1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the FunctionComparator and GlobalNumberState classes 10 // which are used by the MergeFunctions pass for comparing functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/FunctionComparator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "functioncomparator" 52 53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 54 if (L < R) 55 return -1; 56 if (L > R) 57 return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpAligns(Align L, Align R) const { 62 if (L.value() < R.value()) 63 return -1; 64 if (L.value() > R.value()) 65 return 1; 66 return 0; 67 } 68 69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 70 if ((int)L < (int)R) 71 return -1; 72 if ((int)L > (int)R) 73 return 1; 74 return 0; 75 } 76 77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 78 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 79 return Res; 80 if (L.ugt(R)) 81 return 1; 82 if (R.ugt(L)) 83 return -1; 84 return 0; 85 } 86 87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 88 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 89 // then by value interpreted as a bitstring (aka APInt). 90 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 91 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 92 APFloat::semanticsPrecision(SR))) 93 return Res; 94 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 95 APFloat::semanticsMaxExponent(SR))) 96 return Res; 97 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 98 APFloat::semanticsMinExponent(SR))) 99 return Res; 100 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 101 APFloat::semanticsSizeInBits(SR))) 102 return Res; 103 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 104 } 105 106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 107 // Prevent heavy comparison, compare sizes first. 108 if (int Res = cmpNumbers(L.size(), R.size())) 109 return Res; 110 111 // Compare strings lexicographically only when it is necessary: only when 112 // strings are equal in size. 113 return std::clamp(L.compare(R), -1, 1); 114 } 115 116 int FunctionComparator::cmpAttrs(const AttributeList L, 117 const AttributeList R) const { 118 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 119 return Res; 120 121 for (unsigned i : L.indexes()) { 122 AttributeSet LAS = L.getAttributes(i); 123 AttributeSet RAS = R.getAttributes(i); 124 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 125 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 126 for (; LI != LE && RI != RE; ++LI, ++RI) { 127 Attribute LA = *LI; 128 Attribute RA = *RI; 129 if (LA.isTypeAttribute() && RA.isTypeAttribute()) { 130 if (LA.getKindAsEnum() != RA.getKindAsEnum()) 131 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); 132 133 Type *TyL = LA.getValueAsType(); 134 Type *TyR = RA.getValueAsType(); 135 if (TyL && TyR) { 136 if (int Res = cmpTypes(TyL, TyR)) 137 return Res; 138 continue; 139 } 140 141 // Two pointers, at least one null, so the comparison result is 142 // independent of the value of a real pointer. 143 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR)) 144 return Res; 145 continue; 146 } 147 if (LA < RA) 148 return -1; 149 if (RA < LA) 150 return 1; 151 } 152 if (LI != LE) 153 return 1; 154 if (RI != RE) 155 return -1; 156 } 157 return 0; 158 } 159 160 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 161 const MDNode *R) const { 162 if (L == R) 163 return 0; 164 if (!L) 165 return -1; 166 if (!R) 167 return 1; 168 // Range metadata is a sequence of numbers. Make sure they are the same 169 // sequence. 170 // TODO: Note that as this is metadata, it is possible to drop and/or merge 171 // this data when considering functions to merge. Thus this comparison would 172 // return 0 (i.e. equivalent), but merging would become more complicated 173 // because the ranges would need to be unioned. It is not likely that 174 // functions differ ONLY in this metadata if they are actually the same 175 // function semantically. 176 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 177 return Res; 178 for (size_t I = 0; I < L->getNumOperands(); ++I) { 179 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 180 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 181 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 182 return Res; 183 } 184 return 0; 185 } 186 187 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS, 188 const CallBase &RCS) const { 189 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!"); 190 191 if (int Res = 192 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 193 return Res; 194 195 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) { 196 auto OBL = LCS.getOperandBundleAt(I); 197 auto OBR = RCS.getOperandBundleAt(I); 198 199 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 200 return Res; 201 202 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 203 return Res; 204 } 205 206 return 0; 207 } 208 209 /// Constants comparison: 210 /// 1. Check whether type of L constant could be losslessly bitcasted to R 211 /// type. 212 /// 2. Compare constant contents. 213 /// For more details see declaration comments. 214 int FunctionComparator::cmpConstants(const Constant *L, 215 const Constant *R) const { 216 Type *TyL = L->getType(); 217 Type *TyR = R->getType(); 218 219 // Check whether types are bitcastable. This part is just re-factored 220 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 221 // we also pack into result which type is "less" for us. 222 int TypesRes = cmpTypes(TyL, TyR); 223 if (TypesRes != 0) { 224 // Types are different, but check whether we can bitcast them. 225 if (!TyL->isFirstClassType()) { 226 if (TyR->isFirstClassType()) 227 return -1; 228 // Neither TyL nor TyR are values of first class type. Return the result 229 // of comparing the types 230 return TypesRes; 231 } 232 if (!TyR->isFirstClassType()) { 233 if (TyL->isFirstClassType()) 234 return 1; 235 return TypesRes; 236 } 237 238 // Vector -> Vector conversions are always lossless if the two vector types 239 // have the same size, otherwise not. 240 unsigned TyLWidth = 0; 241 unsigned TyRWidth = 0; 242 243 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 244 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue(); 245 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 246 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue(); 247 248 if (TyLWidth != TyRWidth) 249 return cmpNumbers(TyLWidth, TyRWidth); 250 251 // Zero bit-width means neither TyL nor TyR are vectors. 252 if (!TyLWidth) { 253 PointerType *PTyL = dyn_cast<PointerType>(TyL); 254 PointerType *PTyR = dyn_cast<PointerType>(TyR); 255 if (PTyL && PTyR) { 256 unsigned AddrSpaceL = PTyL->getAddressSpace(); 257 unsigned AddrSpaceR = PTyR->getAddressSpace(); 258 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 259 return Res; 260 } 261 if (PTyL) 262 return 1; 263 if (PTyR) 264 return -1; 265 266 // TyL and TyR aren't vectors, nor pointers. We don't know how to 267 // bitcast them. 268 return TypesRes; 269 } 270 } 271 272 // OK, types are bitcastable, now check constant contents. 273 274 if (L->isNullValue() && R->isNullValue()) 275 return TypesRes; 276 if (L->isNullValue() && !R->isNullValue()) 277 return 1; 278 if (!L->isNullValue() && R->isNullValue()) 279 return -1; 280 281 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 282 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 283 if (GlobalValueL && GlobalValueR) { 284 return cmpGlobalValues(GlobalValueL, GlobalValueR); 285 } 286 287 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 288 return Res; 289 290 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 291 const auto *SeqR = cast<ConstantDataSequential>(R); 292 // This handles ConstantDataArray and ConstantDataVector. Note that we 293 // compare the two raw data arrays, which might differ depending on the host 294 // endianness. This isn't a problem though, because the endiness of a module 295 // will affect the order of the constants, but this order is the same 296 // for a given input module and host platform. 297 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 298 } 299 300 switch (L->getValueID()) { 301 case Value::UndefValueVal: 302 case Value::PoisonValueVal: 303 case Value::ConstantTokenNoneVal: 304 return TypesRes; 305 case Value::ConstantIntVal: { 306 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 307 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 308 return cmpAPInts(LInt, RInt); 309 } 310 case Value::ConstantFPVal: { 311 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 312 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 313 return cmpAPFloats(LAPF, RAPF); 314 } 315 case Value::ConstantArrayVal: { 316 const ConstantArray *LA = cast<ConstantArray>(L); 317 const ConstantArray *RA = cast<ConstantArray>(R); 318 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 319 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 320 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 321 return Res; 322 for (uint64_t i = 0; i < NumElementsL; ++i) { 323 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 324 cast<Constant>(RA->getOperand(i)))) 325 return Res; 326 } 327 return 0; 328 } 329 case Value::ConstantStructVal: { 330 const ConstantStruct *LS = cast<ConstantStruct>(L); 331 const ConstantStruct *RS = cast<ConstantStruct>(R); 332 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 333 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 334 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 335 return Res; 336 for (unsigned i = 0; i != NumElementsL; ++i) { 337 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 338 cast<Constant>(RS->getOperand(i)))) 339 return Res; 340 } 341 return 0; 342 } 343 case Value::ConstantVectorVal: { 344 const ConstantVector *LV = cast<ConstantVector>(L); 345 const ConstantVector *RV = cast<ConstantVector>(R); 346 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements(); 347 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements(); 348 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 349 return Res; 350 for (uint64_t i = 0; i < NumElementsL; ++i) { 351 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 352 cast<Constant>(RV->getOperand(i)))) 353 return Res; 354 } 355 return 0; 356 } 357 case Value::ConstantExprVal: { 358 const ConstantExpr *LE = cast<ConstantExpr>(L); 359 const ConstantExpr *RE = cast<ConstantExpr>(R); 360 unsigned NumOperandsL = LE->getNumOperands(); 361 unsigned NumOperandsR = RE->getNumOperands(); 362 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 363 return Res; 364 for (unsigned i = 0; i < NumOperandsL; ++i) { 365 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 366 cast<Constant>(RE->getOperand(i)))) 367 return Res; 368 } 369 return 0; 370 } 371 case Value::BlockAddressVal: { 372 const BlockAddress *LBA = cast<BlockAddress>(L); 373 const BlockAddress *RBA = cast<BlockAddress>(R); 374 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 375 return Res; 376 if (LBA->getFunction() == RBA->getFunction()) { 377 // They are BBs in the same function. Order by which comes first in the 378 // BB order of the function. This order is deterministic. 379 Function *F = LBA->getFunction(); 380 BasicBlock *LBB = LBA->getBasicBlock(); 381 BasicBlock *RBB = RBA->getBasicBlock(); 382 if (LBB == RBB) 383 return 0; 384 for (BasicBlock &BB : *F) { 385 if (&BB == LBB) { 386 assert(&BB != RBB); 387 return -1; 388 } 389 if (&BB == RBB) 390 return 1; 391 } 392 llvm_unreachable("Basic Block Address does not point to a basic block in " 393 "its function."); 394 return -1; 395 } else { 396 // cmpValues said the functions are the same. So because they aren't 397 // literally the same pointer, they must respectively be the left and 398 // right functions. 399 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 400 // cmpValues will tell us if these are equivalent BasicBlocks, in the 401 // context of their respective functions. 402 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 403 } 404 } 405 case Value::DSOLocalEquivalentVal: { 406 // dso_local_equivalent is functionally equivalent to whatever it points to. 407 // This means the behavior of the IR should be the exact same as if the 408 // function was referenced directly rather than through a 409 // dso_local_equivalent. 410 const auto *LEquiv = cast<DSOLocalEquivalent>(L); 411 const auto *REquiv = cast<DSOLocalEquivalent>(R); 412 return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue()); 413 } 414 default: // Unknown constant, abort. 415 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 416 llvm_unreachable("Constant ValueID not recognized."); 417 return -1; 418 } 419 } 420 421 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 422 uint64_t LNumber = GlobalNumbers->getNumber(L); 423 uint64_t RNumber = GlobalNumbers->getNumber(R); 424 return cmpNumbers(LNumber, RNumber); 425 } 426 427 /// cmpType - compares two types, 428 /// defines total ordering among the types set. 429 /// See method declaration comments for more details. 430 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 431 PointerType *PTyL = dyn_cast<PointerType>(TyL); 432 PointerType *PTyR = dyn_cast<PointerType>(TyR); 433 434 const DataLayout &DL = FnL->getParent()->getDataLayout(); 435 if (PTyL && PTyL->getAddressSpace() == 0) 436 TyL = DL.getIntPtrType(TyL); 437 if (PTyR && PTyR->getAddressSpace() == 0) 438 TyR = DL.getIntPtrType(TyR); 439 440 if (TyL == TyR) 441 return 0; 442 443 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 444 return Res; 445 446 switch (TyL->getTypeID()) { 447 default: 448 llvm_unreachable("Unknown type!"); 449 case Type::IntegerTyID: 450 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 451 cast<IntegerType>(TyR)->getBitWidth()); 452 // TyL == TyR would have returned true earlier, because types are uniqued. 453 case Type::VoidTyID: 454 case Type::FloatTyID: 455 case Type::DoubleTyID: 456 case Type::X86_FP80TyID: 457 case Type::FP128TyID: 458 case Type::PPC_FP128TyID: 459 case Type::LabelTyID: 460 case Type::MetadataTyID: 461 case Type::TokenTyID: 462 return 0; 463 464 case Type::PointerTyID: 465 assert(PTyL && PTyR && "Both types must be pointers here."); 466 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 467 468 case Type::StructTyID: { 469 StructType *STyL = cast<StructType>(TyL); 470 StructType *STyR = cast<StructType>(TyR); 471 if (STyL->getNumElements() != STyR->getNumElements()) 472 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 473 474 if (STyL->isPacked() != STyR->isPacked()) 475 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 476 477 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 478 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 479 return Res; 480 } 481 return 0; 482 } 483 484 case Type::FunctionTyID: { 485 FunctionType *FTyL = cast<FunctionType>(TyL); 486 FunctionType *FTyR = cast<FunctionType>(TyR); 487 if (FTyL->getNumParams() != FTyR->getNumParams()) 488 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 489 490 if (FTyL->isVarArg() != FTyR->isVarArg()) 491 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 492 493 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 494 return Res; 495 496 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 497 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 498 return Res; 499 } 500 return 0; 501 } 502 503 case Type::ArrayTyID: { 504 auto *STyL = cast<ArrayType>(TyL); 505 auto *STyR = cast<ArrayType>(TyR); 506 if (STyL->getNumElements() != STyR->getNumElements()) 507 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 508 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 509 } 510 case Type::FixedVectorTyID: 511 case Type::ScalableVectorTyID: { 512 auto *STyL = cast<VectorType>(TyL); 513 auto *STyR = cast<VectorType>(TyR); 514 if (STyL->getElementCount().isScalable() != 515 STyR->getElementCount().isScalable()) 516 return cmpNumbers(STyL->getElementCount().isScalable(), 517 STyR->getElementCount().isScalable()); 518 if (STyL->getElementCount() != STyR->getElementCount()) 519 return cmpNumbers(STyL->getElementCount().getKnownMinValue(), 520 STyR->getElementCount().getKnownMinValue()); 521 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 522 } 523 } 524 } 525 526 // Determine whether the two operations are the same except that pointer-to-A 527 // and pointer-to-B are equivalent. This should be kept in sync with 528 // Instruction::isSameOperationAs. 529 // Read method declaration comments for more details. 530 int FunctionComparator::cmpOperations(const Instruction *L, 531 const Instruction *R, 532 bool &needToCmpOperands) const { 533 needToCmpOperands = true; 534 if (int Res = cmpValues(L, R)) 535 return Res; 536 537 // Differences from Instruction::isSameOperationAs: 538 // * replace type comparison with calls to cmpTypes. 539 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 540 // * because of the above, we don't test for the tail bit on calls later on. 541 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 542 return Res; 543 544 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 545 needToCmpOperands = false; 546 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 547 if (int Res = 548 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 549 return Res; 550 return cmpGEPs(GEPL, GEPR); 551 } 552 553 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 554 return Res; 555 556 if (int Res = cmpTypes(L->getType(), R->getType())) 557 return Res; 558 559 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 560 R->getRawSubclassOptionalData())) 561 return Res; 562 563 // We have two instructions of identical opcode and #operands. Check to see 564 // if all operands are the same type 565 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 566 if (int Res = 567 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 568 return Res; 569 } 570 571 // Check special state that is a part of some instructions. 572 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 573 if (int Res = cmpTypes(AI->getAllocatedType(), 574 cast<AllocaInst>(R)->getAllocatedType())) 575 return Res; 576 return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign()); 577 } 578 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 579 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 580 return Res; 581 if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign())) 582 return Res; 583 if (int Res = 584 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 585 return Res; 586 if (int Res = cmpNumbers(LI->getSyncScopeID(), 587 cast<LoadInst>(R)->getSyncScopeID())) 588 return Res; 589 return cmpRangeMetadata( 590 LI->getMetadata(LLVMContext::MD_range), 591 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 592 } 593 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 594 if (int Res = 595 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 596 return Res; 597 if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign())) 598 return Res; 599 if (int Res = 600 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 601 return Res; 602 return cmpNumbers(SI->getSyncScopeID(), 603 cast<StoreInst>(R)->getSyncScopeID()); 604 } 605 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 606 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 607 if (auto *CBL = dyn_cast<CallBase>(L)) { 608 auto *CBR = cast<CallBase>(R); 609 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) 610 return Res; 611 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) 612 return Res; 613 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR)) 614 return Res; 615 if (const CallInst *CI = dyn_cast<CallInst>(L)) 616 if (int Res = cmpNumbers(CI->getTailCallKind(), 617 cast<CallInst>(R)->getTailCallKind())) 618 return Res; 619 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range), 620 R->getMetadata(LLVMContext::MD_range)); 621 } 622 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 623 ArrayRef<unsigned> LIndices = IVI->getIndices(); 624 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 625 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 626 return Res; 627 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 628 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 629 return Res; 630 } 631 return 0; 632 } 633 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 634 ArrayRef<unsigned> LIndices = EVI->getIndices(); 635 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 636 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 637 return Res; 638 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 639 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 640 return Res; 641 } 642 } 643 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 644 if (int Res = 645 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 646 return Res; 647 return cmpNumbers(FI->getSyncScopeID(), 648 cast<FenceInst>(R)->getSyncScopeID()); 649 } 650 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 651 if (int Res = cmpNumbers(CXI->isVolatile(), 652 cast<AtomicCmpXchgInst>(R)->isVolatile())) 653 return Res; 654 if (int Res = 655 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak())) 656 return Res; 657 if (int Res = 658 cmpOrderings(CXI->getSuccessOrdering(), 659 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 660 return Res; 661 if (int Res = 662 cmpOrderings(CXI->getFailureOrdering(), 663 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 664 return Res; 665 return cmpNumbers(CXI->getSyncScopeID(), 666 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 667 } 668 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 669 if (int Res = cmpNumbers(RMWI->getOperation(), 670 cast<AtomicRMWInst>(R)->getOperation())) 671 return Res; 672 if (int Res = cmpNumbers(RMWI->isVolatile(), 673 cast<AtomicRMWInst>(R)->isVolatile())) 674 return Res; 675 if (int Res = cmpOrderings(RMWI->getOrdering(), 676 cast<AtomicRMWInst>(R)->getOrdering())) 677 return Res; 678 return cmpNumbers(RMWI->getSyncScopeID(), 679 cast<AtomicRMWInst>(R)->getSyncScopeID()); 680 } 681 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) { 682 ArrayRef<int> LMask = SVI->getShuffleMask(); 683 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask(); 684 if (int Res = cmpNumbers(LMask.size(), RMask.size())) 685 return Res; 686 for (size_t i = 0, e = LMask.size(); i != e; ++i) { 687 if (int Res = cmpNumbers(LMask[i], RMask[i])) 688 return Res; 689 } 690 } 691 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 692 const PHINode *PNR = cast<PHINode>(R); 693 // Ensure that in addition to the incoming values being identical 694 // (checked by the caller of this function), the incoming blocks 695 // are also identical. 696 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 697 if (int Res = 698 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 699 return Res; 700 } 701 } 702 return 0; 703 } 704 705 // Determine whether two GEP operations perform the same underlying arithmetic. 706 // Read method declaration comments for more details. 707 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 708 const GEPOperator *GEPR) const { 709 unsigned int ASL = GEPL->getPointerAddressSpace(); 710 unsigned int ASR = GEPR->getPointerAddressSpace(); 711 712 if (int Res = cmpNumbers(ASL, ASR)) 713 return Res; 714 715 // When we have target data, we can reduce the GEP down to the value in bytes 716 // added to the address. 717 const DataLayout &DL = FnL->getParent()->getDataLayout(); 718 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 719 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 720 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 721 GEPR->accumulateConstantOffset(DL, OffsetR)) 722 return cmpAPInts(OffsetL, OffsetR); 723 if (int Res = 724 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) 725 return Res; 726 727 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 728 return Res; 729 730 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 731 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 732 return Res; 733 } 734 735 return 0; 736 } 737 738 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 739 const InlineAsm *R) const { 740 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 741 // the same, otherwise compare the fields. 742 if (L == R) 743 return 0; 744 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 745 return Res; 746 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 747 return Res; 748 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 749 return Res; 750 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 751 return Res; 752 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 753 return Res; 754 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 755 return Res; 756 assert(L->getFunctionType() != R->getFunctionType()); 757 return 0; 758 } 759 760 /// Compare two values used by the two functions under pair-wise comparison. If 761 /// this is the first time the values are seen, they're added to the mapping so 762 /// that we will detect mismatches on next use. 763 /// See comments in declaration for more details. 764 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 765 // Catch self-reference case. 766 if (L == FnL) { 767 if (R == FnR) 768 return 0; 769 return -1; 770 } 771 if (R == FnR) { 772 if (L == FnL) 773 return 0; 774 return 1; 775 } 776 777 const Constant *ConstL = dyn_cast<Constant>(L); 778 const Constant *ConstR = dyn_cast<Constant>(R); 779 if (ConstL && ConstR) { 780 if (L == R) 781 return 0; 782 return cmpConstants(ConstL, ConstR); 783 } 784 785 if (ConstL) 786 return 1; 787 if (ConstR) 788 return -1; 789 790 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 791 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 792 793 if (InlineAsmL && InlineAsmR) 794 return cmpInlineAsm(InlineAsmL, InlineAsmR); 795 if (InlineAsmL) 796 return 1; 797 if (InlineAsmR) 798 return -1; 799 800 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 801 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 802 803 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 804 } 805 806 // Test whether two basic blocks have equivalent behaviour. 807 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 808 const BasicBlock *BBR) const { 809 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 810 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 811 812 do { 813 bool needToCmpOperands = true; 814 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 815 return Res; 816 if (needToCmpOperands) { 817 assert(InstL->getNumOperands() == InstR->getNumOperands()); 818 819 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 820 Value *OpL = InstL->getOperand(i); 821 Value *OpR = InstR->getOperand(i); 822 if (int Res = cmpValues(OpL, OpR)) 823 return Res; 824 // cmpValues should ensure this is true. 825 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 826 } 827 } 828 829 ++InstL; 830 ++InstR; 831 } while (InstL != InstLE && InstR != InstRE); 832 833 if (InstL != InstLE && InstR == InstRE) 834 return 1; 835 if (InstL == InstLE && InstR != InstRE) 836 return -1; 837 return 0; 838 } 839 840 int FunctionComparator::compareSignature() const { 841 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 842 return Res; 843 844 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 845 return Res; 846 847 if (FnL->hasGC()) { 848 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 849 return Res; 850 } 851 852 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 853 return Res; 854 855 if (FnL->hasSection()) { 856 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 857 return Res; 858 } 859 860 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 861 return Res; 862 863 // TODO: if it's internal and only used in direct calls, we could handle this 864 // case too. 865 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 866 return Res; 867 868 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 869 return Res; 870 871 assert(FnL->arg_size() == FnR->arg_size() && 872 "Identically typed functions have different numbers of args!"); 873 874 // Visit the arguments so that they get enumerated in the order they're 875 // passed in. 876 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 877 ArgRI = FnR->arg_begin(), 878 ArgLE = FnL->arg_end(); 879 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 880 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 881 llvm_unreachable("Arguments repeat!"); 882 } 883 return 0; 884 } 885 886 // Test whether the two functions have equivalent behaviour. 887 int FunctionComparator::compare() { 888 beginCompare(); 889 890 if (int Res = compareSignature()) 891 return Res; 892 893 // We do a CFG-ordered walk since the actual ordering of the blocks in the 894 // linked list is immaterial. Our walk starts at the entry block for both 895 // functions, then takes each block from each terminator in order. As an 896 // artifact, this also means that unreachable blocks are ignored. 897 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 898 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 899 900 FnLBBs.push_back(&FnL->getEntryBlock()); 901 FnRBBs.push_back(&FnR->getEntryBlock()); 902 903 VisitedBBs.insert(FnLBBs[0]); 904 while (!FnLBBs.empty()) { 905 const BasicBlock *BBL = FnLBBs.pop_back_val(); 906 const BasicBlock *BBR = FnRBBs.pop_back_val(); 907 908 if (int Res = cmpValues(BBL, BBR)) 909 return Res; 910 911 if (int Res = cmpBasicBlocks(BBL, BBR)) 912 return Res; 913 914 const Instruction *TermL = BBL->getTerminator(); 915 const Instruction *TermR = BBR->getTerminator(); 916 917 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 918 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 919 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 920 continue; 921 922 FnLBBs.push_back(TermL->getSuccessor(i)); 923 FnRBBs.push_back(TermR->getSuccessor(i)); 924 } 925 } 926 return 0; 927 } 928 929 namespace { 930 931 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 932 // hash of a sequence of 64bit ints, but the entire input does not need to be 933 // available at once. This interface is necessary for functionHash because it 934 // needs to accumulate the hash as the structure of the function is traversed 935 // without saving these values to an intermediate buffer. This form of hashing 936 // is not often needed, as usually the object to hash is just read from a 937 // buffer. 938 class HashAccumulator64 { 939 uint64_t Hash; 940 941 public: 942 // Initialize to random constant, so the state isn't zero. 943 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 944 945 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } 946 947 // No finishing is required, because the entire hash value is used. 948 uint64_t getHash() { return Hash; } 949 }; 950 951 } // end anonymous namespace 952 953 // A function hash is calculated by considering only the number of arguments and 954 // whether a function is varargs, the order of basic blocks (given by the 955 // successors of each basic block in depth first order), and the order of 956 // opcodes of each instruction within each of these basic blocks. This mirrors 957 // the strategy compare() uses to compare functions by walking the BBs in depth 958 // first order and comparing each instruction in sequence. Because this hash 959 // does not look at the operands, it is insensitive to things such as the 960 // target of calls and the constants used in the function, which makes it useful 961 // when possibly merging functions which are the same modulo constants and call 962 // targets. 963 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 964 HashAccumulator64 H; 965 H.add(F.isVarArg()); 966 H.add(F.arg_size()); 967 968 SmallVector<const BasicBlock *, 8> BBs; 969 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 970 971 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 972 // accumulating the hash of the function "structure." (BB and opcode sequence) 973 BBs.push_back(&F.getEntryBlock()); 974 VisitedBBs.insert(BBs[0]); 975 while (!BBs.empty()) { 976 const BasicBlock *BB = BBs.pop_back_val(); 977 // This random value acts as a block header, as otherwise the partition of 978 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 979 H.add(45798); 980 for (const auto &Inst : *BB) { 981 H.add(Inst.getOpcode()); 982 } 983 const Instruction *Term = BB->getTerminator(); 984 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 985 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 986 continue; 987 BBs.push_back(Term->getSuccessor(i)); 988 } 989 } 990 return H.getHash(); 991 } 992