xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/FunctionComparator.cpp (revision c0f13232410cf881475d6e4dbd0ec28ab3476c59)
1  //===- FunctionComparator.h - Function Comparator -------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the FunctionComparator and GlobalNumberState classes
10  // which are used by the MergeFunctions pass for comparing functions.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/Transforms/Utils/FunctionComparator.h"
15  #include "llvm/ADT/APFloat.h"
16  #include "llvm/ADT/APInt.h"
17  #include "llvm/ADT/ArrayRef.h"
18  #include "llvm/ADT/Hashing.h"
19  #include "llvm/ADT/SmallPtrSet.h"
20  #include "llvm/ADT/SmallVector.h"
21  #include "llvm/IR/Attributes.h"
22  #include "llvm/IR/BasicBlock.h"
23  #include "llvm/IR/Constant.h"
24  #include "llvm/IR/Constants.h"
25  #include "llvm/IR/DataLayout.h"
26  #include "llvm/IR/DerivedTypes.h"
27  #include "llvm/IR/Function.h"
28  #include "llvm/IR/GlobalValue.h"
29  #include "llvm/IR/InlineAsm.h"
30  #include "llvm/IR/InstrTypes.h"
31  #include "llvm/IR/Instruction.h"
32  #include "llvm/IR/Instructions.h"
33  #include "llvm/IR/LLVMContext.h"
34  #include "llvm/IR/Metadata.h"
35  #include "llvm/IR/Module.h"
36  #include "llvm/IR/Operator.h"
37  #include "llvm/IR/Type.h"
38  #include "llvm/IR/Value.h"
39  #include "llvm/Support/Casting.h"
40  #include "llvm/Support/Compiler.h"
41  #include "llvm/Support/Debug.h"
42  #include "llvm/Support/ErrorHandling.h"
43  #include "llvm/Support/raw_ostream.h"
44  #include <cassert>
45  #include <cstddef>
46  #include <cstdint>
47  #include <utility>
48  
49  using namespace llvm;
50  
51  #define DEBUG_TYPE "functioncomparator"
52  
53  int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
54    if (L < R)
55      return -1;
56    if (L > R)
57      return 1;
58    return 0;
59  }
60  
61  int FunctionComparator::cmpAligns(Align L, Align R) const {
62    if (L.value() < R.value())
63      return -1;
64    if (L.value() > R.value())
65      return 1;
66    return 0;
67  }
68  
69  int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
70    if ((int)L < (int)R)
71      return -1;
72    if ((int)L > (int)R)
73      return 1;
74    return 0;
75  }
76  
77  int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
78    if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
79      return Res;
80    if (L.ugt(R))
81      return 1;
82    if (R.ugt(L))
83      return -1;
84    return 0;
85  }
86  
87  int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
88    // Floats are ordered first by semantics (i.e. float, double, half, etc.),
89    // then by value interpreted as a bitstring (aka APInt).
90    const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
91    if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
92                             APFloat::semanticsPrecision(SR)))
93      return Res;
94    if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
95                             APFloat::semanticsMaxExponent(SR)))
96      return Res;
97    if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
98                             APFloat::semanticsMinExponent(SR)))
99      return Res;
100    if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
101                             APFloat::semanticsSizeInBits(SR)))
102      return Res;
103    return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
104  }
105  
106  int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
107    // Prevent heavy comparison, compare sizes first.
108    if (int Res = cmpNumbers(L.size(), R.size()))
109      return Res;
110  
111    // Compare strings lexicographically only when it is necessary: only when
112    // strings are equal in size.
113    return std::clamp(L.compare(R), -1, 1);
114  }
115  
116  int FunctionComparator::cmpAttrs(const AttributeList L,
117                                   const AttributeList R) const {
118    if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
119      return Res;
120  
121    for (unsigned i : L.indexes()) {
122      AttributeSet LAS = L.getAttributes(i);
123      AttributeSet RAS = R.getAttributes(i);
124      AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
125      AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
126      for (; LI != LE && RI != RE; ++LI, ++RI) {
127        Attribute LA = *LI;
128        Attribute RA = *RI;
129        if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
130          if (LA.getKindAsEnum() != RA.getKindAsEnum())
131            return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
132  
133          Type *TyL = LA.getValueAsType();
134          Type *TyR = RA.getValueAsType();
135          if (TyL && TyR) {
136            if (int Res = cmpTypes(TyL, TyR))
137              return Res;
138            continue;
139          }
140  
141          // Two pointers, at least one null, so the comparison result is
142          // independent of the value of a real pointer.
143          if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR))
144            return Res;
145          continue;
146        }
147        if (LA < RA)
148          return -1;
149        if (RA < LA)
150          return 1;
151      }
152      if (LI != LE)
153        return 1;
154      if (RI != RE)
155        return -1;
156    }
157    return 0;
158  }
159  
160  int FunctionComparator::cmpMetadata(const Metadata *L,
161                                      const Metadata *R) const {
162    // TODO: the following routine coerce the metadata contents into constants
163    // or MDStrings before comparison.
164    // It ignores any other cases, so that the metadata nodes are considered
165    // equal even though this is not correct.
166    // We should structurally compare the metadata nodes to be perfect here.
167  
168    auto *MDStringL = dyn_cast<MDString>(L);
169    auto *MDStringR = dyn_cast<MDString>(R);
170    if (MDStringL && MDStringR) {
171      if (MDStringL == MDStringR)
172        return 0;
173      return MDStringL->getString().compare(MDStringR->getString());
174    }
175    if (MDStringR)
176      return -1;
177    if (MDStringL)
178      return 1;
179  
180    auto *CL = dyn_cast<ConstantAsMetadata>(L);
181    auto *CR = dyn_cast<ConstantAsMetadata>(R);
182    if (CL == CR)
183      return 0;
184    if (!CL)
185      return -1;
186    if (!CR)
187      return 1;
188    return cmpConstants(CL->getValue(), CR->getValue());
189  }
190  
191  int FunctionComparator::cmpMDNode(const MDNode *L, const MDNode *R) const {
192    if (L == R)
193      return 0;
194    if (!L)
195      return -1;
196    if (!R)
197      return 1;
198    // TODO: Note that as this is metadata, it is possible to drop and/or merge
199    // this data when considering functions to merge. Thus this comparison would
200    // return 0 (i.e. equivalent), but merging would become more complicated
201    // because the ranges would need to be unioned. It is not likely that
202    // functions differ ONLY in this metadata if they are actually the same
203    // function semantically.
204    if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
205      return Res;
206    for (size_t I = 0; I < L->getNumOperands(); ++I)
207      if (int Res = cmpMetadata(L->getOperand(I), R->getOperand(I)))
208        return Res;
209    return 0;
210  }
211  
212  int FunctionComparator::cmpInstMetadata(Instruction const *L,
213                                          Instruction const *R) const {
214    /// These metadata affects the other optimization passes by making assertions
215    /// or constraints.
216    /// Values that carry different expectations should be considered different.
217    SmallVector<std::pair<unsigned, MDNode *>> MDL, MDR;
218    L->getAllMetadataOtherThanDebugLoc(MDL);
219    R->getAllMetadataOtherThanDebugLoc(MDR);
220    if (MDL.size() > MDR.size())
221      return 1;
222    else if (MDL.size() < MDR.size())
223      return -1;
224    for (size_t I = 0, N = MDL.size(); I < N; ++I) {
225      auto const [KeyL, ML] = MDL[I];
226      auto const [KeyR, MR] = MDR[I];
227      if (int Res = cmpNumbers(KeyL, KeyR))
228        return Res;
229      if (int Res = cmpMDNode(ML, MR))
230        return Res;
231    }
232    return 0;
233  }
234  
235  int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
236                                                  const CallBase &RCS) const {
237    assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
238  
239    if (int Res =
240            cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
241      return Res;
242  
243    for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
244      auto OBL = LCS.getOperandBundleAt(I);
245      auto OBR = RCS.getOperandBundleAt(I);
246  
247      if (int Res = OBL.getTagName().compare(OBR.getTagName()))
248        return Res;
249  
250      if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
251        return Res;
252    }
253  
254    return 0;
255  }
256  
257  /// Constants comparison:
258  /// 1. Check whether type of L constant could be losslessly bitcasted to R
259  /// type.
260  /// 2. Compare constant contents.
261  /// For more details see declaration comments.
262  int FunctionComparator::cmpConstants(const Constant *L,
263                                       const Constant *R) const {
264    Type *TyL = L->getType();
265    Type *TyR = R->getType();
266  
267    // Check whether types are bitcastable. This part is just re-factored
268    // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
269    // we also pack into result which type is "less" for us.
270    int TypesRes = cmpTypes(TyL, TyR);
271    if (TypesRes != 0) {
272      // Types are different, but check whether we can bitcast them.
273      if (!TyL->isFirstClassType()) {
274        if (TyR->isFirstClassType())
275          return -1;
276        // Neither TyL nor TyR are values of first class type. Return the result
277        // of comparing the types
278        return TypesRes;
279      }
280      if (!TyR->isFirstClassType()) {
281        if (TyL->isFirstClassType())
282          return 1;
283        return TypesRes;
284      }
285  
286      // Vector -> Vector conversions are always lossless if the two vector types
287      // have the same size, otherwise not.
288      unsigned TyLWidth = 0;
289      unsigned TyRWidth = 0;
290  
291      if (auto *VecTyL = dyn_cast<VectorType>(TyL))
292        TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue();
293      if (auto *VecTyR = dyn_cast<VectorType>(TyR))
294        TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue();
295  
296      if (TyLWidth != TyRWidth)
297        return cmpNumbers(TyLWidth, TyRWidth);
298  
299      // Zero bit-width means neither TyL nor TyR are vectors.
300      if (!TyLWidth) {
301        PointerType *PTyL = dyn_cast<PointerType>(TyL);
302        PointerType *PTyR = dyn_cast<PointerType>(TyR);
303        if (PTyL && PTyR) {
304          unsigned AddrSpaceL = PTyL->getAddressSpace();
305          unsigned AddrSpaceR = PTyR->getAddressSpace();
306          if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
307            return Res;
308        }
309        if (PTyL)
310          return 1;
311        if (PTyR)
312          return -1;
313  
314        // TyL and TyR aren't vectors, nor pointers. We don't know how to
315        // bitcast them.
316        return TypesRes;
317      }
318    }
319  
320    // OK, types are bitcastable, now check constant contents.
321  
322    if (L->isNullValue() && R->isNullValue())
323      return TypesRes;
324    if (L->isNullValue() && !R->isNullValue())
325      return 1;
326    if (!L->isNullValue() && R->isNullValue())
327      return -1;
328  
329    auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
330    auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
331    if (GlobalValueL && GlobalValueR) {
332      return cmpGlobalValues(GlobalValueL, GlobalValueR);
333    }
334  
335    if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
336      return Res;
337  
338    if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
339      const auto *SeqR = cast<ConstantDataSequential>(R);
340      // This handles ConstantDataArray and ConstantDataVector. Note that we
341      // compare the two raw data arrays, which might differ depending on the host
342      // endianness. This isn't a problem though, because the endiness of a module
343      // will affect the order of the constants, but this order is the same
344      // for a given input module and host platform.
345      return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
346    }
347  
348    switch (L->getValueID()) {
349    case Value::UndefValueVal:
350    case Value::PoisonValueVal:
351    case Value::ConstantTokenNoneVal:
352      return TypesRes;
353    case Value::ConstantIntVal: {
354      const APInt &LInt = cast<ConstantInt>(L)->getValue();
355      const APInt &RInt = cast<ConstantInt>(R)->getValue();
356      return cmpAPInts(LInt, RInt);
357    }
358    case Value::ConstantFPVal: {
359      const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
360      const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
361      return cmpAPFloats(LAPF, RAPF);
362    }
363    case Value::ConstantArrayVal: {
364      const ConstantArray *LA = cast<ConstantArray>(L);
365      const ConstantArray *RA = cast<ConstantArray>(R);
366      uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
367      uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
368      if (int Res = cmpNumbers(NumElementsL, NumElementsR))
369        return Res;
370      for (uint64_t i = 0; i < NumElementsL; ++i) {
371        if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
372                                   cast<Constant>(RA->getOperand(i))))
373          return Res;
374      }
375      return 0;
376    }
377    case Value::ConstantStructVal: {
378      const ConstantStruct *LS = cast<ConstantStruct>(L);
379      const ConstantStruct *RS = cast<ConstantStruct>(R);
380      unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
381      unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
382      if (int Res = cmpNumbers(NumElementsL, NumElementsR))
383        return Res;
384      for (unsigned i = 0; i != NumElementsL; ++i) {
385        if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
386                                   cast<Constant>(RS->getOperand(i))))
387          return Res;
388      }
389      return 0;
390    }
391    case Value::ConstantVectorVal: {
392      const ConstantVector *LV = cast<ConstantVector>(L);
393      const ConstantVector *RV = cast<ConstantVector>(R);
394      unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
395      unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
396      if (int Res = cmpNumbers(NumElementsL, NumElementsR))
397        return Res;
398      for (uint64_t i = 0; i < NumElementsL; ++i) {
399        if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
400                                   cast<Constant>(RV->getOperand(i))))
401          return Res;
402      }
403      return 0;
404    }
405    case Value::ConstantExprVal: {
406      const ConstantExpr *LE = cast<ConstantExpr>(L);
407      const ConstantExpr *RE = cast<ConstantExpr>(R);
408      if (int Res = cmpNumbers(LE->getOpcode(), RE->getOpcode()))
409        return Res;
410      unsigned NumOperandsL = LE->getNumOperands();
411      unsigned NumOperandsR = RE->getNumOperands();
412      if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
413        return Res;
414      for (unsigned i = 0; i < NumOperandsL; ++i) {
415        if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
416                                   cast<Constant>(RE->getOperand(i))))
417          return Res;
418      }
419      if (LE->isCompare())
420        if (int Res = cmpNumbers(LE->getPredicate(), RE->getPredicate()))
421          return Res;
422      if (auto *GEPL = dyn_cast<GEPOperator>(LE)) {
423        auto *GEPR = cast<GEPOperator>(RE);
424        if (int Res = cmpTypes(GEPL->getSourceElementType(),
425                               GEPR->getSourceElementType()))
426          return Res;
427        if (int Res = cmpNumbers(GEPL->isInBounds(), GEPR->isInBounds()))
428          return Res;
429        if (int Res = cmpNumbers(GEPL->getInRangeIndex().value_or(unsigned(-1)),
430                                 GEPR->getInRangeIndex().value_or(unsigned(-1))))
431          return Res;
432      }
433      if (auto *OBOL = dyn_cast<OverflowingBinaryOperator>(LE)) {
434        auto *OBOR = cast<OverflowingBinaryOperator>(RE);
435        if (int Res =
436                cmpNumbers(OBOL->hasNoUnsignedWrap(), OBOR->hasNoUnsignedWrap()))
437          return Res;
438        if (int Res =
439                cmpNumbers(OBOL->hasNoSignedWrap(), OBOR->hasNoSignedWrap()))
440          return Res;
441      }
442      return 0;
443    }
444    case Value::BlockAddressVal: {
445      const BlockAddress *LBA = cast<BlockAddress>(L);
446      const BlockAddress *RBA = cast<BlockAddress>(R);
447      if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
448        return Res;
449      if (LBA->getFunction() == RBA->getFunction()) {
450        // They are BBs in the same function. Order by which comes first in the
451        // BB order of the function. This order is deterministic.
452        Function *F = LBA->getFunction();
453        BasicBlock *LBB = LBA->getBasicBlock();
454        BasicBlock *RBB = RBA->getBasicBlock();
455        if (LBB == RBB)
456          return 0;
457        for (BasicBlock &BB : *F) {
458          if (&BB == LBB) {
459            assert(&BB != RBB);
460            return -1;
461          }
462          if (&BB == RBB)
463            return 1;
464        }
465        llvm_unreachable("Basic Block Address does not point to a basic block in "
466                         "its function.");
467        return -1;
468      } else {
469        // cmpValues said the functions are the same. So because they aren't
470        // literally the same pointer, they must respectively be the left and
471        // right functions.
472        assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
473        // cmpValues will tell us if these are equivalent BasicBlocks, in the
474        // context of their respective functions.
475        return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
476      }
477    }
478    case Value::DSOLocalEquivalentVal: {
479      // dso_local_equivalent is functionally equivalent to whatever it points to.
480      // This means the behavior of the IR should be the exact same as if the
481      // function was referenced directly rather than through a
482      // dso_local_equivalent.
483      const auto *LEquiv = cast<DSOLocalEquivalent>(L);
484      const auto *REquiv = cast<DSOLocalEquivalent>(R);
485      return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue());
486    }
487    default: // Unknown constant, abort.
488      LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
489      llvm_unreachable("Constant ValueID not recognized.");
490      return -1;
491    }
492  }
493  
494  int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
495    uint64_t LNumber = GlobalNumbers->getNumber(L);
496    uint64_t RNumber = GlobalNumbers->getNumber(R);
497    return cmpNumbers(LNumber, RNumber);
498  }
499  
500  /// cmpType - compares two types,
501  /// defines total ordering among the types set.
502  /// See method declaration comments for more details.
503  int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
504    PointerType *PTyL = dyn_cast<PointerType>(TyL);
505    PointerType *PTyR = dyn_cast<PointerType>(TyR);
506  
507    const DataLayout &DL = FnL->getParent()->getDataLayout();
508    if (PTyL && PTyL->getAddressSpace() == 0)
509      TyL = DL.getIntPtrType(TyL);
510    if (PTyR && PTyR->getAddressSpace() == 0)
511      TyR = DL.getIntPtrType(TyR);
512  
513    if (TyL == TyR)
514      return 0;
515  
516    if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
517      return Res;
518  
519    switch (TyL->getTypeID()) {
520    default:
521      llvm_unreachable("Unknown type!");
522    case Type::IntegerTyID:
523      return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
524                        cast<IntegerType>(TyR)->getBitWidth());
525    // TyL == TyR would have returned true earlier, because types are uniqued.
526    case Type::VoidTyID:
527    case Type::FloatTyID:
528    case Type::DoubleTyID:
529    case Type::X86_FP80TyID:
530    case Type::FP128TyID:
531    case Type::PPC_FP128TyID:
532    case Type::LabelTyID:
533    case Type::MetadataTyID:
534    case Type::TokenTyID:
535      return 0;
536  
537    case Type::PointerTyID:
538      assert(PTyL && PTyR && "Both types must be pointers here.");
539      return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
540  
541    case Type::StructTyID: {
542      StructType *STyL = cast<StructType>(TyL);
543      StructType *STyR = cast<StructType>(TyR);
544      if (STyL->getNumElements() != STyR->getNumElements())
545        return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
546  
547      if (STyL->isPacked() != STyR->isPacked())
548        return cmpNumbers(STyL->isPacked(), STyR->isPacked());
549  
550      for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
551        if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
552          return Res;
553      }
554      return 0;
555    }
556  
557    case Type::FunctionTyID: {
558      FunctionType *FTyL = cast<FunctionType>(TyL);
559      FunctionType *FTyR = cast<FunctionType>(TyR);
560      if (FTyL->getNumParams() != FTyR->getNumParams())
561        return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
562  
563      if (FTyL->isVarArg() != FTyR->isVarArg())
564        return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
565  
566      if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
567        return Res;
568  
569      for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
570        if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
571          return Res;
572      }
573      return 0;
574    }
575  
576    case Type::ArrayTyID: {
577      auto *STyL = cast<ArrayType>(TyL);
578      auto *STyR = cast<ArrayType>(TyR);
579      if (STyL->getNumElements() != STyR->getNumElements())
580        return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
581      return cmpTypes(STyL->getElementType(), STyR->getElementType());
582    }
583    case Type::FixedVectorTyID:
584    case Type::ScalableVectorTyID: {
585      auto *STyL = cast<VectorType>(TyL);
586      auto *STyR = cast<VectorType>(TyR);
587      if (STyL->getElementCount().isScalable() !=
588          STyR->getElementCount().isScalable())
589        return cmpNumbers(STyL->getElementCount().isScalable(),
590                          STyR->getElementCount().isScalable());
591      if (STyL->getElementCount() != STyR->getElementCount())
592        return cmpNumbers(STyL->getElementCount().getKnownMinValue(),
593                          STyR->getElementCount().getKnownMinValue());
594      return cmpTypes(STyL->getElementType(), STyR->getElementType());
595    }
596    }
597  }
598  
599  // Determine whether the two operations are the same except that pointer-to-A
600  // and pointer-to-B are equivalent. This should be kept in sync with
601  // Instruction::isSameOperationAs.
602  // Read method declaration comments for more details.
603  int FunctionComparator::cmpOperations(const Instruction *L,
604                                        const Instruction *R,
605                                        bool &needToCmpOperands) const {
606    needToCmpOperands = true;
607    if (int Res = cmpValues(L, R))
608      return Res;
609  
610    // Differences from Instruction::isSameOperationAs:
611    //  * replace type comparison with calls to cmpTypes.
612    //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
613    //  * because of the above, we don't test for the tail bit on calls later on.
614    if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
615      return Res;
616  
617    if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
618      needToCmpOperands = false;
619      const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
620      if (int Res =
621              cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
622        return Res;
623      return cmpGEPs(GEPL, GEPR);
624    }
625  
626    if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
627      return Res;
628  
629    if (int Res = cmpTypes(L->getType(), R->getType()))
630      return Res;
631  
632    if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
633                             R->getRawSubclassOptionalData()))
634      return Res;
635  
636    // We have two instructions of identical opcode and #operands.  Check to see
637    // if all operands are the same type
638    for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
639      if (int Res =
640              cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
641        return Res;
642    }
643  
644    // Check special state that is a part of some instructions.
645    if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
646      if (int Res = cmpTypes(AI->getAllocatedType(),
647                             cast<AllocaInst>(R)->getAllocatedType()))
648        return Res;
649      return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign());
650    }
651    if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
652      if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
653        return Res;
654      if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign()))
655        return Res;
656      if (int Res =
657              cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
658        return Res;
659      if (int Res = cmpNumbers(LI->getSyncScopeID(),
660                               cast<LoadInst>(R)->getSyncScopeID()))
661        return Res;
662      return cmpInstMetadata(L, R);
663    }
664    if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
665      if (int Res =
666              cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
667        return Res;
668      if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign()))
669        return Res;
670      if (int Res =
671              cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
672        return Res;
673      return cmpNumbers(SI->getSyncScopeID(),
674                        cast<StoreInst>(R)->getSyncScopeID());
675    }
676    if (const CmpInst *CI = dyn_cast<CmpInst>(L))
677      return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
678    if (auto *CBL = dyn_cast<CallBase>(L)) {
679      auto *CBR = cast<CallBase>(R);
680      if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
681        return Res;
682      if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
683        return Res;
684      if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
685        return Res;
686      if (const CallInst *CI = dyn_cast<CallInst>(L))
687        if (int Res = cmpNumbers(CI->getTailCallKind(),
688                                 cast<CallInst>(R)->getTailCallKind()))
689          return Res;
690      return cmpMDNode(L->getMetadata(LLVMContext::MD_range),
691                       R->getMetadata(LLVMContext::MD_range));
692    }
693    if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
694      ArrayRef<unsigned> LIndices = IVI->getIndices();
695      ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
696      if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
697        return Res;
698      for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
699        if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
700          return Res;
701      }
702      return 0;
703    }
704    if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
705      ArrayRef<unsigned> LIndices = EVI->getIndices();
706      ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
707      if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
708        return Res;
709      for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
710        if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
711          return Res;
712      }
713    }
714    if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
715      if (int Res =
716              cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
717        return Res;
718      return cmpNumbers(FI->getSyncScopeID(),
719                        cast<FenceInst>(R)->getSyncScopeID());
720    }
721    if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
722      if (int Res = cmpNumbers(CXI->isVolatile(),
723                               cast<AtomicCmpXchgInst>(R)->isVolatile()))
724        return Res;
725      if (int Res =
726              cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
727        return Res;
728      if (int Res =
729              cmpOrderings(CXI->getSuccessOrdering(),
730                           cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
731        return Res;
732      if (int Res =
733              cmpOrderings(CXI->getFailureOrdering(),
734                           cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
735        return Res;
736      return cmpNumbers(CXI->getSyncScopeID(),
737                        cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
738    }
739    if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
740      if (int Res = cmpNumbers(RMWI->getOperation(),
741                               cast<AtomicRMWInst>(R)->getOperation()))
742        return Res;
743      if (int Res = cmpNumbers(RMWI->isVolatile(),
744                               cast<AtomicRMWInst>(R)->isVolatile()))
745        return Res;
746      if (int Res = cmpOrderings(RMWI->getOrdering(),
747                                 cast<AtomicRMWInst>(R)->getOrdering()))
748        return Res;
749      return cmpNumbers(RMWI->getSyncScopeID(),
750                        cast<AtomicRMWInst>(R)->getSyncScopeID());
751    }
752    if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
753      ArrayRef<int> LMask = SVI->getShuffleMask();
754      ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
755      if (int Res = cmpNumbers(LMask.size(), RMask.size()))
756        return Res;
757      for (size_t i = 0, e = LMask.size(); i != e; ++i) {
758        if (int Res = cmpNumbers(LMask[i], RMask[i]))
759          return Res;
760      }
761    }
762    if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
763      const PHINode *PNR = cast<PHINode>(R);
764      // Ensure that in addition to the incoming values being identical
765      // (checked by the caller of this function), the incoming blocks
766      // are also identical.
767      for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
768        if (int Res =
769                cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
770          return Res;
771      }
772    }
773    return 0;
774  }
775  
776  // Determine whether two GEP operations perform the same underlying arithmetic.
777  // Read method declaration comments for more details.
778  int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
779                                  const GEPOperator *GEPR) const {
780    unsigned int ASL = GEPL->getPointerAddressSpace();
781    unsigned int ASR = GEPR->getPointerAddressSpace();
782  
783    if (int Res = cmpNumbers(ASL, ASR))
784      return Res;
785  
786    // When we have target data, we can reduce the GEP down to the value in bytes
787    // added to the address.
788    const DataLayout &DL = FnL->getParent()->getDataLayout();
789    unsigned OffsetBitWidth = DL.getIndexSizeInBits(ASL);
790    APInt OffsetL(OffsetBitWidth, 0), OffsetR(OffsetBitWidth, 0);
791    if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
792        GEPR->accumulateConstantOffset(DL, OffsetR))
793      return cmpAPInts(OffsetL, OffsetR);
794    if (int Res =
795            cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
796      return Res;
797  
798    if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
799      return Res;
800  
801    for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
802      if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
803        return Res;
804    }
805  
806    return 0;
807  }
808  
809  int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
810                                       const InlineAsm *R) const {
811    // InlineAsm's are uniqued. If they are the same pointer, obviously they are
812    // the same, otherwise compare the fields.
813    if (L == R)
814      return 0;
815    if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
816      return Res;
817    if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
818      return Res;
819    if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
820      return Res;
821    if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
822      return Res;
823    if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
824      return Res;
825    if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
826      return Res;
827    assert(L->getFunctionType() != R->getFunctionType());
828    return 0;
829  }
830  
831  /// Compare two values used by the two functions under pair-wise comparison. If
832  /// this is the first time the values are seen, they're added to the mapping so
833  /// that we will detect mismatches on next use.
834  /// See comments in declaration for more details.
835  int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
836    // Catch self-reference case.
837    if (L == FnL) {
838      if (R == FnR)
839        return 0;
840      return -1;
841    }
842    if (R == FnR) {
843      if (L == FnL)
844        return 0;
845      return 1;
846    }
847  
848    const Constant *ConstL = dyn_cast<Constant>(L);
849    const Constant *ConstR = dyn_cast<Constant>(R);
850    if (ConstL && ConstR) {
851      if (L == R)
852        return 0;
853      return cmpConstants(ConstL, ConstR);
854    }
855  
856    if (ConstL)
857      return 1;
858    if (ConstR)
859      return -1;
860  
861    const MetadataAsValue *MetadataValueL = dyn_cast<MetadataAsValue>(L);
862    const MetadataAsValue *MetadataValueR = dyn_cast<MetadataAsValue>(R);
863    if (MetadataValueL && MetadataValueR) {
864      if (MetadataValueL == MetadataValueR)
865        return 0;
866  
867      return cmpMetadata(MetadataValueL->getMetadata(),
868                         MetadataValueR->getMetadata());
869    }
870  
871    if (MetadataValueL)
872      return 1;
873    if (MetadataValueR)
874      return -1;
875  
876    const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
877    const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
878  
879    if (InlineAsmL && InlineAsmR)
880      return cmpInlineAsm(InlineAsmL, InlineAsmR);
881    if (InlineAsmL)
882      return 1;
883    if (InlineAsmR)
884      return -1;
885  
886    auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
887         RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
888  
889    return cmpNumbers(LeftSN.first->second, RightSN.first->second);
890  }
891  
892  // Test whether two basic blocks have equivalent behaviour.
893  int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
894                                         const BasicBlock *BBR) const {
895    BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
896    BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
897  
898    do {
899      bool needToCmpOperands = true;
900      if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
901        return Res;
902      if (needToCmpOperands) {
903        assert(InstL->getNumOperands() == InstR->getNumOperands());
904  
905        for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
906          Value *OpL = InstL->getOperand(i);
907          Value *OpR = InstR->getOperand(i);
908          if (int Res = cmpValues(OpL, OpR))
909            return Res;
910          // cmpValues should ensure this is true.
911          assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
912        }
913      }
914  
915      ++InstL;
916      ++InstR;
917    } while (InstL != InstLE && InstR != InstRE);
918  
919    if (InstL != InstLE && InstR == InstRE)
920      return 1;
921    if (InstL == InstLE && InstR != InstRE)
922      return -1;
923    return 0;
924  }
925  
926  int FunctionComparator::compareSignature() const {
927    if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
928      return Res;
929  
930    if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
931      return Res;
932  
933    if (FnL->hasGC()) {
934      if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
935        return Res;
936    }
937  
938    if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
939      return Res;
940  
941    if (FnL->hasSection()) {
942      if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
943        return Res;
944    }
945  
946    if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
947      return Res;
948  
949    // TODO: if it's internal and only used in direct calls, we could handle this
950    // case too.
951    if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
952      return Res;
953  
954    if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
955      return Res;
956  
957    assert(FnL->arg_size() == FnR->arg_size() &&
958           "Identically typed functions have different numbers of args!");
959  
960    // Visit the arguments so that they get enumerated in the order they're
961    // passed in.
962    for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
963                                      ArgRI = FnR->arg_begin(),
964                                      ArgLE = FnL->arg_end();
965         ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
966      if (cmpValues(&*ArgLI, &*ArgRI) != 0)
967        llvm_unreachable("Arguments repeat!");
968    }
969    return 0;
970  }
971  
972  // Test whether the two functions have equivalent behaviour.
973  int FunctionComparator::compare() {
974    beginCompare();
975  
976    if (int Res = compareSignature())
977      return Res;
978  
979    // We do a CFG-ordered walk since the actual ordering of the blocks in the
980    // linked list is immaterial. Our walk starts at the entry block for both
981    // functions, then takes each block from each terminator in order. As an
982    // artifact, this also means that unreachable blocks are ignored.
983    SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
984    SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
985  
986    FnLBBs.push_back(&FnL->getEntryBlock());
987    FnRBBs.push_back(&FnR->getEntryBlock());
988  
989    VisitedBBs.insert(FnLBBs[0]);
990    while (!FnLBBs.empty()) {
991      const BasicBlock *BBL = FnLBBs.pop_back_val();
992      const BasicBlock *BBR = FnRBBs.pop_back_val();
993  
994      if (int Res = cmpValues(BBL, BBR))
995        return Res;
996  
997      if (int Res = cmpBasicBlocks(BBL, BBR))
998        return Res;
999  
1000      const Instruction *TermL = BBL->getTerminator();
1001      const Instruction *TermR = BBR->getTerminator();
1002  
1003      assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1004      for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1005        if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1006          continue;
1007  
1008        FnLBBs.push_back(TermL->getSuccessor(i));
1009        FnRBBs.push_back(TermR->getSuccessor(i));
1010      }
1011    }
1012    return 0;
1013  }
1014