's, scoping them to the
26380b57cec5SDimitry Andric // function we just inlined.
2639fe6060f1SDimitry Andric // We need to insert lifetime intrinsics even at O0 to avoid invalid
2640fe6060f1SDimitry Andric // access caused by multithreaded coroutines. The check
2641fe6060f1SDimitry Andric // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2642fe6060f1SDimitry Andric if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2643fe6060f1SDimitry Andric !IFI.StaticAllocas.empty()) {
26445f757f3fSDimitry Andric IRBuilder<> builder(&*FirstNewBlock, FirstNewBlock->begin());
26450fca6ea1SDimitry Andric for (AllocaInst *AI : IFI.StaticAllocas) {
26460b57cec5SDimitry Andric // Don't mark swifterror allocas. They can't have bitcast uses.
26470b57cec5SDimitry Andric if (AI->isSwiftError())
26480b57cec5SDimitry Andric continue;
26490b57cec5SDimitry Andric
26500b57cec5SDimitry Andric // If the alloca is already scoped to something smaller than the whole
26510b57cec5SDimitry Andric // function then there's no need to add redundant, less accurate markers.
26520b57cec5SDimitry Andric if (hasLifetimeMarkers(AI))
26530b57cec5SDimitry Andric continue;
26540b57cec5SDimitry Andric
26550b57cec5SDimitry Andric // Try to determine the size of the allocation.
26560b57cec5SDimitry Andric ConstantInt *AllocaSize = nullptr;
26570b57cec5SDimitry Andric if (ConstantInt *AIArraySize =
26580b57cec5SDimitry Andric dyn_cast<ConstantInt>(AI->getArraySize())) {
26590fca6ea1SDimitry Andric auto &DL = Caller->getDataLayout();
26600b57cec5SDimitry Andric Type *AllocaType = AI->getAllocatedType();
2661e8d8bef9SDimitry Andric TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
26620b57cec5SDimitry Andric uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
26630b57cec5SDimitry Andric
26640b57cec5SDimitry Andric // Don't add markers for zero-sized allocas.
26650b57cec5SDimitry Andric if (AllocaArraySize == 0)
26660b57cec5SDimitry Andric continue;
26670b57cec5SDimitry Andric
26680b57cec5SDimitry Andric // Check that array size doesn't saturate uint64_t and doesn't
26690b57cec5SDimitry Andric // overflow when it's multiplied by type size.
2670e8d8bef9SDimitry Andric if (!AllocaTypeSize.isScalable() &&
2671e8d8bef9SDimitry Andric AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
26720b57cec5SDimitry Andric std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2673bdd1243dSDimitry Andric AllocaTypeSize.getFixedValue()) {
26740b57cec5SDimitry Andric AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
26750b57cec5SDimitry Andric AllocaArraySize * AllocaTypeSize);
26760b57cec5SDimitry Andric }
26770b57cec5SDimitry Andric }
26780b57cec5SDimitry Andric
26790b57cec5SDimitry Andric builder.CreateLifetimeStart(AI, AllocaSize);
26800b57cec5SDimitry Andric for (ReturnInst *RI : Returns) {
26810b57cec5SDimitry Andric // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
26820b57cec5SDimitry Andric // call and a return. The return kills all local allocas.
26830b57cec5SDimitry Andric if (InlinedMustTailCalls &&
26840b57cec5SDimitry Andric RI->getParent()->getTerminatingMustTailCall())
26850b57cec5SDimitry Andric continue;
26860b57cec5SDimitry Andric if (InlinedDeoptimizeCalls &&
26870b57cec5SDimitry Andric RI->getParent()->getTerminatingDeoptimizeCall())
26880b57cec5SDimitry Andric continue;
26890b57cec5SDimitry Andric IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
26900b57cec5SDimitry Andric }
26910b57cec5SDimitry Andric }
26920b57cec5SDimitry Andric }
26930b57cec5SDimitry Andric
26940b57cec5SDimitry Andric // If the inlined code contained dynamic alloca instructions, wrap the inlined
26950b57cec5SDimitry Andric // code with llvm.stacksave/llvm.stackrestore intrinsics.
26960b57cec5SDimitry Andric if (InlinedFunctionInfo.ContainsDynamicAllocas) {
26970b57cec5SDimitry Andric // Insert the llvm.stacksave.
26980b57cec5SDimitry Andric CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
26995f757f3fSDimitry Andric .CreateStackSave("savedstack");
27000b57cec5SDimitry Andric
27010b57cec5SDimitry Andric // Insert a call to llvm.stackrestore before any return instructions in the
27020b57cec5SDimitry Andric // inlined function.
27030b57cec5SDimitry Andric for (ReturnInst *RI : Returns) {
27040b57cec5SDimitry Andric // Don't insert llvm.stackrestore calls between a musttail or deoptimize
27050b57cec5SDimitry Andric // call and a return. The return will restore the stack pointer.
27060b57cec5SDimitry Andric if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
27070b57cec5SDimitry Andric continue;
27080b57cec5SDimitry Andric if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
27090b57cec5SDimitry Andric continue;
27105f757f3fSDimitry Andric IRBuilder<>(RI).CreateStackRestore(SavedPtr);
27110b57cec5SDimitry Andric }
27120b57cec5SDimitry Andric }
27130b57cec5SDimitry Andric
27140b57cec5SDimitry Andric // If we are inlining for an invoke instruction, we must make sure to rewrite
27150b57cec5SDimitry Andric // any call instructions into invoke instructions. This is sensitive to which
27160b57cec5SDimitry Andric // funclet pads were top-level in the inlinee, so must be done before
27170b57cec5SDimitry Andric // rewriting the "parent pad" links.
27185ffd83dbSDimitry Andric if (auto *II = dyn_cast<InvokeInst>(&CB)) {
27190b57cec5SDimitry Andric BasicBlock *UnwindDest = II->getUnwindDest();
27200b57cec5SDimitry Andric Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
27210b57cec5SDimitry Andric if (isa<LandingPadInst>(FirstNonPHI)) {
27220b57cec5SDimitry Andric HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
27230b57cec5SDimitry Andric } else {
27240b57cec5SDimitry Andric HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
27250b57cec5SDimitry Andric }
27260b57cec5SDimitry Andric }
27270b57cec5SDimitry Andric
27280b57cec5SDimitry Andric // Update the lexical scopes of the new funclets and callsites.
27290b57cec5SDimitry Andric // Anything that had 'none' as its parent is now nested inside the callsite's
27300b57cec5SDimitry Andric // EHPad.
27310b57cec5SDimitry Andric if (CallSiteEHPad) {
27320b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(),
27330b57cec5SDimitry Andric E = Caller->end();
27340b57cec5SDimitry Andric BB != E; ++BB) {
2735972a253aSDimitry Andric // Add bundle operands to inlined call sites.
2736972a253aSDimitry Andric PropagateOperandBundles(BB, CallSiteEHPad);
27370b57cec5SDimitry Andric
27380b57cec5SDimitry Andric // It is problematic if the inlinee has a cleanupret which unwinds to
27390b57cec5SDimitry Andric // caller and we inline it into a call site which doesn't unwind but into
27400b57cec5SDimitry Andric // an EH pad that does. Such an edge must be dynamically unreachable.
27410b57cec5SDimitry Andric // As such, we replace the cleanupret with unreachable.
27420b57cec5SDimitry Andric if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
27430b57cec5SDimitry Andric if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2744fe6060f1SDimitry Andric changeToUnreachable(CleanupRet);
27450b57cec5SDimitry Andric
27460b57cec5SDimitry Andric Instruction *I = BB->getFirstNonPHI();
27470b57cec5SDimitry Andric if (!I->isEHPad())
27480b57cec5SDimitry Andric continue;
27490b57cec5SDimitry Andric
27500b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
27510b57cec5SDimitry Andric if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
27520b57cec5SDimitry Andric CatchSwitch->setParentPad(CallSiteEHPad);
27530b57cec5SDimitry Andric } else {
27540b57cec5SDimitry Andric auto *FPI = cast<FuncletPadInst>(I);
27550b57cec5SDimitry Andric if (isa<ConstantTokenNone>(FPI->getParentPad()))
27560b57cec5SDimitry Andric FPI->setParentPad(CallSiteEHPad);
27570b57cec5SDimitry Andric }
27580b57cec5SDimitry Andric }
27590b57cec5SDimitry Andric }
27600b57cec5SDimitry Andric
27610b57cec5SDimitry Andric if (InlinedDeoptimizeCalls) {
27620b57cec5SDimitry Andric // We need to at least remove the deoptimizing returns from the Return set,
27630b57cec5SDimitry Andric // so that the control flow from those returns does not get merged into the
27640b57cec5SDimitry Andric // caller (but terminate it instead). If the caller's return type does not
27650b57cec5SDimitry Andric // match the callee's return type, we also need to change the return type of
27660b57cec5SDimitry Andric // the intrinsic.
27675ffd83dbSDimitry Andric if (Caller->getReturnType() == CB.getType()) {
2768e8d8bef9SDimitry Andric llvm::erase_if(Returns, [](ReturnInst *RI) {
27690b57cec5SDimitry Andric return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
27700b57cec5SDimitry Andric });
27710b57cec5SDimitry Andric } else {
27720b57cec5SDimitry Andric SmallVector<ReturnInst *, 8> NormalReturns;
27730b57cec5SDimitry Andric Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
27740b57cec5SDimitry Andric Caller->getParent(), Intrinsic::experimental_deoptimize,
27750b57cec5SDimitry Andric {Caller->getReturnType()});
27760b57cec5SDimitry Andric
27770b57cec5SDimitry Andric for (ReturnInst *RI : Returns) {
27780b57cec5SDimitry Andric CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
27790b57cec5SDimitry Andric if (!DeoptCall) {
27800b57cec5SDimitry Andric NormalReturns.push_back(RI);
27810b57cec5SDimitry Andric continue;
27820b57cec5SDimitry Andric }
27830b57cec5SDimitry Andric
27840b57cec5SDimitry Andric // The calling convention on the deoptimize call itself may be bogus,
27850b57cec5SDimitry Andric // since the code we're inlining may have undefined behavior (and may
27860b57cec5SDimitry Andric // never actually execute at runtime); but all
27870b57cec5SDimitry Andric // @llvm.experimental.deoptimize declarations have to have the same
27880b57cec5SDimitry Andric // calling convention in a well-formed module.
27890b57cec5SDimitry Andric auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
27900b57cec5SDimitry Andric NewDeoptIntrinsic->setCallingConv(CallingConv);
27910b57cec5SDimitry Andric auto *CurBB = RI->getParent();
27920b57cec5SDimitry Andric RI->eraseFromParent();
27930b57cec5SDimitry Andric
2794e8d8bef9SDimitry Andric SmallVector<Value *, 4> CallArgs(DeoptCall->args());
27950b57cec5SDimitry Andric
27960b57cec5SDimitry Andric SmallVector<OperandBundleDef, 1> OpBundles;
27970b57cec5SDimitry Andric DeoptCall->getOperandBundlesAsDefs(OpBundles);
2798fe6060f1SDimitry Andric auto DeoptAttributes = DeoptCall->getAttributes();
27990b57cec5SDimitry Andric DeoptCall->eraseFromParent();
28000b57cec5SDimitry Andric assert(!OpBundles.empty() &&
28010b57cec5SDimitry Andric "Expected at least the deopt operand bundle");
28020b57cec5SDimitry Andric
28030b57cec5SDimitry Andric IRBuilder<> Builder(CurBB);
28040b57cec5SDimitry Andric CallInst *NewDeoptCall =
28050b57cec5SDimitry Andric Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
28060b57cec5SDimitry Andric NewDeoptCall->setCallingConv(CallingConv);
2807fe6060f1SDimitry Andric NewDeoptCall->setAttributes(DeoptAttributes);
28080b57cec5SDimitry Andric if (NewDeoptCall->getType()->isVoidTy())
28090b57cec5SDimitry Andric Builder.CreateRetVoid();
28100b57cec5SDimitry Andric else
28110b57cec5SDimitry Andric Builder.CreateRet(NewDeoptCall);
28125f757f3fSDimitry Andric // Since the ret type is changed, remove the incompatible attributes.
28135f757f3fSDimitry Andric NewDeoptCall->removeRetAttrs(
28145f757f3fSDimitry Andric AttributeFuncs::typeIncompatible(NewDeoptCall->getType()));
28150b57cec5SDimitry Andric }
28160b57cec5SDimitry Andric
28170b57cec5SDimitry Andric // Leave behind the normal returns so we can merge control flow.
28180b57cec5SDimitry Andric std::swap(Returns, NormalReturns);
28190b57cec5SDimitry Andric }
28200b57cec5SDimitry Andric }
28210b57cec5SDimitry Andric
28220b57cec5SDimitry Andric // Handle any inlined musttail call sites. In order for a new call site to be
28230b57cec5SDimitry Andric // musttail, the source of the clone and the inlined call site must have been
28240b57cec5SDimitry Andric // musttail. Therefore it's safe to return without merging control into the
28250b57cec5SDimitry Andric // phi below.
28260b57cec5SDimitry Andric if (InlinedMustTailCalls) {
28270b57cec5SDimitry Andric // Check if we need to bitcast the result of any musttail calls.
28280b57cec5SDimitry Andric Type *NewRetTy = Caller->getReturnType();
28295ffd83dbSDimitry Andric bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
28300b57cec5SDimitry Andric
28310b57cec5SDimitry Andric // Handle the returns preceded by musttail calls separately.
28320b57cec5SDimitry Andric SmallVector<ReturnInst *, 8> NormalReturns;
28330b57cec5SDimitry Andric for (ReturnInst *RI : Returns) {
28340b57cec5SDimitry Andric CallInst *ReturnedMustTail =
28350b57cec5SDimitry Andric RI->getParent()->getTerminatingMustTailCall();
28360b57cec5SDimitry Andric if (!ReturnedMustTail) {
28370b57cec5SDimitry Andric NormalReturns.push_back(RI);
28380b57cec5SDimitry Andric continue;
28390b57cec5SDimitry Andric }
28400b57cec5SDimitry Andric if (!NeedBitCast)
28410b57cec5SDimitry Andric continue;
28420b57cec5SDimitry Andric
28430b57cec5SDimitry Andric // Delete the old return and any preceding bitcast.
28440b57cec5SDimitry Andric BasicBlock *CurBB = RI->getParent();
28450b57cec5SDimitry Andric auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
28460b57cec5SDimitry Andric RI->eraseFromParent();
28470b57cec5SDimitry Andric if (OldCast)
28480b57cec5SDimitry Andric OldCast->eraseFromParent();
28490b57cec5SDimitry Andric
28500b57cec5SDimitry Andric // Insert a new bitcast and return with the right type.
28510b57cec5SDimitry Andric IRBuilder<> Builder(CurBB);
28520b57cec5SDimitry Andric Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
28530b57cec5SDimitry Andric }
28540b57cec5SDimitry Andric
28550b57cec5SDimitry Andric // Leave behind the normal returns so we can merge control flow.
28560b57cec5SDimitry Andric std::swap(Returns, NormalReturns);
28570b57cec5SDimitry Andric }
28580b57cec5SDimitry Andric
28590b57cec5SDimitry Andric // Now that all of the transforms on the inlined code have taken place but
28600b57cec5SDimitry Andric // before we splice the inlined code into the CFG and lose track of which
28610b57cec5SDimitry Andric // blocks were actually inlined, collect the call sites. We only do this if
28620b57cec5SDimitry Andric // call graph updates weren't requested, as those provide value handle based
2863fe6060f1SDimitry Andric // tracking of inlined call sites instead. Calls to intrinsics are not
2864fe6060f1SDimitry Andric // collected because they are not inlineable.
286506c3fb27SDimitry Andric if (InlinedFunctionInfo.ContainsCalls) {
28660b57cec5SDimitry Andric // Otherwise just collect the raw call sites that were inlined.
28670b57cec5SDimitry Andric for (BasicBlock &NewBB :
28680b57cec5SDimitry Andric make_range(FirstNewBlock->getIterator(), Caller->end()))
28690b57cec5SDimitry Andric for (Instruction &I : NewBB)
28705ffd83dbSDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I))
2871fe6060f1SDimitry Andric if (!(CB->getCalledFunction() &&
2872fe6060f1SDimitry Andric CB->getCalledFunction()->isIntrinsic()))
28735ffd83dbSDimitry Andric IFI.InlinedCallSites.push_back(CB);
28740b57cec5SDimitry Andric }
28750b57cec5SDimitry Andric
28760b57cec5SDimitry Andric // If we cloned in _exactly one_ basic block, and if that block ends in a
28770b57cec5SDimitry Andric // return instruction, we splice the body of the inlined callee directly into
28780b57cec5SDimitry Andric // the calling basic block.
28790b57cec5SDimitry Andric if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
28800b57cec5SDimitry Andric // Move all of the instructions right before the call.
2881bdd1243dSDimitry Andric OrigBB->splice(CB.getIterator(), &*FirstNewBlock, FirstNewBlock->begin(),
2882bdd1243dSDimitry Andric FirstNewBlock->end());
28830b57cec5SDimitry Andric // Remove the cloned basic block.
2884bdd1243dSDimitry Andric Caller->back().eraseFromParent();
28850b57cec5SDimitry Andric
28860b57cec5SDimitry Andric // If the call site was an invoke instruction, add a branch to the normal
28870b57cec5SDimitry Andric // destination.
28885ffd83dbSDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
28890fca6ea1SDimitry Andric BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), CB.getIterator());
28900b57cec5SDimitry Andric NewBr->setDebugLoc(Returns[0]->getDebugLoc());
28910b57cec5SDimitry Andric }
28920b57cec5SDimitry Andric
28930b57cec5SDimitry Andric // If the return instruction returned a value, replace uses of the call with
28940b57cec5SDimitry Andric // uses of the returned value.
28955ffd83dbSDimitry Andric if (!CB.use_empty()) {
28960b57cec5SDimitry Andric ReturnInst *R = Returns[0];
28975ffd83dbSDimitry Andric if (&CB == R->getReturnValue())
289806c3fb27SDimitry Andric CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
28990b57cec5SDimitry Andric else
29005ffd83dbSDimitry Andric CB.replaceAllUsesWith(R->getReturnValue());
29010b57cec5SDimitry Andric }
29020b57cec5SDimitry Andric // Since we are now done with the Call/Invoke, we can delete it.
29035ffd83dbSDimitry Andric CB.eraseFromParent();
29040b57cec5SDimitry Andric
29050b57cec5SDimitry Andric // Since we are now done with the return instruction, delete it also.
29060b57cec5SDimitry Andric Returns[0]->eraseFromParent();
29070b57cec5SDimitry Andric
2908bdd1243dSDimitry Andric if (MergeAttributes)
2909bdd1243dSDimitry Andric AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
2910bdd1243dSDimitry Andric
29110b57cec5SDimitry Andric // We are now done with the inlining.
29125ffd83dbSDimitry Andric return InlineResult::success();
29130b57cec5SDimitry Andric }
29140b57cec5SDimitry Andric
29150b57cec5SDimitry Andric // Otherwise, we have the normal case, of more than one block to inline or
29160b57cec5SDimitry Andric // multiple return sites.
29170b57cec5SDimitry Andric
29180b57cec5SDimitry Andric // We want to clone the entire callee function into the hole between the
29190b57cec5SDimitry Andric // "starter" and "ender" blocks. How we accomplish this depends on whether
29200b57cec5SDimitry Andric // this is an invoke instruction or a call instruction.
29210b57cec5SDimitry Andric BasicBlock *AfterCallBB;
29220b57cec5SDimitry Andric BranchInst *CreatedBranchToNormalDest = nullptr;
29235ffd83dbSDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
29240b57cec5SDimitry Andric
29250b57cec5SDimitry Andric // Add an unconditional branch to make this look like the CallInst case...
29260fca6ea1SDimitry Andric CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), CB.getIterator());
29270b57cec5SDimitry Andric
29280b57cec5SDimitry Andric // Split the basic block. This guarantees that no PHI nodes will have to be
29290b57cec5SDimitry Andric // updated due to new incoming edges, and make the invoke case more
29300b57cec5SDimitry Andric // symmetric to the call case.
29310b57cec5SDimitry Andric AfterCallBB =
29320b57cec5SDimitry Andric OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
29330b57cec5SDimitry Andric CalledFunc->getName() + ".exit");
29340b57cec5SDimitry Andric
29350b57cec5SDimitry Andric } else { // It's a call
29360b57cec5SDimitry Andric // If this is a call instruction, we need to split the basic block that
29370b57cec5SDimitry Andric // the call lives in.
29380b57cec5SDimitry Andric //
29395ffd83dbSDimitry Andric AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
29400b57cec5SDimitry Andric CalledFunc->getName() + ".exit");
29410b57cec5SDimitry Andric }
29420b57cec5SDimitry Andric
29430b57cec5SDimitry Andric if (IFI.CallerBFI) {
29440b57cec5SDimitry Andric // Copy original BB's block frequency to AfterCallBB
29455f757f3fSDimitry Andric IFI.CallerBFI->setBlockFreq(AfterCallBB,
29465f757f3fSDimitry Andric IFI.CallerBFI->getBlockFreq(OrigBB));
29470b57cec5SDimitry Andric }
29480b57cec5SDimitry Andric
29490b57cec5SDimitry Andric // Change the branch that used to go to AfterCallBB to branch to the first
29500b57cec5SDimitry Andric // basic block of the inlined function.
29510b57cec5SDimitry Andric //
29520b57cec5SDimitry Andric Instruction *Br = OrigBB->getTerminator();
29530b57cec5SDimitry Andric assert(Br && Br->getOpcode() == Instruction::Br &&
29540b57cec5SDimitry Andric "splitBasicBlock broken!");
29550b57cec5SDimitry Andric Br->setOperand(0, &*FirstNewBlock);
29560b57cec5SDimitry Andric
29570b57cec5SDimitry Andric // Now that the function is correct, make it a little bit nicer. In
29580b57cec5SDimitry Andric // particular, move the basic blocks inserted from the end of the function
29590b57cec5SDimitry Andric // into the space made by splitting the source basic block.
2960bdd1243dSDimitry Andric Caller->splice(AfterCallBB->getIterator(), Caller, FirstNewBlock,
29610b57cec5SDimitry Andric Caller->end());
29620b57cec5SDimitry Andric
29630b57cec5SDimitry Andric // Handle all of the return instructions that we just cloned in, and eliminate
29640b57cec5SDimitry Andric // any users of the original call/invoke instruction.
29650b57cec5SDimitry Andric Type *RTy = CalledFunc->getReturnType();
29660b57cec5SDimitry Andric
29670b57cec5SDimitry Andric PHINode *PHI = nullptr;
29680b57cec5SDimitry Andric if (Returns.size() > 1) {
29690b57cec5SDimitry Andric // The PHI node should go at the front of the new basic block to merge all
29700b57cec5SDimitry Andric // possible incoming values.
29715ffd83dbSDimitry Andric if (!CB.use_empty()) {
29725f757f3fSDimitry Andric PHI = PHINode::Create(RTy, Returns.size(), CB.getName());
29735f757f3fSDimitry Andric PHI->insertBefore(AfterCallBB->begin());
29740b57cec5SDimitry Andric // Anything that used the result of the function call should now use the
29750b57cec5SDimitry Andric // PHI node as their operand.
29765ffd83dbSDimitry Andric CB.replaceAllUsesWith(PHI);
29770b57cec5SDimitry Andric }
29780b57cec5SDimitry Andric
29790b57cec5SDimitry Andric // Loop over all of the return instructions adding entries to the PHI node
29800b57cec5SDimitry Andric // as appropriate.
29810b57cec5SDimitry Andric if (PHI) {
29820fca6ea1SDimitry Andric for (ReturnInst *RI : Returns) {
29830b57cec5SDimitry Andric assert(RI->getReturnValue()->getType() == PHI->getType() &&
29840b57cec5SDimitry Andric "Ret value not consistent in function!");
29850b57cec5SDimitry Andric PHI->addIncoming(RI->getReturnValue(), RI->getParent());
29860b57cec5SDimitry Andric }
29870b57cec5SDimitry Andric }
29880b57cec5SDimitry Andric
29890b57cec5SDimitry Andric // Add a branch to the merge points and remove return instructions.
29900b57cec5SDimitry Andric DebugLoc Loc;
29910fca6ea1SDimitry Andric for (ReturnInst *RI : Returns) {
29920fca6ea1SDimitry Andric BranchInst *BI = BranchInst::Create(AfterCallBB, RI->getIterator());
29930b57cec5SDimitry Andric Loc = RI->getDebugLoc();
29940b57cec5SDimitry Andric BI->setDebugLoc(Loc);
29950b57cec5SDimitry Andric RI->eraseFromParent();
29960b57cec5SDimitry Andric }
29970b57cec5SDimitry Andric // We need to set the debug location to *somewhere* inside the
29980b57cec5SDimitry Andric // inlined function. The line number may be nonsensical, but the
29990b57cec5SDimitry Andric // instruction will at least be associated with the right
30000b57cec5SDimitry Andric // function.
30010b57cec5SDimitry Andric if (CreatedBranchToNormalDest)
30020b57cec5SDimitry Andric CreatedBranchToNormalDest->setDebugLoc(Loc);
30030b57cec5SDimitry Andric } else if (!Returns.empty()) {
30040b57cec5SDimitry Andric // Otherwise, if there is exactly one return value, just replace anything
30050b57cec5SDimitry Andric // using the return value of the call with the computed value.
30065ffd83dbSDimitry Andric if (!CB.use_empty()) {
30075ffd83dbSDimitry Andric if (&CB == Returns[0]->getReturnValue())
300806c3fb27SDimitry Andric CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
30090b57cec5SDimitry Andric else
30105ffd83dbSDimitry Andric CB.replaceAllUsesWith(Returns[0]->getReturnValue());
30110b57cec5SDimitry Andric }
30120b57cec5SDimitry Andric
30130b57cec5SDimitry Andric // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
30140b57cec5SDimitry Andric BasicBlock *ReturnBB = Returns[0]->getParent();
30150b57cec5SDimitry Andric ReturnBB->replaceAllUsesWith(AfterCallBB);
30160b57cec5SDimitry Andric
30170b57cec5SDimitry Andric // Splice the code from the return block into the block that it will return
30180b57cec5SDimitry Andric // to, which contains the code that was after the call.
3019bdd1243dSDimitry Andric AfterCallBB->splice(AfterCallBB->begin(), ReturnBB);
30200b57cec5SDimitry Andric
30210b57cec5SDimitry Andric if (CreatedBranchToNormalDest)
30220b57cec5SDimitry Andric CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
30230b57cec5SDimitry Andric
30240b57cec5SDimitry Andric // Delete the return instruction now and empty ReturnBB now.
30250b57cec5SDimitry Andric Returns[0]->eraseFromParent();
30260b57cec5SDimitry Andric ReturnBB->eraseFromParent();
30275ffd83dbSDimitry Andric } else if (!CB.use_empty()) {
30280b57cec5SDimitry Andric // No returns, but something is using the return value of the call. Just
30290b57cec5SDimitry Andric // nuke the result.
3030fcaf7f86SDimitry Andric CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
30310b57cec5SDimitry Andric }
30320b57cec5SDimitry Andric
30330b57cec5SDimitry Andric // Since we are now done with the Call/Invoke, we can delete it.
30345ffd83dbSDimitry Andric CB.eraseFromParent();
30350b57cec5SDimitry Andric
30360b57cec5SDimitry Andric // If we inlined any musttail calls and the original return is now
30370b57cec5SDimitry Andric // unreachable, delete it. It can only contain a bitcast and ret.
3038e8d8bef9SDimitry Andric if (InlinedMustTailCalls && pred_empty(AfterCallBB))
30390b57cec5SDimitry Andric AfterCallBB->eraseFromParent();
30400b57cec5SDimitry Andric
30410b57cec5SDimitry Andric // We should always be able to fold the entry block of the function into the
30420b57cec5SDimitry Andric // single predecessor of the block...
30430b57cec5SDimitry Andric assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
30440b57cec5SDimitry Andric BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
30450b57cec5SDimitry Andric
30460b57cec5SDimitry Andric // Splice the code entry block into calling block, right before the
30470b57cec5SDimitry Andric // unconditional branch.
30480b57cec5SDimitry Andric CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
3049bdd1243dSDimitry Andric OrigBB->splice(Br->getIterator(), CalleeEntry);
30500b57cec5SDimitry Andric
30510b57cec5SDimitry Andric // Remove the unconditional branch.
3052bdd1243dSDimitry Andric Br->eraseFromParent();
30530b57cec5SDimitry Andric
30540b57cec5SDimitry Andric // Now we can remove the CalleeEntry block, which is now empty.
3055bdd1243dSDimitry Andric CalleeEntry->eraseFromParent();
30560b57cec5SDimitry Andric
30570b57cec5SDimitry Andric // If we inserted a phi node, check to see if it has a single value (e.g. all
30580b57cec5SDimitry Andric // the entries are the same or undef). If so, remove the PHI so it doesn't
30590b57cec5SDimitry Andric // block other optimizations.
30600b57cec5SDimitry Andric if (PHI) {
30610b57cec5SDimitry Andric AssumptionCache *AC =
30625ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
30630fca6ea1SDimitry Andric auto &DL = Caller->getDataLayout();
306481ad6265SDimitry Andric if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
30650b57cec5SDimitry Andric PHI->replaceAllUsesWith(V);
30660b57cec5SDimitry Andric PHI->eraseFromParent();
30670b57cec5SDimitry Andric }
30680b57cec5SDimitry Andric }
30690b57cec5SDimitry Andric
3070bdd1243dSDimitry Andric if (MergeAttributes)
3071bdd1243dSDimitry Andric AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
3072bdd1243dSDimitry Andric
30735ffd83dbSDimitry Andric return InlineResult::success();
30740b57cec5SDimitry Andric }
3075