xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/FunctionComparator.cpp (revision b5a3a89c50671a1ad29e7c43fe15e7b16feac239)
1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/FunctionComparator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "functioncomparator"
52 
53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
54   if (L < R)
55     return -1;
56   if (L > R)
57     return 1;
58   return 0;
59 }
60 
61 int FunctionComparator::cmpAligns(Align L, Align R) const {
62   if (L.value() < R.value())
63     return -1;
64   if (L.value() > R.value())
65     return 1;
66   return 0;
67 }
68 
69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
70   if ((int)L < (int)R)
71     return -1;
72   if ((int)L > (int)R)
73     return 1;
74   return 0;
75 }
76 
77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
78   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
79     return Res;
80   if (L.ugt(R))
81     return 1;
82   if (R.ugt(L))
83     return -1;
84   return 0;
85 }
86 
87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
88   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
89   // then by value interpreted as a bitstring (aka APInt).
90   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
91   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
92                            APFloat::semanticsPrecision(SR)))
93     return Res;
94   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
95                            APFloat::semanticsMaxExponent(SR)))
96     return Res;
97   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
98                            APFloat::semanticsMinExponent(SR)))
99     return Res;
100   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
101                            APFloat::semanticsSizeInBits(SR)))
102     return Res;
103   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
104 }
105 
106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
107   // Prevent heavy comparison, compare sizes first.
108   if (int Res = cmpNumbers(L.size(), R.size()))
109     return Res;
110 
111   // Compare strings lexicographically only when it is necessary: only when
112   // strings are equal in size.
113   return std::clamp(L.compare(R), -1, 1);
114 }
115 
116 int FunctionComparator::cmpAttrs(const AttributeList L,
117                                  const AttributeList R) const {
118   if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
119     return Res;
120 
121   for (unsigned i : L.indexes()) {
122     AttributeSet LAS = L.getAttributes(i);
123     AttributeSet RAS = R.getAttributes(i);
124     AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
125     AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
126     for (; LI != LE && RI != RE; ++LI, ++RI) {
127       Attribute LA = *LI;
128       Attribute RA = *RI;
129       if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
130         if (LA.getKindAsEnum() != RA.getKindAsEnum())
131           return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
132 
133         Type *TyL = LA.getValueAsType();
134         Type *TyR = RA.getValueAsType();
135         if (TyL && TyR) {
136           if (int Res = cmpTypes(TyL, TyR))
137             return Res;
138           continue;
139         }
140 
141         // Two pointers, at least one null, so the comparison result is
142         // independent of the value of a real pointer.
143         if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR))
144           return Res;
145         continue;
146       }
147       if (LA < RA)
148         return -1;
149       if (RA < LA)
150         return 1;
151     }
152     if (LI != LE)
153       return 1;
154     if (RI != RE)
155       return -1;
156   }
157   return 0;
158 }
159 
160 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
161                                          const MDNode *R) const {
162   if (L == R)
163     return 0;
164   if (!L)
165     return -1;
166   if (!R)
167     return 1;
168   // Range metadata is a sequence of numbers. Make sure they are the same
169   // sequence.
170   // TODO: Note that as this is metadata, it is possible to drop and/or merge
171   // this data when considering functions to merge. Thus this comparison would
172   // return 0 (i.e. equivalent), but merging would become more complicated
173   // because the ranges would need to be unioned. It is not likely that
174   // functions differ ONLY in this metadata if they are actually the same
175   // function semantically.
176   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
177     return Res;
178   for (size_t I = 0; I < L->getNumOperands(); ++I) {
179     ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
180     ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
181     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
182       return Res;
183   }
184   return 0;
185 }
186 
187 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
188                                                 const CallBase &RCS) const {
189   assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
190 
191   if (int Res =
192           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
193     return Res;
194 
195   for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
196     auto OBL = LCS.getOperandBundleAt(I);
197     auto OBR = RCS.getOperandBundleAt(I);
198 
199     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
200       return Res;
201 
202     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
203       return Res;
204   }
205 
206   return 0;
207 }
208 
209 /// Constants comparison:
210 /// 1. Check whether type of L constant could be losslessly bitcasted to R
211 /// type.
212 /// 2. Compare constant contents.
213 /// For more details see declaration comments.
214 int FunctionComparator::cmpConstants(const Constant *L,
215                                      const Constant *R) const {
216   Type *TyL = L->getType();
217   Type *TyR = R->getType();
218 
219   // Check whether types are bitcastable. This part is just re-factored
220   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
221   // we also pack into result which type is "less" for us.
222   int TypesRes = cmpTypes(TyL, TyR);
223   if (TypesRes != 0) {
224     // Types are different, but check whether we can bitcast them.
225     if (!TyL->isFirstClassType()) {
226       if (TyR->isFirstClassType())
227         return -1;
228       // Neither TyL nor TyR are values of first class type. Return the result
229       // of comparing the types
230       return TypesRes;
231     }
232     if (!TyR->isFirstClassType()) {
233       if (TyL->isFirstClassType())
234         return 1;
235       return TypesRes;
236     }
237 
238     // Vector -> Vector conversions are always lossless if the two vector types
239     // have the same size, otherwise not.
240     unsigned TyLWidth = 0;
241     unsigned TyRWidth = 0;
242 
243     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
244       TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue();
245     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
246       TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue();
247 
248     if (TyLWidth != TyRWidth)
249       return cmpNumbers(TyLWidth, TyRWidth);
250 
251     // Zero bit-width means neither TyL nor TyR are vectors.
252     if (!TyLWidth) {
253       PointerType *PTyL = dyn_cast<PointerType>(TyL);
254       PointerType *PTyR = dyn_cast<PointerType>(TyR);
255       if (PTyL && PTyR) {
256         unsigned AddrSpaceL = PTyL->getAddressSpace();
257         unsigned AddrSpaceR = PTyR->getAddressSpace();
258         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
259           return Res;
260       }
261       if (PTyL)
262         return 1;
263       if (PTyR)
264         return -1;
265 
266       // TyL and TyR aren't vectors, nor pointers. We don't know how to
267       // bitcast them.
268       return TypesRes;
269     }
270   }
271 
272   // OK, types are bitcastable, now check constant contents.
273 
274   if (L->isNullValue() && R->isNullValue())
275     return TypesRes;
276   if (L->isNullValue() && !R->isNullValue())
277     return 1;
278   if (!L->isNullValue() && R->isNullValue())
279     return -1;
280 
281   auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
282   auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
283   if (GlobalValueL && GlobalValueR) {
284     return cmpGlobalValues(GlobalValueL, GlobalValueR);
285   }
286 
287   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
288     return Res;
289 
290   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
291     const auto *SeqR = cast<ConstantDataSequential>(R);
292     // This handles ConstantDataArray and ConstantDataVector. Note that we
293     // compare the two raw data arrays, which might differ depending on the host
294     // endianness. This isn't a problem though, because the endiness of a module
295     // will affect the order of the constants, but this order is the same
296     // for a given input module and host platform.
297     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
298   }
299 
300   switch (L->getValueID()) {
301   case Value::UndefValueVal:
302   case Value::PoisonValueVal:
303   case Value::ConstantTokenNoneVal:
304     return TypesRes;
305   case Value::ConstantIntVal: {
306     const APInt &LInt = cast<ConstantInt>(L)->getValue();
307     const APInt &RInt = cast<ConstantInt>(R)->getValue();
308     return cmpAPInts(LInt, RInt);
309   }
310   case Value::ConstantFPVal: {
311     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
312     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
313     return cmpAPFloats(LAPF, RAPF);
314   }
315   case Value::ConstantArrayVal: {
316     const ConstantArray *LA = cast<ConstantArray>(L);
317     const ConstantArray *RA = cast<ConstantArray>(R);
318     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
319     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
320     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
321       return Res;
322     for (uint64_t i = 0; i < NumElementsL; ++i) {
323       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
324                                  cast<Constant>(RA->getOperand(i))))
325         return Res;
326     }
327     return 0;
328   }
329   case Value::ConstantStructVal: {
330     const ConstantStruct *LS = cast<ConstantStruct>(L);
331     const ConstantStruct *RS = cast<ConstantStruct>(R);
332     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
333     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
334     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
335       return Res;
336     for (unsigned i = 0; i != NumElementsL; ++i) {
337       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
338                                  cast<Constant>(RS->getOperand(i))))
339         return Res;
340     }
341     return 0;
342   }
343   case Value::ConstantVectorVal: {
344     const ConstantVector *LV = cast<ConstantVector>(L);
345     const ConstantVector *RV = cast<ConstantVector>(R);
346     unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
347     unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
348     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
349       return Res;
350     for (uint64_t i = 0; i < NumElementsL; ++i) {
351       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
352                                  cast<Constant>(RV->getOperand(i))))
353         return Res;
354     }
355     return 0;
356   }
357   case Value::ConstantExprVal: {
358     const ConstantExpr *LE = cast<ConstantExpr>(L);
359     const ConstantExpr *RE = cast<ConstantExpr>(R);
360     unsigned NumOperandsL = LE->getNumOperands();
361     unsigned NumOperandsR = RE->getNumOperands();
362     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
363       return Res;
364     for (unsigned i = 0; i < NumOperandsL; ++i) {
365       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
366                                  cast<Constant>(RE->getOperand(i))))
367         return Res;
368     }
369     return 0;
370   }
371   case Value::BlockAddressVal: {
372     const BlockAddress *LBA = cast<BlockAddress>(L);
373     const BlockAddress *RBA = cast<BlockAddress>(R);
374     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
375       return Res;
376     if (LBA->getFunction() == RBA->getFunction()) {
377       // They are BBs in the same function. Order by which comes first in the
378       // BB order of the function. This order is deterministic.
379       Function *F = LBA->getFunction();
380       BasicBlock *LBB = LBA->getBasicBlock();
381       BasicBlock *RBB = RBA->getBasicBlock();
382       if (LBB == RBB)
383         return 0;
384       for (BasicBlock &BB : *F) {
385         if (&BB == LBB) {
386           assert(&BB != RBB);
387           return -1;
388         }
389         if (&BB == RBB)
390           return 1;
391       }
392       llvm_unreachable("Basic Block Address does not point to a basic block in "
393                        "its function.");
394       return -1;
395     } else {
396       // cmpValues said the functions are the same. So because they aren't
397       // literally the same pointer, they must respectively be the left and
398       // right functions.
399       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
400       // cmpValues will tell us if these are equivalent BasicBlocks, in the
401       // context of their respective functions.
402       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
403     }
404   }
405   case Value::DSOLocalEquivalentVal: {
406     // dso_local_equivalent is functionally equivalent to whatever it points to.
407     // This means the behavior of the IR should be the exact same as if the
408     // function was referenced directly rather than through a
409     // dso_local_equivalent.
410     const auto *LEquiv = cast<DSOLocalEquivalent>(L);
411     const auto *REquiv = cast<DSOLocalEquivalent>(R);
412     return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue());
413   }
414   default: // Unknown constant, abort.
415     LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
416     llvm_unreachable("Constant ValueID not recognized.");
417     return -1;
418   }
419 }
420 
421 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
422   uint64_t LNumber = GlobalNumbers->getNumber(L);
423   uint64_t RNumber = GlobalNumbers->getNumber(R);
424   return cmpNumbers(LNumber, RNumber);
425 }
426 
427 /// cmpType - compares two types,
428 /// defines total ordering among the types set.
429 /// See method declaration comments for more details.
430 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
431   PointerType *PTyL = dyn_cast<PointerType>(TyL);
432   PointerType *PTyR = dyn_cast<PointerType>(TyR);
433 
434   const DataLayout &DL = FnL->getParent()->getDataLayout();
435   if (PTyL && PTyL->getAddressSpace() == 0)
436     TyL = DL.getIntPtrType(TyL);
437   if (PTyR && PTyR->getAddressSpace() == 0)
438     TyR = DL.getIntPtrType(TyR);
439 
440   if (TyL == TyR)
441     return 0;
442 
443   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
444     return Res;
445 
446   switch (TyL->getTypeID()) {
447   default:
448     llvm_unreachable("Unknown type!");
449   case Type::IntegerTyID:
450     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
451                       cast<IntegerType>(TyR)->getBitWidth());
452   // TyL == TyR would have returned true earlier, because types are uniqued.
453   case Type::VoidTyID:
454   case Type::FloatTyID:
455   case Type::DoubleTyID:
456   case Type::X86_FP80TyID:
457   case Type::FP128TyID:
458   case Type::PPC_FP128TyID:
459   case Type::LabelTyID:
460   case Type::MetadataTyID:
461   case Type::TokenTyID:
462     return 0;
463 
464   case Type::PointerTyID:
465     assert(PTyL && PTyR && "Both types must be pointers here.");
466     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
467 
468   case Type::StructTyID: {
469     StructType *STyL = cast<StructType>(TyL);
470     StructType *STyR = cast<StructType>(TyR);
471     if (STyL->getNumElements() != STyR->getNumElements())
472       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
473 
474     if (STyL->isPacked() != STyR->isPacked())
475       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
476 
477     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
478       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
479         return Res;
480     }
481     return 0;
482   }
483 
484   case Type::FunctionTyID: {
485     FunctionType *FTyL = cast<FunctionType>(TyL);
486     FunctionType *FTyR = cast<FunctionType>(TyR);
487     if (FTyL->getNumParams() != FTyR->getNumParams())
488       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
489 
490     if (FTyL->isVarArg() != FTyR->isVarArg())
491       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
492 
493     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
494       return Res;
495 
496     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
497       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
498         return Res;
499     }
500     return 0;
501   }
502 
503   case Type::ArrayTyID: {
504     auto *STyL = cast<ArrayType>(TyL);
505     auto *STyR = cast<ArrayType>(TyR);
506     if (STyL->getNumElements() != STyR->getNumElements())
507       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
508     return cmpTypes(STyL->getElementType(), STyR->getElementType());
509   }
510   case Type::FixedVectorTyID:
511   case Type::ScalableVectorTyID: {
512     auto *STyL = cast<VectorType>(TyL);
513     auto *STyR = cast<VectorType>(TyR);
514     if (STyL->getElementCount().isScalable() !=
515         STyR->getElementCount().isScalable())
516       return cmpNumbers(STyL->getElementCount().isScalable(),
517                         STyR->getElementCount().isScalable());
518     if (STyL->getElementCount() != STyR->getElementCount())
519       return cmpNumbers(STyL->getElementCount().getKnownMinValue(),
520                         STyR->getElementCount().getKnownMinValue());
521     return cmpTypes(STyL->getElementType(), STyR->getElementType());
522   }
523   }
524 }
525 
526 // Determine whether the two operations are the same except that pointer-to-A
527 // and pointer-to-B are equivalent. This should be kept in sync with
528 // Instruction::isSameOperationAs.
529 // Read method declaration comments for more details.
530 int FunctionComparator::cmpOperations(const Instruction *L,
531                                       const Instruction *R,
532                                       bool &needToCmpOperands) const {
533   needToCmpOperands = true;
534   if (int Res = cmpValues(L, R))
535     return Res;
536 
537   // Differences from Instruction::isSameOperationAs:
538   //  * replace type comparison with calls to cmpTypes.
539   //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
540   //  * because of the above, we don't test for the tail bit on calls later on.
541   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
542     return Res;
543 
544   if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
545     needToCmpOperands = false;
546     const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
547     if (int Res =
548             cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
549       return Res;
550     return cmpGEPs(GEPL, GEPR);
551   }
552 
553   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
554     return Res;
555 
556   if (int Res = cmpTypes(L->getType(), R->getType()))
557     return Res;
558 
559   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
560                            R->getRawSubclassOptionalData()))
561     return Res;
562 
563   // We have two instructions of identical opcode and #operands.  Check to see
564   // if all operands are the same type
565   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
566     if (int Res =
567             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
568       return Res;
569   }
570 
571   // Check special state that is a part of some instructions.
572   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
573     if (int Res = cmpTypes(AI->getAllocatedType(),
574                            cast<AllocaInst>(R)->getAllocatedType()))
575       return Res;
576     return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign());
577   }
578   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
579     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
580       return Res;
581     if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign()))
582       return Res;
583     if (int Res =
584             cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
585       return Res;
586     if (int Res = cmpNumbers(LI->getSyncScopeID(),
587                              cast<LoadInst>(R)->getSyncScopeID()))
588       return Res;
589     return cmpRangeMetadata(
590         LI->getMetadata(LLVMContext::MD_range),
591         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
592   }
593   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
594     if (int Res =
595             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
596       return Res;
597     if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign()))
598       return Res;
599     if (int Res =
600             cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
601       return Res;
602     return cmpNumbers(SI->getSyncScopeID(),
603                       cast<StoreInst>(R)->getSyncScopeID());
604   }
605   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
606     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
607   if (auto *CBL = dyn_cast<CallBase>(L)) {
608     auto *CBR = cast<CallBase>(R);
609     if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
610       return Res;
611     if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
612       return Res;
613     if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
614       return Res;
615     if (const CallInst *CI = dyn_cast<CallInst>(L))
616       if (int Res = cmpNumbers(CI->getTailCallKind(),
617                                cast<CallInst>(R)->getTailCallKind()))
618         return Res;
619     return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
620                             R->getMetadata(LLVMContext::MD_range));
621   }
622   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
623     ArrayRef<unsigned> LIndices = IVI->getIndices();
624     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
625     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
626       return Res;
627     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
628       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
629         return Res;
630     }
631     return 0;
632   }
633   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
634     ArrayRef<unsigned> LIndices = EVI->getIndices();
635     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
636     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
637       return Res;
638     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
639       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
640         return Res;
641     }
642   }
643   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
644     if (int Res =
645             cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
646       return Res;
647     return cmpNumbers(FI->getSyncScopeID(),
648                       cast<FenceInst>(R)->getSyncScopeID());
649   }
650   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
651     if (int Res = cmpNumbers(CXI->isVolatile(),
652                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
653       return Res;
654     if (int Res =
655             cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
656       return Res;
657     if (int Res =
658             cmpOrderings(CXI->getSuccessOrdering(),
659                          cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
660       return Res;
661     if (int Res =
662             cmpOrderings(CXI->getFailureOrdering(),
663                          cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
664       return Res;
665     return cmpNumbers(CXI->getSyncScopeID(),
666                       cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
667   }
668   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
669     if (int Res = cmpNumbers(RMWI->getOperation(),
670                              cast<AtomicRMWInst>(R)->getOperation()))
671       return Res;
672     if (int Res = cmpNumbers(RMWI->isVolatile(),
673                              cast<AtomicRMWInst>(R)->isVolatile()))
674       return Res;
675     if (int Res = cmpOrderings(RMWI->getOrdering(),
676                                cast<AtomicRMWInst>(R)->getOrdering()))
677       return Res;
678     return cmpNumbers(RMWI->getSyncScopeID(),
679                       cast<AtomicRMWInst>(R)->getSyncScopeID());
680   }
681   if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
682     ArrayRef<int> LMask = SVI->getShuffleMask();
683     ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
684     if (int Res = cmpNumbers(LMask.size(), RMask.size()))
685       return Res;
686     for (size_t i = 0, e = LMask.size(); i != e; ++i) {
687       if (int Res = cmpNumbers(LMask[i], RMask[i]))
688         return Res;
689     }
690   }
691   if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
692     const PHINode *PNR = cast<PHINode>(R);
693     // Ensure that in addition to the incoming values being identical
694     // (checked by the caller of this function), the incoming blocks
695     // are also identical.
696     for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
697       if (int Res =
698               cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
699         return Res;
700     }
701   }
702   return 0;
703 }
704 
705 // Determine whether two GEP operations perform the same underlying arithmetic.
706 // Read method declaration comments for more details.
707 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
708                                 const GEPOperator *GEPR) const {
709   unsigned int ASL = GEPL->getPointerAddressSpace();
710   unsigned int ASR = GEPR->getPointerAddressSpace();
711 
712   if (int Res = cmpNumbers(ASL, ASR))
713     return Res;
714 
715   // When we have target data, we can reduce the GEP down to the value in bytes
716   // added to the address.
717   const DataLayout &DL = FnL->getParent()->getDataLayout();
718   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
719   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
720   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
721       GEPR->accumulateConstantOffset(DL, OffsetR))
722     return cmpAPInts(OffsetL, OffsetR);
723   if (int Res =
724           cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
725     return Res;
726 
727   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
728     return Res;
729 
730   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
731     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
732       return Res;
733   }
734 
735   return 0;
736 }
737 
738 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
739                                      const InlineAsm *R) const {
740   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
741   // the same, otherwise compare the fields.
742   if (L == R)
743     return 0;
744   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
745     return Res;
746   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
747     return Res;
748   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
749     return Res;
750   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
751     return Res;
752   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
753     return Res;
754   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
755     return Res;
756   assert(L->getFunctionType() != R->getFunctionType());
757   return 0;
758 }
759 
760 /// Compare two values used by the two functions under pair-wise comparison. If
761 /// this is the first time the values are seen, they're added to the mapping so
762 /// that we will detect mismatches on next use.
763 /// See comments in declaration for more details.
764 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
765   // Catch self-reference case.
766   if (L == FnL) {
767     if (R == FnR)
768       return 0;
769     return -1;
770   }
771   if (R == FnR) {
772     if (L == FnL)
773       return 0;
774     return 1;
775   }
776 
777   const Constant *ConstL = dyn_cast<Constant>(L);
778   const Constant *ConstR = dyn_cast<Constant>(R);
779   if (ConstL && ConstR) {
780     if (L == R)
781       return 0;
782     return cmpConstants(ConstL, ConstR);
783   }
784 
785   if (ConstL)
786     return 1;
787   if (ConstR)
788     return -1;
789 
790   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
791   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
792 
793   if (InlineAsmL && InlineAsmR)
794     return cmpInlineAsm(InlineAsmL, InlineAsmR);
795   if (InlineAsmL)
796     return 1;
797   if (InlineAsmR)
798     return -1;
799 
800   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
801        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
802 
803   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
804 }
805 
806 // Test whether two basic blocks have equivalent behaviour.
807 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
808                                        const BasicBlock *BBR) const {
809   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
810   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
811 
812   do {
813     bool needToCmpOperands = true;
814     if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
815       return Res;
816     if (needToCmpOperands) {
817       assert(InstL->getNumOperands() == InstR->getNumOperands());
818 
819       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
820         Value *OpL = InstL->getOperand(i);
821         Value *OpR = InstR->getOperand(i);
822         if (int Res = cmpValues(OpL, OpR))
823           return Res;
824         // cmpValues should ensure this is true.
825         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
826       }
827     }
828 
829     ++InstL;
830     ++InstR;
831   } while (InstL != InstLE && InstR != InstRE);
832 
833   if (InstL != InstLE && InstR == InstRE)
834     return 1;
835   if (InstL == InstLE && InstR != InstRE)
836     return -1;
837   return 0;
838 }
839 
840 int FunctionComparator::compareSignature() const {
841   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
842     return Res;
843 
844   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
845     return Res;
846 
847   if (FnL->hasGC()) {
848     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
849       return Res;
850   }
851 
852   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
853     return Res;
854 
855   if (FnL->hasSection()) {
856     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
857       return Res;
858   }
859 
860   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
861     return Res;
862 
863   // TODO: if it's internal and only used in direct calls, we could handle this
864   // case too.
865   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
866     return Res;
867 
868   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
869     return Res;
870 
871   assert(FnL->arg_size() == FnR->arg_size() &&
872          "Identically typed functions have different numbers of args!");
873 
874   // Visit the arguments so that they get enumerated in the order they're
875   // passed in.
876   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
877                                     ArgRI = FnR->arg_begin(),
878                                     ArgLE = FnL->arg_end();
879        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
880     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
881       llvm_unreachable("Arguments repeat!");
882   }
883   return 0;
884 }
885 
886 // Test whether the two functions have equivalent behaviour.
887 int FunctionComparator::compare() {
888   beginCompare();
889 
890   if (int Res = compareSignature())
891     return Res;
892 
893   // We do a CFG-ordered walk since the actual ordering of the blocks in the
894   // linked list is immaterial. Our walk starts at the entry block for both
895   // functions, then takes each block from each terminator in order. As an
896   // artifact, this also means that unreachable blocks are ignored.
897   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
898   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
899 
900   FnLBBs.push_back(&FnL->getEntryBlock());
901   FnRBBs.push_back(&FnR->getEntryBlock());
902 
903   VisitedBBs.insert(FnLBBs[0]);
904   while (!FnLBBs.empty()) {
905     const BasicBlock *BBL = FnLBBs.pop_back_val();
906     const BasicBlock *BBR = FnRBBs.pop_back_val();
907 
908     if (int Res = cmpValues(BBL, BBR))
909       return Res;
910 
911     if (int Res = cmpBasicBlocks(BBL, BBR))
912       return Res;
913 
914     const Instruction *TermL = BBL->getTerminator();
915     const Instruction *TermR = BBR->getTerminator();
916 
917     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
918     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
919       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
920         continue;
921 
922       FnLBBs.push_back(TermL->getSuccessor(i));
923       FnRBBs.push_back(TermR->getSuccessor(i));
924     }
925   }
926   return 0;
927 }
928 
929 namespace {
930 
931 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
932 // hash of a sequence of 64bit ints, but the entire input does not need to be
933 // available at once. This interface is necessary for functionHash because it
934 // needs to accumulate the hash as the structure of the function is traversed
935 // without saving these values to an intermediate buffer. This form of hashing
936 // is not often needed, as usually the object to hash is just read from a
937 // buffer.
938 class HashAccumulator64 {
939   uint64_t Hash;
940 
941 public:
942   // Initialize to random constant, so the state isn't zero.
943   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
944 
945   void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); }
946 
947   // No finishing is required, because the entire hash value is used.
948   uint64_t getHash() { return Hash; }
949 };
950 
951 } // end anonymous namespace
952 
953 // A function hash is calculated by considering only the number of arguments and
954 // whether a function is varargs, the order of basic blocks (given by the
955 // successors of each basic block in depth first order), and the order of
956 // opcodes of each instruction within each of these basic blocks. This mirrors
957 // the strategy compare() uses to compare functions by walking the BBs in depth
958 // first order and comparing each instruction in sequence. Because this hash
959 // does not look at the operands, it is insensitive to things such as the
960 // target of calls and the constants used in the function, which makes it useful
961 // when possibly merging functions which are the same modulo constants and call
962 // targets.
963 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
964   HashAccumulator64 H;
965   H.add(F.isVarArg());
966   H.add(F.arg_size());
967 
968   SmallVector<const BasicBlock *, 8> BBs;
969   SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
970 
971   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
972   // accumulating the hash of the function "structure." (BB and opcode sequence)
973   BBs.push_back(&F.getEntryBlock());
974   VisitedBBs.insert(BBs[0]);
975   while (!BBs.empty()) {
976     const BasicBlock *BB = BBs.pop_back_val();
977     // This random value acts as a block header, as otherwise the partition of
978     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
979     H.add(45798);
980     for (const auto &Inst : *BB) {
981       H.add(Inst.getOpcode());
982     }
983     const Instruction *Term = BB->getTerminator();
984     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
985       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
986         continue;
987       BBs.push_back(Term->getSuccessor(i));
988     }
989   }
990   return H.getHash();
991 }
992