1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the FunctionComparator and GlobalNumberState classes 10 // which are used by the MergeFunctions pass for comparing functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/FunctionComparator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "functioncomparator" 52 53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 54 if (L < R) 55 return -1; 56 if (L > R) 57 return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpAligns(Align L, Align R) const { 62 if (L.value() < R.value()) 63 return -1; 64 if (L.value() > R.value()) 65 return 1; 66 return 0; 67 } 68 69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 70 if ((int)L < (int)R) 71 return -1; 72 if ((int)L > (int)R) 73 return 1; 74 return 0; 75 } 76 77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 78 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 79 return Res; 80 if (L.ugt(R)) 81 return 1; 82 if (R.ugt(L)) 83 return -1; 84 return 0; 85 } 86 87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 88 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 89 // then by value interpreted as a bitstring (aka APInt). 90 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 91 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 92 APFloat::semanticsPrecision(SR))) 93 return Res; 94 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 95 APFloat::semanticsMaxExponent(SR))) 96 return Res; 97 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 98 APFloat::semanticsMinExponent(SR))) 99 return Res; 100 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 101 APFloat::semanticsSizeInBits(SR))) 102 return Res; 103 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 104 } 105 106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 107 // Prevent heavy comparison, compare sizes first. 108 if (int Res = cmpNumbers(L.size(), R.size())) 109 return Res; 110 111 // Compare strings lexicographically only when it is necessary: only when 112 // strings are equal in size. 113 return L.compare(R); 114 } 115 116 int FunctionComparator::cmpAttrs(const AttributeList L, 117 const AttributeList R) const { 118 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 119 return Res; 120 121 for (unsigned i : L.indexes()) { 122 AttributeSet LAS = L.getAttributes(i); 123 AttributeSet RAS = R.getAttributes(i); 124 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 125 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 126 for (; LI != LE && RI != RE; ++LI, ++RI) { 127 Attribute LA = *LI; 128 Attribute RA = *RI; 129 if (LA.isTypeAttribute() && RA.isTypeAttribute()) { 130 if (LA.getKindAsEnum() != RA.getKindAsEnum()) 131 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); 132 133 Type *TyL = LA.getValueAsType(); 134 Type *TyR = RA.getValueAsType(); 135 if (TyL && TyR) { 136 if (int Res = cmpTypes(TyL, TyR)) 137 return Res; 138 continue; 139 } 140 141 // Two pointers, at least one null, so the comparison result is 142 // independent of the value of a real pointer. 143 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR)) 144 return Res; 145 continue; 146 } 147 if (LA < RA) 148 return -1; 149 if (RA < LA) 150 return 1; 151 } 152 if (LI != LE) 153 return 1; 154 if (RI != RE) 155 return -1; 156 } 157 return 0; 158 } 159 160 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 161 const MDNode *R) const { 162 if (L == R) 163 return 0; 164 if (!L) 165 return -1; 166 if (!R) 167 return 1; 168 // Range metadata is a sequence of numbers. Make sure they are the same 169 // sequence. 170 // TODO: Note that as this is metadata, it is possible to drop and/or merge 171 // this data when considering functions to merge. Thus this comparison would 172 // return 0 (i.e. equivalent), but merging would become more complicated 173 // because the ranges would need to be unioned. It is not likely that 174 // functions differ ONLY in this metadata if they are actually the same 175 // function semantically. 176 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 177 return Res; 178 for (size_t I = 0; I < L->getNumOperands(); ++I) { 179 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 180 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 181 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 182 return Res; 183 } 184 return 0; 185 } 186 187 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS, 188 const CallBase &RCS) const { 189 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!"); 190 191 if (int Res = 192 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 193 return Res; 194 195 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) { 196 auto OBL = LCS.getOperandBundleAt(I); 197 auto OBR = RCS.getOperandBundleAt(I); 198 199 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 200 return Res; 201 202 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 203 return Res; 204 } 205 206 return 0; 207 } 208 209 /// Constants comparison: 210 /// 1. Check whether type of L constant could be losslessly bitcasted to R 211 /// type. 212 /// 2. Compare constant contents. 213 /// For more details see declaration comments. 214 int FunctionComparator::cmpConstants(const Constant *L, 215 const Constant *R) const { 216 Type *TyL = L->getType(); 217 Type *TyR = R->getType(); 218 219 // Check whether types are bitcastable. This part is just re-factored 220 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 221 // we also pack into result which type is "less" for us. 222 int TypesRes = cmpTypes(TyL, TyR); 223 if (TypesRes != 0) { 224 // Types are different, but check whether we can bitcast them. 225 if (!TyL->isFirstClassType()) { 226 if (TyR->isFirstClassType()) 227 return -1; 228 // Neither TyL nor TyR are values of first class type. Return the result 229 // of comparing the types 230 return TypesRes; 231 } 232 if (!TyR->isFirstClassType()) { 233 if (TyL->isFirstClassType()) 234 return 1; 235 return TypesRes; 236 } 237 238 // Vector -> Vector conversions are always lossless if the two vector types 239 // have the same size, otherwise not. 240 unsigned TyLWidth = 0; 241 unsigned TyRWidth = 0; 242 243 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 244 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize(); 245 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 246 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize(); 247 248 if (TyLWidth != TyRWidth) 249 return cmpNumbers(TyLWidth, TyRWidth); 250 251 // Zero bit-width means neither TyL nor TyR are vectors. 252 if (!TyLWidth) { 253 PointerType *PTyL = dyn_cast<PointerType>(TyL); 254 PointerType *PTyR = dyn_cast<PointerType>(TyR); 255 if (PTyL && PTyR) { 256 unsigned AddrSpaceL = PTyL->getAddressSpace(); 257 unsigned AddrSpaceR = PTyR->getAddressSpace(); 258 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 259 return Res; 260 } 261 if (PTyL) 262 return 1; 263 if (PTyR) 264 return -1; 265 266 // TyL and TyR aren't vectors, nor pointers. We don't know how to 267 // bitcast them. 268 return TypesRes; 269 } 270 } 271 272 // OK, types are bitcastable, now check constant contents. 273 274 if (L->isNullValue() && R->isNullValue()) 275 return TypesRes; 276 if (L->isNullValue() && !R->isNullValue()) 277 return 1; 278 if (!L->isNullValue() && R->isNullValue()) 279 return -1; 280 281 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 282 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 283 if (GlobalValueL && GlobalValueR) { 284 return cmpGlobalValues(GlobalValueL, GlobalValueR); 285 } 286 287 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 288 return Res; 289 290 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 291 const auto *SeqR = cast<ConstantDataSequential>(R); 292 // This handles ConstantDataArray and ConstantDataVector. Note that we 293 // compare the two raw data arrays, which might differ depending on the host 294 // endianness. This isn't a problem though, because the endiness of a module 295 // will affect the order of the constants, but this order is the same 296 // for a given input module and host platform. 297 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 298 } 299 300 switch (L->getValueID()) { 301 case Value::UndefValueVal: 302 case Value::PoisonValueVal: 303 case Value::ConstantTokenNoneVal: 304 return TypesRes; 305 case Value::ConstantIntVal: { 306 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 307 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 308 return cmpAPInts(LInt, RInt); 309 } 310 case Value::ConstantFPVal: { 311 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 312 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 313 return cmpAPFloats(LAPF, RAPF); 314 } 315 case Value::ConstantArrayVal: { 316 const ConstantArray *LA = cast<ConstantArray>(L); 317 const ConstantArray *RA = cast<ConstantArray>(R); 318 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 319 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 320 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 321 return Res; 322 for (uint64_t i = 0; i < NumElementsL; ++i) { 323 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 324 cast<Constant>(RA->getOperand(i)))) 325 return Res; 326 } 327 return 0; 328 } 329 case Value::ConstantStructVal: { 330 const ConstantStruct *LS = cast<ConstantStruct>(L); 331 const ConstantStruct *RS = cast<ConstantStruct>(R); 332 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 333 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 334 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 335 return Res; 336 for (unsigned i = 0; i != NumElementsL; ++i) { 337 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 338 cast<Constant>(RS->getOperand(i)))) 339 return Res; 340 } 341 return 0; 342 } 343 case Value::ConstantVectorVal: { 344 const ConstantVector *LV = cast<ConstantVector>(L); 345 const ConstantVector *RV = cast<ConstantVector>(R); 346 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements(); 347 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements(); 348 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 349 return Res; 350 for (uint64_t i = 0; i < NumElementsL; ++i) { 351 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 352 cast<Constant>(RV->getOperand(i)))) 353 return Res; 354 } 355 return 0; 356 } 357 case Value::ConstantExprVal: { 358 const ConstantExpr *LE = cast<ConstantExpr>(L); 359 const ConstantExpr *RE = cast<ConstantExpr>(R); 360 unsigned NumOperandsL = LE->getNumOperands(); 361 unsigned NumOperandsR = RE->getNumOperands(); 362 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 363 return Res; 364 for (unsigned i = 0; i < NumOperandsL; ++i) { 365 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 366 cast<Constant>(RE->getOperand(i)))) 367 return Res; 368 } 369 return 0; 370 } 371 case Value::BlockAddressVal: { 372 const BlockAddress *LBA = cast<BlockAddress>(L); 373 const BlockAddress *RBA = cast<BlockAddress>(R); 374 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 375 return Res; 376 if (LBA->getFunction() == RBA->getFunction()) { 377 // They are BBs in the same function. Order by which comes first in the 378 // BB order of the function. This order is deterministic. 379 Function *F = LBA->getFunction(); 380 BasicBlock *LBB = LBA->getBasicBlock(); 381 BasicBlock *RBB = RBA->getBasicBlock(); 382 if (LBB == RBB) 383 return 0; 384 for (BasicBlock &BB : F->getBasicBlockList()) { 385 if (&BB == LBB) { 386 assert(&BB != RBB); 387 return -1; 388 } 389 if (&BB == RBB) 390 return 1; 391 } 392 llvm_unreachable("Basic Block Address does not point to a basic block in " 393 "its function."); 394 return -1; 395 } else { 396 // cmpValues said the functions are the same. So because they aren't 397 // literally the same pointer, they must respectively be the left and 398 // right functions. 399 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 400 // cmpValues will tell us if these are equivalent BasicBlocks, in the 401 // context of their respective functions. 402 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 403 } 404 } 405 default: // Unknown constant, abort. 406 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 407 llvm_unreachable("Constant ValueID not recognized."); 408 return -1; 409 } 410 } 411 412 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 413 uint64_t LNumber = GlobalNumbers->getNumber(L); 414 uint64_t RNumber = GlobalNumbers->getNumber(R); 415 return cmpNumbers(LNumber, RNumber); 416 } 417 418 /// cmpType - compares two types, 419 /// defines total ordering among the types set. 420 /// See method declaration comments for more details. 421 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 422 PointerType *PTyL = dyn_cast<PointerType>(TyL); 423 PointerType *PTyR = dyn_cast<PointerType>(TyR); 424 425 const DataLayout &DL = FnL->getParent()->getDataLayout(); 426 if (PTyL && PTyL->getAddressSpace() == 0) 427 TyL = DL.getIntPtrType(TyL); 428 if (PTyR && PTyR->getAddressSpace() == 0) 429 TyR = DL.getIntPtrType(TyR); 430 431 if (TyL == TyR) 432 return 0; 433 434 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 435 return Res; 436 437 switch (TyL->getTypeID()) { 438 default: 439 llvm_unreachable("Unknown type!"); 440 case Type::IntegerTyID: 441 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 442 cast<IntegerType>(TyR)->getBitWidth()); 443 // TyL == TyR would have returned true earlier, because types are uniqued. 444 case Type::VoidTyID: 445 case Type::FloatTyID: 446 case Type::DoubleTyID: 447 case Type::X86_FP80TyID: 448 case Type::FP128TyID: 449 case Type::PPC_FP128TyID: 450 case Type::LabelTyID: 451 case Type::MetadataTyID: 452 case Type::TokenTyID: 453 return 0; 454 455 case Type::PointerTyID: 456 assert(PTyL && PTyR && "Both types must be pointers here."); 457 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 458 459 case Type::StructTyID: { 460 StructType *STyL = cast<StructType>(TyL); 461 StructType *STyR = cast<StructType>(TyR); 462 if (STyL->getNumElements() != STyR->getNumElements()) 463 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 464 465 if (STyL->isPacked() != STyR->isPacked()) 466 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 467 468 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 469 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 470 return Res; 471 } 472 return 0; 473 } 474 475 case Type::FunctionTyID: { 476 FunctionType *FTyL = cast<FunctionType>(TyL); 477 FunctionType *FTyR = cast<FunctionType>(TyR); 478 if (FTyL->getNumParams() != FTyR->getNumParams()) 479 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 480 481 if (FTyL->isVarArg() != FTyR->isVarArg()) 482 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 483 484 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 485 return Res; 486 487 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 488 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 489 return Res; 490 } 491 return 0; 492 } 493 494 case Type::ArrayTyID: { 495 auto *STyL = cast<ArrayType>(TyL); 496 auto *STyR = cast<ArrayType>(TyR); 497 if (STyL->getNumElements() != STyR->getNumElements()) 498 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 499 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 500 } 501 case Type::FixedVectorTyID: 502 case Type::ScalableVectorTyID: { 503 auto *STyL = cast<VectorType>(TyL); 504 auto *STyR = cast<VectorType>(TyR); 505 if (STyL->getElementCount().isScalable() != 506 STyR->getElementCount().isScalable()) 507 return cmpNumbers(STyL->getElementCount().isScalable(), 508 STyR->getElementCount().isScalable()); 509 if (STyL->getElementCount() != STyR->getElementCount()) 510 return cmpNumbers(STyL->getElementCount().getKnownMinValue(), 511 STyR->getElementCount().getKnownMinValue()); 512 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 513 } 514 } 515 } 516 517 // Determine whether the two operations are the same except that pointer-to-A 518 // and pointer-to-B are equivalent. This should be kept in sync with 519 // Instruction::isSameOperationAs. 520 // Read method declaration comments for more details. 521 int FunctionComparator::cmpOperations(const Instruction *L, 522 const Instruction *R, 523 bool &needToCmpOperands) const { 524 needToCmpOperands = true; 525 if (int Res = cmpValues(L, R)) 526 return Res; 527 528 // Differences from Instruction::isSameOperationAs: 529 // * replace type comparison with calls to cmpTypes. 530 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 531 // * because of the above, we don't test for the tail bit on calls later on. 532 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 533 return Res; 534 535 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 536 needToCmpOperands = false; 537 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 538 if (int Res = 539 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 540 return Res; 541 return cmpGEPs(GEPL, GEPR); 542 } 543 544 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 545 return Res; 546 547 if (int Res = cmpTypes(L->getType(), R->getType())) 548 return Res; 549 550 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 551 R->getRawSubclassOptionalData())) 552 return Res; 553 554 // We have two instructions of identical opcode and #operands. Check to see 555 // if all operands are the same type 556 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 557 if (int Res = 558 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 559 return Res; 560 } 561 562 // Check special state that is a part of some instructions. 563 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 564 if (int Res = cmpTypes(AI->getAllocatedType(), 565 cast<AllocaInst>(R)->getAllocatedType())) 566 return Res; 567 return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign()); 568 } 569 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 570 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 571 return Res; 572 if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign())) 573 return Res; 574 if (int Res = 575 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 576 return Res; 577 if (int Res = cmpNumbers(LI->getSyncScopeID(), 578 cast<LoadInst>(R)->getSyncScopeID())) 579 return Res; 580 return cmpRangeMetadata( 581 LI->getMetadata(LLVMContext::MD_range), 582 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 583 } 584 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 585 if (int Res = 586 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 587 return Res; 588 if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign())) 589 return Res; 590 if (int Res = 591 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 592 return Res; 593 return cmpNumbers(SI->getSyncScopeID(), 594 cast<StoreInst>(R)->getSyncScopeID()); 595 } 596 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 597 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 598 if (auto *CBL = dyn_cast<CallBase>(L)) { 599 auto *CBR = cast<CallBase>(R); 600 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) 601 return Res; 602 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) 603 return Res; 604 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR)) 605 return Res; 606 if (const CallInst *CI = dyn_cast<CallInst>(L)) 607 if (int Res = cmpNumbers(CI->getTailCallKind(), 608 cast<CallInst>(R)->getTailCallKind())) 609 return Res; 610 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range), 611 R->getMetadata(LLVMContext::MD_range)); 612 } 613 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 614 ArrayRef<unsigned> LIndices = IVI->getIndices(); 615 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 616 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 617 return Res; 618 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 619 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 620 return Res; 621 } 622 return 0; 623 } 624 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 625 ArrayRef<unsigned> LIndices = EVI->getIndices(); 626 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 627 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 628 return Res; 629 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 630 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 631 return Res; 632 } 633 } 634 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 635 if (int Res = 636 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 637 return Res; 638 return cmpNumbers(FI->getSyncScopeID(), 639 cast<FenceInst>(R)->getSyncScopeID()); 640 } 641 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 642 if (int Res = cmpNumbers(CXI->isVolatile(), 643 cast<AtomicCmpXchgInst>(R)->isVolatile())) 644 return Res; 645 if (int Res = 646 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak())) 647 return Res; 648 if (int Res = 649 cmpOrderings(CXI->getSuccessOrdering(), 650 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 651 return Res; 652 if (int Res = 653 cmpOrderings(CXI->getFailureOrdering(), 654 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 655 return Res; 656 return cmpNumbers(CXI->getSyncScopeID(), 657 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 658 } 659 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 660 if (int Res = cmpNumbers(RMWI->getOperation(), 661 cast<AtomicRMWInst>(R)->getOperation())) 662 return Res; 663 if (int Res = cmpNumbers(RMWI->isVolatile(), 664 cast<AtomicRMWInst>(R)->isVolatile())) 665 return Res; 666 if (int Res = cmpOrderings(RMWI->getOrdering(), 667 cast<AtomicRMWInst>(R)->getOrdering())) 668 return Res; 669 return cmpNumbers(RMWI->getSyncScopeID(), 670 cast<AtomicRMWInst>(R)->getSyncScopeID()); 671 } 672 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) { 673 ArrayRef<int> LMask = SVI->getShuffleMask(); 674 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask(); 675 if (int Res = cmpNumbers(LMask.size(), RMask.size())) 676 return Res; 677 for (size_t i = 0, e = LMask.size(); i != e; ++i) { 678 if (int Res = cmpNumbers(LMask[i], RMask[i])) 679 return Res; 680 } 681 } 682 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 683 const PHINode *PNR = cast<PHINode>(R); 684 // Ensure that in addition to the incoming values being identical 685 // (checked by the caller of this function), the incoming blocks 686 // are also identical. 687 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 688 if (int Res = 689 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 690 return Res; 691 } 692 } 693 return 0; 694 } 695 696 // Determine whether two GEP operations perform the same underlying arithmetic. 697 // Read method declaration comments for more details. 698 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 699 const GEPOperator *GEPR) const { 700 unsigned int ASL = GEPL->getPointerAddressSpace(); 701 unsigned int ASR = GEPR->getPointerAddressSpace(); 702 703 if (int Res = cmpNumbers(ASL, ASR)) 704 return Res; 705 706 // When we have target data, we can reduce the GEP down to the value in bytes 707 // added to the address. 708 const DataLayout &DL = FnL->getParent()->getDataLayout(); 709 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 710 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 711 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 712 GEPR->accumulateConstantOffset(DL, OffsetR)) 713 return cmpAPInts(OffsetL, OffsetR); 714 if (int Res = 715 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) 716 return Res; 717 718 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 719 return Res; 720 721 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 722 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 723 return Res; 724 } 725 726 return 0; 727 } 728 729 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 730 const InlineAsm *R) const { 731 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 732 // the same, otherwise compare the fields. 733 if (L == R) 734 return 0; 735 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 736 return Res; 737 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 738 return Res; 739 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 740 return Res; 741 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 742 return Res; 743 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 744 return Res; 745 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 746 return Res; 747 assert(L->getFunctionType() != R->getFunctionType()); 748 return 0; 749 } 750 751 /// Compare two values used by the two functions under pair-wise comparison. If 752 /// this is the first time the values are seen, they're added to the mapping so 753 /// that we will detect mismatches on next use. 754 /// See comments in declaration for more details. 755 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 756 // Catch self-reference case. 757 if (L == FnL) { 758 if (R == FnR) 759 return 0; 760 return -1; 761 } 762 if (R == FnR) { 763 if (L == FnL) 764 return 0; 765 return 1; 766 } 767 768 const Constant *ConstL = dyn_cast<Constant>(L); 769 const Constant *ConstR = dyn_cast<Constant>(R); 770 if (ConstL && ConstR) { 771 if (L == R) 772 return 0; 773 return cmpConstants(ConstL, ConstR); 774 } 775 776 if (ConstL) 777 return 1; 778 if (ConstR) 779 return -1; 780 781 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 782 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 783 784 if (InlineAsmL && InlineAsmR) 785 return cmpInlineAsm(InlineAsmL, InlineAsmR); 786 if (InlineAsmL) 787 return 1; 788 if (InlineAsmR) 789 return -1; 790 791 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 792 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 793 794 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 795 } 796 797 // Test whether two basic blocks have equivalent behaviour. 798 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 799 const BasicBlock *BBR) const { 800 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 801 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 802 803 do { 804 bool needToCmpOperands = true; 805 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 806 return Res; 807 if (needToCmpOperands) { 808 assert(InstL->getNumOperands() == InstR->getNumOperands()); 809 810 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 811 Value *OpL = InstL->getOperand(i); 812 Value *OpR = InstR->getOperand(i); 813 if (int Res = cmpValues(OpL, OpR)) 814 return Res; 815 // cmpValues should ensure this is true. 816 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 817 } 818 } 819 820 ++InstL; 821 ++InstR; 822 } while (InstL != InstLE && InstR != InstRE); 823 824 if (InstL != InstLE && InstR == InstRE) 825 return 1; 826 if (InstL == InstLE && InstR != InstRE) 827 return -1; 828 return 0; 829 } 830 831 int FunctionComparator::compareSignature() const { 832 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 833 return Res; 834 835 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 836 return Res; 837 838 if (FnL->hasGC()) { 839 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 840 return Res; 841 } 842 843 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 844 return Res; 845 846 if (FnL->hasSection()) { 847 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 848 return Res; 849 } 850 851 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 852 return Res; 853 854 // TODO: if it's internal and only used in direct calls, we could handle this 855 // case too. 856 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 857 return Res; 858 859 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 860 return Res; 861 862 assert(FnL->arg_size() == FnR->arg_size() && 863 "Identically typed functions have different numbers of args!"); 864 865 // Visit the arguments so that they get enumerated in the order they're 866 // passed in. 867 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 868 ArgRI = FnR->arg_begin(), 869 ArgLE = FnL->arg_end(); 870 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 871 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 872 llvm_unreachable("Arguments repeat!"); 873 } 874 return 0; 875 } 876 877 // Test whether the two functions have equivalent behaviour. 878 int FunctionComparator::compare() { 879 beginCompare(); 880 881 if (int Res = compareSignature()) 882 return Res; 883 884 // We do a CFG-ordered walk since the actual ordering of the blocks in the 885 // linked list is immaterial. Our walk starts at the entry block for both 886 // functions, then takes each block from each terminator in order. As an 887 // artifact, this also means that unreachable blocks are ignored. 888 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 889 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 890 891 FnLBBs.push_back(&FnL->getEntryBlock()); 892 FnRBBs.push_back(&FnR->getEntryBlock()); 893 894 VisitedBBs.insert(FnLBBs[0]); 895 while (!FnLBBs.empty()) { 896 const BasicBlock *BBL = FnLBBs.pop_back_val(); 897 const BasicBlock *BBR = FnRBBs.pop_back_val(); 898 899 if (int Res = cmpValues(BBL, BBR)) 900 return Res; 901 902 if (int Res = cmpBasicBlocks(BBL, BBR)) 903 return Res; 904 905 const Instruction *TermL = BBL->getTerminator(); 906 const Instruction *TermR = BBR->getTerminator(); 907 908 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 909 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 910 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 911 continue; 912 913 FnLBBs.push_back(TermL->getSuccessor(i)); 914 FnRBBs.push_back(TermR->getSuccessor(i)); 915 } 916 } 917 return 0; 918 } 919 920 namespace { 921 922 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 923 // hash of a sequence of 64bit ints, but the entire input does not need to be 924 // available at once. This interface is necessary for functionHash because it 925 // needs to accumulate the hash as the structure of the function is traversed 926 // without saving these values to an intermediate buffer. This form of hashing 927 // is not often needed, as usually the object to hash is just read from a 928 // buffer. 929 class HashAccumulator64 { 930 uint64_t Hash; 931 932 public: 933 // Initialize to random constant, so the state isn't zero. 934 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 935 936 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } 937 938 // No finishing is required, because the entire hash value is used. 939 uint64_t getHash() { return Hash; } 940 }; 941 942 } // end anonymous namespace 943 944 // A function hash is calculated by considering only the number of arguments and 945 // whether a function is varargs, the order of basic blocks (given by the 946 // successors of each basic block in depth first order), and the order of 947 // opcodes of each instruction within each of these basic blocks. This mirrors 948 // the strategy compare() uses to compare functions by walking the BBs in depth 949 // first order and comparing each instruction in sequence. Because this hash 950 // does not look at the operands, it is insensitive to things such as the 951 // target of calls and the constants used in the function, which makes it useful 952 // when possibly merging functions which are the same modulo constants and call 953 // targets. 954 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 955 HashAccumulator64 H; 956 H.add(F.isVarArg()); 957 H.add(F.arg_size()); 958 959 SmallVector<const BasicBlock *, 8> BBs; 960 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 961 962 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 963 // accumulating the hash of the function "structure." (BB and opcode sequence) 964 BBs.push_back(&F.getEntryBlock()); 965 VisitedBBs.insert(BBs[0]); 966 while (!BBs.empty()) { 967 const BasicBlock *BB = BBs.pop_back_val(); 968 // This random value acts as a block header, as otherwise the partition of 969 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 970 H.add(45798); 971 for (auto &Inst : *BB) { 972 H.add(Inst.getOpcode()); 973 } 974 const Instruction *Term = BB->getTerminator(); 975 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 976 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 977 continue; 978 BBs.push_back(Term->getSuccessor(i)); 979 } 980 } 981 return H.getHash(); 982 } 983