1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the FunctionComparator and GlobalNumberState classes 10 // which are used by the MergeFunctions pass for comparing functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/FunctionComparator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "functioncomparator" 52 53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 54 if (L < R) 55 return -1; 56 if (L > R) 57 return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 62 if ((int)L < (int)R) 63 return -1; 64 if ((int)L > (int)R) 65 return 1; 66 return 0; 67 } 68 69 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 70 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 71 return Res; 72 if (L.ugt(R)) 73 return 1; 74 if (R.ugt(L)) 75 return -1; 76 return 0; 77 } 78 79 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 80 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 81 // then by value interpreted as a bitstring (aka APInt). 82 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 83 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 84 APFloat::semanticsPrecision(SR))) 85 return Res; 86 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 87 APFloat::semanticsMaxExponent(SR))) 88 return Res; 89 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 90 APFloat::semanticsMinExponent(SR))) 91 return Res; 92 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 93 APFloat::semanticsSizeInBits(SR))) 94 return Res; 95 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 96 } 97 98 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 99 // Prevent heavy comparison, compare sizes first. 100 if (int Res = cmpNumbers(L.size(), R.size())) 101 return Res; 102 103 // Compare strings lexicographically only when it is necessary: only when 104 // strings are equal in size. 105 return L.compare(R); 106 } 107 108 int FunctionComparator::cmpAttrs(const AttributeList L, 109 const AttributeList R) const { 110 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 111 return Res; 112 113 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { 114 AttributeSet LAS = L.getAttributes(i); 115 AttributeSet RAS = R.getAttributes(i); 116 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 117 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 118 for (; LI != LE && RI != RE; ++LI, ++RI) { 119 Attribute LA = *LI; 120 Attribute RA = *RI; 121 if (LA.isTypeAttribute() && RA.isTypeAttribute()) { 122 if (LA.getKindAsEnum() != RA.getKindAsEnum()) 123 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); 124 125 Type *TyL = LA.getValueAsType(); 126 Type *TyR = RA.getValueAsType(); 127 if (TyL && TyR) { 128 if (int Res = cmpTypes(TyL, TyR)) 129 return Res; 130 continue; 131 } 132 133 // Two pointers, at least one null, so the comparison result is 134 // independent of the value of a real pointer. 135 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR)) 136 return Res; 137 continue; 138 } 139 if (LA < RA) 140 return -1; 141 if (RA < LA) 142 return 1; 143 } 144 if (LI != LE) 145 return 1; 146 if (RI != RE) 147 return -1; 148 } 149 return 0; 150 } 151 152 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 153 const MDNode *R) const { 154 if (L == R) 155 return 0; 156 if (!L) 157 return -1; 158 if (!R) 159 return 1; 160 // Range metadata is a sequence of numbers. Make sure they are the same 161 // sequence. 162 // TODO: Note that as this is metadata, it is possible to drop and/or merge 163 // this data when considering functions to merge. Thus this comparison would 164 // return 0 (i.e. equivalent), but merging would become more complicated 165 // because the ranges would need to be unioned. It is not likely that 166 // functions differ ONLY in this metadata if they are actually the same 167 // function semantically. 168 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 169 return Res; 170 for (size_t I = 0; I < L->getNumOperands(); ++I) { 171 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 172 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 173 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 174 return Res; 175 } 176 return 0; 177 } 178 179 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS, 180 const CallBase &RCS) const { 181 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!"); 182 183 if (int Res = 184 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 185 return Res; 186 187 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) { 188 auto OBL = LCS.getOperandBundleAt(I); 189 auto OBR = RCS.getOperandBundleAt(I); 190 191 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 192 return Res; 193 194 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 195 return Res; 196 } 197 198 return 0; 199 } 200 201 /// Constants comparison: 202 /// 1. Check whether type of L constant could be losslessly bitcasted to R 203 /// type. 204 /// 2. Compare constant contents. 205 /// For more details see declaration comments. 206 int FunctionComparator::cmpConstants(const Constant *L, 207 const Constant *R) const { 208 Type *TyL = L->getType(); 209 Type *TyR = R->getType(); 210 211 // Check whether types are bitcastable. This part is just re-factored 212 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 213 // we also pack into result which type is "less" for us. 214 int TypesRes = cmpTypes(TyL, TyR); 215 if (TypesRes != 0) { 216 // Types are different, but check whether we can bitcast them. 217 if (!TyL->isFirstClassType()) { 218 if (TyR->isFirstClassType()) 219 return -1; 220 // Neither TyL nor TyR are values of first class type. Return the result 221 // of comparing the types 222 return TypesRes; 223 } 224 if (!TyR->isFirstClassType()) { 225 if (TyL->isFirstClassType()) 226 return 1; 227 return TypesRes; 228 } 229 230 // Vector -> Vector conversions are always lossless if the two vector types 231 // have the same size, otherwise not. 232 unsigned TyLWidth = 0; 233 unsigned TyRWidth = 0; 234 235 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 236 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize(); 237 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 238 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize(); 239 240 if (TyLWidth != TyRWidth) 241 return cmpNumbers(TyLWidth, TyRWidth); 242 243 // Zero bit-width means neither TyL nor TyR are vectors. 244 if (!TyLWidth) { 245 PointerType *PTyL = dyn_cast<PointerType>(TyL); 246 PointerType *PTyR = dyn_cast<PointerType>(TyR); 247 if (PTyL && PTyR) { 248 unsigned AddrSpaceL = PTyL->getAddressSpace(); 249 unsigned AddrSpaceR = PTyR->getAddressSpace(); 250 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 251 return Res; 252 } 253 if (PTyL) 254 return 1; 255 if (PTyR) 256 return -1; 257 258 // TyL and TyR aren't vectors, nor pointers. We don't know how to 259 // bitcast them. 260 return TypesRes; 261 } 262 } 263 264 // OK, types are bitcastable, now check constant contents. 265 266 if (L->isNullValue() && R->isNullValue()) 267 return TypesRes; 268 if (L->isNullValue() && !R->isNullValue()) 269 return 1; 270 if (!L->isNullValue() && R->isNullValue()) 271 return -1; 272 273 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 274 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 275 if (GlobalValueL && GlobalValueR) { 276 return cmpGlobalValues(GlobalValueL, GlobalValueR); 277 } 278 279 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 280 return Res; 281 282 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 283 const auto *SeqR = cast<ConstantDataSequential>(R); 284 // This handles ConstantDataArray and ConstantDataVector. Note that we 285 // compare the two raw data arrays, which might differ depending on the host 286 // endianness. This isn't a problem though, because the endiness of a module 287 // will affect the order of the constants, but this order is the same 288 // for a given input module and host platform. 289 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 290 } 291 292 switch (L->getValueID()) { 293 case Value::UndefValueVal: 294 case Value::PoisonValueVal: 295 case Value::ConstantTokenNoneVal: 296 return TypesRes; 297 case Value::ConstantIntVal: { 298 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 299 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 300 return cmpAPInts(LInt, RInt); 301 } 302 case Value::ConstantFPVal: { 303 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 304 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 305 return cmpAPFloats(LAPF, RAPF); 306 } 307 case Value::ConstantArrayVal: { 308 const ConstantArray *LA = cast<ConstantArray>(L); 309 const ConstantArray *RA = cast<ConstantArray>(R); 310 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 311 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 312 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 313 return Res; 314 for (uint64_t i = 0; i < NumElementsL; ++i) { 315 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 316 cast<Constant>(RA->getOperand(i)))) 317 return Res; 318 } 319 return 0; 320 } 321 case Value::ConstantStructVal: { 322 const ConstantStruct *LS = cast<ConstantStruct>(L); 323 const ConstantStruct *RS = cast<ConstantStruct>(R); 324 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 325 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 326 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 327 return Res; 328 for (unsigned i = 0; i != NumElementsL; ++i) { 329 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 330 cast<Constant>(RS->getOperand(i)))) 331 return Res; 332 } 333 return 0; 334 } 335 case Value::ConstantVectorVal: { 336 const ConstantVector *LV = cast<ConstantVector>(L); 337 const ConstantVector *RV = cast<ConstantVector>(R); 338 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements(); 339 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements(); 340 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 341 return Res; 342 for (uint64_t i = 0; i < NumElementsL; ++i) { 343 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 344 cast<Constant>(RV->getOperand(i)))) 345 return Res; 346 } 347 return 0; 348 } 349 case Value::ConstantExprVal: { 350 const ConstantExpr *LE = cast<ConstantExpr>(L); 351 const ConstantExpr *RE = cast<ConstantExpr>(R); 352 unsigned NumOperandsL = LE->getNumOperands(); 353 unsigned NumOperandsR = RE->getNumOperands(); 354 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 355 return Res; 356 for (unsigned i = 0; i < NumOperandsL; ++i) { 357 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 358 cast<Constant>(RE->getOperand(i)))) 359 return Res; 360 } 361 return 0; 362 } 363 case Value::BlockAddressVal: { 364 const BlockAddress *LBA = cast<BlockAddress>(L); 365 const BlockAddress *RBA = cast<BlockAddress>(R); 366 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 367 return Res; 368 if (LBA->getFunction() == RBA->getFunction()) { 369 // They are BBs in the same function. Order by which comes first in the 370 // BB order of the function. This order is deterministic. 371 Function *F = LBA->getFunction(); 372 BasicBlock *LBB = LBA->getBasicBlock(); 373 BasicBlock *RBB = RBA->getBasicBlock(); 374 if (LBB == RBB) 375 return 0; 376 for (BasicBlock &BB : F->getBasicBlockList()) { 377 if (&BB == LBB) { 378 assert(&BB != RBB); 379 return -1; 380 } 381 if (&BB == RBB) 382 return 1; 383 } 384 llvm_unreachable("Basic Block Address does not point to a basic block in " 385 "its function."); 386 return -1; 387 } else { 388 // cmpValues said the functions are the same. So because they aren't 389 // literally the same pointer, they must respectively be the left and 390 // right functions. 391 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 392 // cmpValues will tell us if these are equivalent BasicBlocks, in the 393 // context of their respective functions. 394 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 395 } 396 } 397 default: // Unknown constant, abort. 398 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 399 llvm_unreachable("Constant ValueID not recognized."); 400 return -1; 401 } 402 } 403 404 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 405 uint64_t LNumber = GlobalNumbers->getNumber(L); 406 uint64_t RNumber = GlobalNumbers->getNumber(R); 407 return cmpNumbers(LNumber, RNumber); 408 } 409 410 /// cmpType - compares two types, 411 /// defines total ordering among the types set. 412 /// See method declaration comments for more details. 413 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 414 PointerType *PTyL = dyn_cast<PointerType>(TyL); 415 PointerType *PTyR = dyn_cast<PointerType>(TyR); 416 417 const DataLayout &DL = FnL->getParent()->getDataLayout(); 418 if (PTyL && PTyL->getAddressSpace() == 0) 419 TyL = DL.getIntPtrType(TyL); 420 if (PTyR && PTyR->getAddressSpace() == 0) 421 TyR = DL.getIntPtrType(TyR); 422 423 if (TyL == TyR) 424 return 0; 425 426 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 427 return Res; 428 429 switch (TyL->getTypeID()) { 430 default: 431 llvm_unreachable("Unknown type!"); 432 case Type::IntegerTyID: 433 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 434 cast<IntegerType>(TyR)->getBitWidth()); 435 // TyL == TyR would have returned true earlier, because types are uniqued. 436 case Type::VoidTyID: 437 case Type::FloatTyID: 438 case Type::DoubleTyID: 439 case Type::X86_FP80TyID: 440 case Type::FP128TyID: 441 case Type::PPC_FP128TyID: 442 case Type::LabelTyID: 443 case Type::MetadataTyID: 444 case Type::TokenTyID: 445 return 0; 446 447 case Type::PointerTyID: 448 assert(PTyL && PTyR && "Both types must be pointers here."); 449 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 450 451 case Type::StructTyID: { 452 StructType *STyL = cast<StructType>(TyL); 453 StructType *STyR = cast<StructType>(TyR); 454 if (STyL->getNumElements() != STyR->getNumElements()) 455 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 456 457 if (STyL->isPacked() != STyR->isPacked()) 458 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 459 460 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 461 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 462 return Res; 463 } 464 return 0; 465 } 466 467 case Type::FunctionTyID: { 468 FunctionType *FTyL = cast<FunctionType>(TyL); 469 FunctionType *FTyR = cast<FunctionType>(TyR); 470 if (FTyL->getNumParams() != FTyR->getNumParams()) 471 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 472 473 if (FTyL->isVarArg() != FTyR->isVarArg()) 474 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 475 476 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 477 return Res; 478 479 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 480 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 481 return Res; 482 } 483 return 0; 484 } 485 486 case Type::ArrayTyID: { 487 auto *STyL = cast<ArrayType>(TyL); 488 auto *STyR = cast<ArrayType>(TyR); 489 if (STyL->getNumElements() != STyR->getNumElements()) 490 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 491 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 492 } 493 case Type::FixedVectorTyID: 494 case Type::ScalableVectorTyID: { 495 auto *STyL = cast<VectorType>(TyL); 496 auto *STyR = cast<VectorType>(TyR); 497 if (STyL->getElementCount().isScalable() != 498 STyR->getElementCount().isScalable()) 499 return cmpNumbers(STyL->getElementCount().isScalable(), 500 STyR->getElementCount().isScalable()); 501 if (STyL->getElementCount() != STyR->getElementCount()) 502 return cmpNumbers(STyL->getElementCount().getKnownMinValue(), 503 STyR->getElementCount().getKnownMinValue()); 504 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 505 } 506 } 507 } 508 509 // Determine whether the two operations are the same except that pointer-to-A 510 // and pointer-to-B are equivalent. This should be kept in sync with 511 // Instruction::isSameOperationAs. 512 // Read method declaration comments for more details. 513 int FunctionComparator::cmpOperations(const Instruction *L, 514 const Instruction *R, 515 bool &needToCmpOperands) const { 516 needToCmpOperands = true; 517 if (int Res = cmpValues(L, R)) 518 return Res; 519 520 // Differences from Instruction::isSameOperationAs: 521 // * replace type comparison with calls to cmpTypes. 522 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 523 // * because of the above, we don't test for the tail bit on calls later on. 524 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 525 return Res; 526 527 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 528 needToCmpOperands = false; 529 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 530 if (int Res = 531 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 532 return Res; 533 return cmpGEPs(GEPL, GEPR); 534 } 535 536 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 537 return Res; 538 539 if (int Res = cmpTypes(L->getType(), R->getType())) 540 return Res; 541 542 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 543 R->getRawSubclassOptionalData())) 544 return Res; 545 546 // We have two instructions of identical opcode and #operands. Check to see 547 // if all operands are the same type 548 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 549 if (int Res = 550 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 551 return Res; 552 } 553 554 // Check special state that is a part of some instructions. 555 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 556 if (int Res = cmpTypes(AI->getAllocatedType(), 557 cast<AllocaInst>(R)->getAllocatedType())) 558 return Res; 559 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 560 } 561 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 562 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 563 return Res; 564 if (int Res = 565 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 566 return Res; 567 if (int Res = 568 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 569 return Res; 570 if (int Res = cmpNumbers(LI->getSyncScopeID(), 571 cast<LoadInst>(R)->getSyncScopeID())) 572 return Res; 573 return cmpRangeMetadata( 574 LI->getMetadata(LLVMContext::MD_range), 575 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 576 } 577 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 578 if (int Res = 579 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 580 return Res; 581 if (int Res = 582 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 583 return Res; 584 if (int Res = 585 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 586 return Res; 587 return cmpNumbers(SI->getSyncScopeID(), 588 cast<StoreInst>(R)->getSyncScopeID()); 589 } 590 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 591 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 592 if (auto *CBL = dyn_cast<CallBase>(L)) { 593 auto *CBR = cast<CallBase>(R); 594 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) 595 return Res; 596 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) 597 return Res; 598 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR)) 599 return Res; 600 if (const CallInst *CI = dyn_cast<CallInst>(L)) 601 if (int Res = cmpNumbers(CI->getTailCallKind(), 602 cast<CallInst>(R)->getTailCallKind())) 603 return Res; 604 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range), 605 R->getMetadata(LLVMContext::MD_range)); 606 } 607 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 608 ArrayRef<unsigned> LIndices = IVI->getIndices(); 609 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 610 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 611 return Res; 612 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 613 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 614 return Res; 615 } 616 return 0; 617 } 618 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 619 ArrayRef<unsigned> LIndices = EVI->getIndices(); 620 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 621 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 622 return Res; 623 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 624 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 625 return Res; 626 } 627 } 628 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 629 if (int Res = 630 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 631 return Res; 632 return cmpNumbers(FI->getSyncScopeID(), 633 cast<FenceInst>(R)->getSyncScopeID()); 634 } 635 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 636 if (int Res = cmpNumbers(CXI->isVolatile(), 637 cast<AtomicCmpXchgInst>(R)->isVolatile())) 638 return Res; 639 if (int Res = 640 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak())) 641 return Res; 642 if (int Res = 643 cmpOrderings(CXI->getSuccessOrdering(), 644 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 645 return Res; 646 if (int Res = 647 cmpOrderings(CXI->getFailureOrdering(), 648 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 649 return Res; 650 return cmpNumbers(CXI->getSyncScopeID(), 651 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 652 } 653 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 654 if (int Res = cmpNumbers(RMWI->getOperation(), 655 cast<AtomicRMWInst>(R)->getOperation())) 656 return Res; 657 if (int Res = cmpNumbers(RMWI->isVolatile(), 658 cast<AtomicRMWInst>(R)->isVolatile())) 659 return Res; 660 if (int Res = cmpOrderings(RMWI->getOrdering(), 661 cast<AtomicRMWInst>(R)->getOrdering())) 662 return Res; 663 return cmpNumbers(RMWI->getSyncScopeID(), 664 cast<AtomicRMWInst>(R)->getSyncScopeID()); 665 } 666 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) { 667 ArrayRef<int> LMask = SVI->getShuffleMask(); 668 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask(); 669 if (int Res = cmpNumbers(LMask.size(), RMask.size())) 670 return Res; 671 for (size_t i = 0, e = LMask.size(); i != e; ++i) { 672 if (int Res = cmpNumbers(LMask[i], RMask[i])) 673 return Res; 674 } 675 } 676 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 677 const PHINode *PNR = cast<PHINode>(R); 678 // Ensure that in addition to the incoming values being identical 679 // (checked by the caller of this function), the incoming blocks 680 // are also identical. 681 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 682 if (int Res = 683 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 684 return Res; 685 } 686 } 687 return 0; 688 } 689 690 // Determine whether two GEP operations perform the same underlying arithmetic. 691 // Read method declaration comments for more details. 692 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 693 const GEPOperator *GEPR) const { 694 unsigned int ASL = GEPL->getPointerAddressSpace(); 695 unsigned int ASR = GEPR->getPointerAddressSpace(); 696 697 if (int Res = cmpNumbers(ASL, ASR)) 698 return Res; 699 700 // When we have target data, we can reduce the GEP down to the value in bytes 701 // added to the address. 702 const DataLayout &DL = FnL->getParent()->getDataLayout(); 703 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 704 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 705 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 706 GEPR->accumulateConstantOffset(DL, OffsetR)) 707 return cmpAPInts(OffsetL, OffsetR); 708 if (int Res = 709 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) 710 return Res; 711 712 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 713 return Res; 714 715 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 716 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 717 return Res; 718 } 719 720 return 0; 721 } 722 723 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 724 const InlineAsm *R) const { 725 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 726 // the same, otherwise compare the fields. 727 if (L == R) 728 return 0; 729 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 730 return Res; 731 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 732 return Res; 733 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 734 return Res; 735 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 736 return Res; 737 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 738 return Res; 739 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 740 return Res; 741 assert(L->getFunctionType() != R->getFunctionType()); 742 return 0; 743 } 744 745 /// Compare two values used by the two functions under pair-wise comparison. If 746 /// this is the first time the values are seen, they're added to the mapping so 747 /// that we will detect mismatches on next use. 748 /// See comments in declaration for more details. 749 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 750 // Catch self-reference case. 751 if (L == FnL) { 752 if (R == FnR) 753 return 0; 754 return -1; 755 } 756 if (R == FnR) { 757 if (L == FnL) 758 return 0; 759 return 1; 760 } 761 762 const Constant *ConstL = dyn_cast<Constant>(L); 763 const Constant *ConstR = dyn_cast<Constant>(R); 764 if (ConstL && ConstR) { 765 if (L == R) 766 return 0; 767 return cmpConstants(ConstL, ConstR); 768 } 769 770 if (ConstL) 771 return 1; 772 if (ConstR) 773 return -1; 774 775 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 776 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 777 778 if (InlineAsmL && InlineAsmR) 779 return cmpInlineAsm(InlineAsmL, InlineAsmR); 780 if (InlineAsmL) 781 return 1; 782 if (InlineAsmR) 783 return -1; 784 785 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 786 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 787 788 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 789 } 790 791 // Test whether two basic blocks have equivalent behaviour. 792 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 793 const BasicBlock *BBR) const { 794 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 795 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 796 797 do { 798 bool needToCmpOperands = true; 799 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 800 return Res; 801 if (needToCmpOperands) { 802 assert(InstL->getNumOperands() == InstR->getNumOperands()); 803 804 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 805 Value *OpL = InstL->getOperand(i); 806 Value *OpR = InstR->getOperand(i); 807 if (int Res = cmpValues(OpL, OpR)) 808 return Res; 809 // cmpValues should ensure this is true. 810 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 811 } 812 } 813 814 ++InstL; 815 ++InstR; 816 } while (InstL != InstLE && InstR != InstRE); 817 818 if (InstL != InstLE && InstR == InstRE) 819 return 1; 820 if (InstL == InstLE && InstR != InstRE) 821 return -1; 822 return 0; 823 } 824 825 int FunctionComparator::compareSignature() const { 826 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 827 return Res; 828 829 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 830 return Res; 831 832 if (FnL->hasGC()) { 833 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 834 return Res; 835 } 836 837 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 838 return Res; 839 840 if (FnL->hasSection()) { 841 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 842 return Res; 843 } 844 845 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 846 return Res; 847 848 // TODO: if it's internal and only used in direct calls, we could handle this 849 // case too. 850 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 851 return Res; 852 853 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 854 return Res; 855 856 assert(FnL->arg_size() == FnR->arg_size() && 857 "Identically typed functions have different numbers of args!"); 858 859 // Visit the arguments so that they get enumerated in the order they're 860 // passed in. 861 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 862 ArgRI = FnR->arg_begin(), 863 ArgLE = FnL->arg_end(); 864 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 865 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 866 llvm_unreachable("Arguments repeat!"); 867 } 868 return 0; 869 } 870 871 // Test whether the two functions have equivalent behaviour. 872 int FunctionComparator::compare() { 873 beginCompare(); 874 875 if (int Res = compareSignature()) 876 return Res; 877 878 // We do a CFG-ordered walk since the actual ordering of the blocks in the 879 // linked list is immaterial. Our walk starts at the entry block for both 880 // functions, then takes each block from each terminator in order. As an 881 // artifact, this also means that unreachable blocks are ignored. 882 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 883 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 884 885 FnLBBs.push_back(&FnL->getEntryBlock()); 886 FnRBBs.push_back(&FnR->getEntryBlock()); 887 888 VisitedBBs.insert(FnLBBs[0]); 889 while (!FnLBBs.empty()) { 890 const BasicBlock *BBL = FnLBBs.pop_back_val(); 891 const BasicBlock *BBR = FnRBBs.pop_back_val(); 892 893 if (int Res = cmpValues(BBL, BBR)) 894 return Res; 895 896 if (int Res = cmpBasicBlocks(BBL, BBR)) 897 return Res; 898 899 const Instruction *TermL = BBL->getTerminator(); 900 const Instruction *TermR = BBR->getTerminator(); 901 902 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 903 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 904 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 905 continue; 906 907 FnLBBs.push_back(TermL->getSuccessor(i)); 908 FnRBBs.push_back(TermR->getSuccessor(i)); 909 } 910 } 911 return 0; 912 } 913 914 namespace { 915 916 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 917 // hash of a sequence of 64bit ints, but the entire input does not need to be 918 // available at once. This interface is necessary for functionHash because it 919 // needs to accumulate the hash as the structure of the function is traversed 920 // without saving these values to an intermediate buffer. This form of hashing 921 // is not often needed, as usually the object to hash is just read from a 922 // buffer. 923 class HashAccumulator64 { 924 uint64_t Hash; 925 926 public: 927 // Initialize to random constant, so the state isn't zero. 928 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 929 930 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } 931 932 // No finishing is required, because the entire hash value is used. 933 uint64_t getHash() { return Hash; } 934 }; 935 936 } // end anonymous namespace 937 938 // A function hash is calculated by considering only the number of arguments and 939 // whether a function is varargs, the order of basic blocks (given by the 940 // successors of each basic block in depth first order), and the order of 941 // opcodes of each instruction within each of these basic blocks. This mirrors 942 // the strategy compare() uses to compare functions by walking the BBs in depth 943 // first order and comparing each instruction in sequence. Because this hash 944 // does not look at the operands, it is insensitive to things such as the 945 // target of calls and the constants used in the function, which makes it useful 946 // when possibly merging functions which are the same modulo constants and call 947 // targets. 948 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 949 HashAccumulator64 H; 950 H.add(F.isVarArg()); 951 H.add(F.arg_size()); 952 953 SmallVector<const BasicBlock *, 8> BBs; 954 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 955 956 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 957 // accumulating the hash of the function "structure." (BB and opcode sequence) 958 BBs.push_back(&F.getEntryBlock()); 959 VisitedBBs.insert(BBs[0]); 960 while (!BBs.empty()) { 961 const BasicBlock *BB = BBs.pop_back_val(); 962 // This random value acts as a block header, as otherwise the partition of 963 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 964 H.add(45798); 965 for (auto &Inst : *BB) { 966 H.add(Inst.getOpcode()); 967 } 968 const Instruction *Term = BB->getTerminator(); 969 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 970 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 971 continue; 972 BBs.push_back(Term->getSuccessor(i)); 973 } 974 } 975 return H.getHash(); 976 } 977