xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/FunctionComparator.cpp (revision 3d265fce43746c293ae826e9603adbfe09f93cf6)
1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/FunctionComparator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "functioncomparator"
52 
53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
54   if (L < R)
55     return -1;
56   if (L > R)
57     return 1;
58   return 0;
59 }
60 
61 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
62   if ((int)L < (int)R)
63     return -1;
64   if ((int)L > (int)R)
65     return 1;
66   return 0;
67 }
68 
69 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
70   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
71     return Res;
72   if (L.ugt(R))
73     return 1;
74   if (R.ugt(L))
75     return -1;
76   return 0;
77 }
78 
79 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
80   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
81   // then by value interpreted as a bitstring (aka APInt).
82   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
83   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
84                            APFloat::semanticsPrecision(SR)))
85     return Res;
86   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
87                            APFloat::semanticsMaxExponent(SR)))
88     return Res;
89   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
90                            APFloat::semanticsMinExponent(SR)))
91     return Res;
92   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
93                            APFloat::semanticsSizeInBits(SR)))
94     return Res;
95   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
96 }
97 
98 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
99   // Prevent heavy comparison, compare sizes first.
100   if (int Res = cmpNumbers(L.size(), R.size()))
101     return Res;
102 
103   // Compare strings lexicographically only when it is necessary: only when
104   // strings are equal in size.
105   return L.compare(R);
106 }
107 
108 int FunctionComparator::cmpAttrs(const AttributeList L,
109                                  const AttributeList R) const {
110   if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
111     return Res;
112 
113   for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
114     AttributeSet LAS = L.getAttributes(i);
115     AttributeSet RAS = R.getAttributes(i);
116     AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
117     AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
118     for (; LI != LE && RI != RE; ++LI, ++RI) {
119       Attribute LA = *LI;
120       Attribute RA = *RI;
121       if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
122         if (LA.getKindAsEnum() != RA.getKindAsEnum())
123           return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
124 
125         Type *TyL = LA.getValueAsType();
126         Type *TyR = RA.getValueAsType();
127         if (TyL && TyR)
128           return cmpTypes(TyL, TyR);
129 
130         // Two pointers, at least one null, so the comparison result is
131         // independent of the value of a real pointer.
132         return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
133       }
134       if (LA < RA)
135         return -1;
136       if (RA < LA)
137         return 1;
138     }
139     if (LI != LE)
140       return 1;
141     if (RI != RE)
142       return -1;
143   }
144   return 0;
145 }
146 
147 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
148                                          const MDNode *R) const {
149   if (L == R)
150     return 0;
151   if (!L)
152     return -1;
153   if (!R)
154     return 1;
155   // Range metadata is a sequence of numbers. Make sure they are the same
156   // sequence.
157   // TODO: Note that as this is metadata, it is possible to drop and/or merge
158   // this data when considering functions to merge. Thus this comparison would
159   // return 0 (i.e. equivalent), but merging would become more complicated
160   // because the ranges would need to be unioned. It is not likely that
161   // functions differ ONLY in this metadata if they are actually the same
162   // function semantically.
163   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
164     return Res;
165   for (size_t I = 0; I < L->getNumOperands(); ++I) {
166     ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
167     ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
168     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
169       return Res;
170   }
171   return 0;
172 }
173 
174 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
175                                                 const CallBase &RCS) const {
176   assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
177 
178   if (int Res =
179           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
180     return Res;
181 
182   for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
183     auto OBL = LCS.getOperandBundleAt(I);
184     auto OBR = RCS.getOperandBundleAt(I);
185 
186     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
187       return Res;
188 
189     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
190       return Res;
191   }
192 
193   return 0;
194 }
195 
196 /// Constants comparison:
197 /// 1. Check whether type of L constant could be losslessly bitcasted to R
198 /// type.
199 /// 2. Compare constant contents.
200 /// For more details see declaration comments.
201 int FunctionComparator::cmpConstants(const Constant *L,
202                                      const Constant *R) const {
203   Type *TyL = L->getType();
204   Type *TyR = R->getType();
205 
206   // Check whether types are bitcastable. This part is just re-factored
207   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
208   // we also pack into result which type is "less" for us.
209   int TypesRes = cmpTypes(TyL, TyR);
210   if (TypesRes != 0) {
211     // Types are different, but check whether we can bitcast them.
212     if (!TyL->isFirstClassType()) {
213       if (TyR->isFirstClassType())
214         return -1;
215       // Neither TyL nor TyR are values of first class type. Return the result
216       // of comparing the types
217       return TypesRes;
218     }
219     if (!TyR->isFirstClassType()) {
220       if (TyL->isFirstClassType())
221         return 1;
222       return TypesRes;
223     }
224 
225     // Vector -> Vector conversions are always lossless if the two vector types
226     // have the same size, otherwise not.
227     unsigned TyLWidth = 0;
228     unsigned TyRWidth = 0;
229 
230     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
231       TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedSize();
232     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
233       TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedSize();
234 
235     if (TyLWidth != TyRWidth)
236       return cmpNumbers(TyLWidth, TyRWidth);
237 
238     // Zero bit-width means neither TyL nor TyR are vectors.
239     if (!TyLWidth) {
240       PointerType *PTyL = dyn_cast<PointerType>(TyL);
241       PointerType *PTyR = dyn_cast<PointerType>(TyR);
242       if (PTyL && PTyR) {
243         unsigned AddrSpaceL = PTyL->getAddressSpace();
244         unsigned AddrSpaceR = PTyR->getAddressSpace();
245         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
246           return Res;
247       }
248       if (PTyL)
249         return 1;
250       if (PTyR)
251         return -1;
252 
253       // TyL and TyR aren't vectors, nor pointers. We don't know how to
254       // bitcast them.
255       return TypesRes;
256     }
257   }
258 
259   // OK, types are bitcastable, now check constant contents.
260 
261   if (L->isNullValue() && R->isNullValue())
262     return TypesRes;
263   if (L->isNullValue() && !R->isNullValue())
264     return 1;
265   if (!L->isNullValue() && R->isNullValue())
266     return -1;
267 
268   auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
269   auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
270   if (GlobalValueL && GlobalValueR) {
271     return cmpGlobalValues(GlobalValueL, GlobalValueR);
272   }
273 
274   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
275     return Res;
276 
277   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
278     const auto *SeqR = cast<ConstantDataSequential>(R);
279     // This handles ConstantDataArray and ConstantDataVector. Note that we
280     // compare the two raw data arrays, which might differ depending on the host
281     // endianness. This isn't a problem though, because the endiness of a module
282     // will affect the order of the constants, but this order is the same
283     // for a given input module and host platform.
284     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
285   }
286 
287   switch (L->getValueID()) {
288   case Value::UndefValueVal:
289   case Value::ConstantTokenNoneVal:
290     return TypesRes;
291   case Value::ConstantIntVal: {
292     const APInt &LInt = cast<ConstantInt>(L)->getValue();
293     const APInt &RInt = cast<ConstantInt>(R)->getValue();
294     return cmpAPInts(LInt, RInt);
295   }
296   case Value::ConstantFPVal: {
297     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
298     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
299     return cmpAPFloats(LAPF, RAPF);
300   }
301   case Value::ConstantArrayVal: {
302     const ConstantArray *LA = cast<ConstantArray>(L);
303     const ConstantArray *RA = cast<ConstantArray>(R);
304     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
305     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
306     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
307       return Res;
308     for (uint64_t i = 0; i < NumElementsL; ++i) {
309       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
310                                  cast<Constant>(RA->getOperand(i))))
311         return Res;
312     }
313     return 0;
314   }
315   case Value::ConstantStructVal: {
316     const ConstantStruct *LS = cast<ConstantStruct>(L);
317     const ConstantStruct *RS = cast<ConstantStruct>(R);
318     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
319     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
320     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
321       return Res;
322     for (unsigned i = 0; i != NumElementsL; ++i) {
323       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
324                                  cast<Constant>(RS->getOperand(i))))
325         return Res;
326     }
327     return 0;
328   }
329   case Value::ConstantVectorVal: {
330     const ConstantVector *LV = cast<ConstantVector>(L);
331     const ConstantVector *RV = cast<ConstantVector>(R);
332     unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
333     unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
334     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
335       return Res;
336     for (uint64_t i = 0; i < NumElementsL; ++i) {
337       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
338                                  cast<Constant>(RV->getOperand(i))))
339         return Res;
340     }
341     return 0;
342   }
343   case Value::ConstantExprVal: {
344     const ConstantExpr *LE = cast<ConstantExpr>(L);
345     const ConstantExpr *RE = cast<ConstantExpr>(R);
346     unsigned NumOperandsL = LE->getNumOperands();
347     unsigned NumOperandsR = RE->getNumOperands();
348     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
349       return Res;
350     for (unsigned i = 0; i < NumOperandsL; ++i) {
351       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
352                                  cast<Constant>(RE->getOperand(i))))
353         return Res;
354     }
355     return 0;
356   }
357   case Value::BlockAddressVal: {
358     const BlockAddress *LBA = cast<BlockAddress>(L);
359     const BlockAddress *RBA = cast<BlockAddress>(R);
360     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
361       return Res;
362     if (LBA->getFunction() == RBA->getFunction()) {
363       // They are BBs in the same function. Order by which comes first in the
364       // BB order of the function. This order is deterministic.
365       Function *F = LBA->getFunction();
366       BasicBlock *LBB = LBA->getBasicBlock();
367       BasicBlock *RBB = RBA->getBasicBlock();
368       if (LBB == RBB)
369         return 0;
370       for (BasicBlock &BB : F->getBasicBlockList()) {
371         if (&BB == LBB) {
372           assert(&BB != RBB);
373           return -1;
374         }
375         if (&BB == RBB)
376           return 1;
377       }
378       llvm_unreachable("Basic Block Address does not point to a basic block in "
379                        "its function.");
380       return -1;
381     } else {
382       // cmpValues said the functions are the same. So because they aren't
383       // literally the same pointer, they must respectively be the left and
384       // right functions.
385       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
386       // cmpValues will tell us if these are equivalent BasicBlocks, in the
387       // context of their respective functions.
388       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
389     }
390   }
391   default: // Unknown constant, abort.
392     LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
393     llvm_unreachable("Constant ValueID not recognized.");
394     return -1;
395   }
396 }
397 
398 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
399   uint64_t LNumber = GlobalNumbers->getNumber(L);
400   uint64_t RNumber = GlobalNumbers->getNumber(R);
401   return cmpNumbers(LNumber, RNumber);
402 }
403 
404 /// cmpType - compares two types,
405 /// defines total ordering among the types set.
406 /// See method declaration comments for more details.
407 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
408   PointerType *PTyL = dyn_cast<PointerType>(TyL);
409   PointerType *PTyR = dyn_cast<PointerType>(TyR);
410 
411   const DataLayout &DL = FnL->getParent()->getDataLayout();
412   if (PTyL && PTyL->getAddressSpace() == 0)
413     TyL = DL.getIntPtrType(TyL);
414   if (PTyR && PTyR->getAddressSpace() == 0)
415     TyR = DL.getIntPtrType(TyR);
416 
417   if (TyL == TyR)
418     return 0;
419 
420   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
421     return Res;
422 
423   switch (TyL->getTypeID()) {
424   default:
425     llvm_unreachable("Unknown type!");
426   case Type::IntegerTyID:
427     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
428                       cast<IntegerType>(TyR)->getBitWidth());
429   // TyL == TyR would have returned true earlier, because types are uniqued.
430   case Type::VoidTyID:
431   case Type::FloatTyID:
432   case Type::DoubleTyID:
433   case Type::X86_FP80TyID:
434   case Type::FP128TyID:
435   case Type::PPC_FP128TyID:
436   case Type::LabelTyID:
437   case Type::MetadataTyID:
438   case Type::TokenTyID:
439     return 0;
440 
441   case Type::PointerTyID:
442     assert(PTyL && PTyR && "Both types must be pointers here.");
443     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
444 
445   case Type::StructTyID: {
446     StructType *STyL = cast<StructType>(TyL);
447     StructType *STyR = cast<StructType>(TyR);
448     if (STyL->getNumElements() != STyR->getNumElements())
449       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
450 
451     if (STyL->isPacked() != STyR->isPacked())
452       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
453 
454     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
455       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
456         return Res;
457     }
458     return 0;
459   }
460 
461   case Type::FunctionTyID: {
462     FunctionType *FTyL = cast<FunctionType>(TyL);
463     FunctionType *FTyR = cast<FunctionType>(TyR);
464     if (FTyL->getNumParams() != FTyR->getNumParams())
465       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
466 
467     if (FTyL->isVarArg() != FTyR->isVarArg())
468       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
469 
470     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
471       return Res;
472 
473     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
474       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
475         return Res;
476     }
477     return 0;
478   }
479 
480   case Type::ArrayTyID: {
481     auto *STyL = cast<ArrayType>(TyL);
482     auto *STyR = cast<ArrayType>(TyR);
483     if (STyL->getNumElements() != STyR->getNumElements())
484       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
485     return cmpTypes(STyL->getElementType(), STyR->getElementType());
486   }
487   case Type::FixedVectorTyID:
488   case Type::ScalableVectorTyID: {
489     auto *STyL = cast<VectorType>(TyL);
490     auto *STyR = cast<VectorType>(TyR);
491     if (STyL->getElementCount().Scalable != STyR->getElementCount().Scalable)
492       return cmpNumbers(STyL->getElementCount().Scalable,
493                         STyR->getElementCount().Scalable);
494     if (STyL->getElementCount().Min != STyR->getElementCount().Min)
495       return cmpNumbers(STyL->getElementCount().Min,
496                         STyR->getElementCount().Min);
497     return cmpTypes(STyL->getElementType(), STyR->getElementType());
498   }
499   }
500 }
501 
502 // Determine whether the two operations are the same except that pointer-to-A
503 // and pointer-to-B are equivalent. This should be kept in sync with
504 // Instruction::isSameOperationAs.
505 // Read method declaration comments for more details.
506 int FunctionComparator::cmpOperations(const Instruction *L,
507                                       const Instruction *R,
508                                       bool &needToCmpOperands) const {
509   needToCmpOperands = true;
510   if (int Res = cmpValues(L, R))
511     return Res;
512 
513   // Differences from Instruction::isSameOperationAs:
514   //  * replace type comparison with calls to cmpTypes.
515   //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
516   //  * because of the above, we don't test for the tail bit on calls later on.
517   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
518     return Res;
519 
520   if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
521     needToCmpOperands = false;
522     const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
523     if (int Res =
524             cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
525       return Res;
526     return cmpGEPs(GEPL, GEPR);
527   }
528 
529   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
530     return Res;
531 
532   if (int Res = cmpTypes(L->getType(), R->getType()))
533     return Res;
534 
535   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
536                            R->getRawSubclassOptionalData()))
537     return Res;
538 
539   // We have two instructions of identical opcode and #operands.  Check to see
540   // if all operands are the same type
541   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
542     if (int Res =
543             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
544       return Res;
545   }
546 
547   // Check special state that is a part of some instructions.
548   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
549     if (int Res = cmpTypes(AI->getAllocatedType(),
550                            cast<AllocaInst>(R)->getAllocatedType()))
551       return Res;
552     return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
553   }
554   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
555     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
556       return Res;
557     if (int Res =
558             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
559       return Res;
560     if (int Res =
561             cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
562       return Res;
563     if (int Res = cmpNumbers(LI->getSyncScopeID(),
564                              cast<LoadInst>(R)->getSyncScopeID()))
565       return Res;
566     return cmpRangeMetadata(
567         LI->getMetadata(LLVMContext::MD_range),
568         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
569   }
570   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
571     if (int Res =
572             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
573       return Res;
574     if (int Res =
575             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
576       return Res;
577     if (int Res =
578             cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
579       return Res;
580     return cmpNumbers(SI->getSyncScopeID(),
581                       cast<StoreInst>(R)->getSyncScopeID());
582   }
583   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
584     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
585   if (auto *CBL = dyn_cast<CallBase>(L)) {
586     auto *CBR = cast<CallBase>(R);
587     if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
588       return Res;
589     if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
590       return Res;
591     if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
592       return Res;
593     if (const CallInst *CI = dyn_cast<CallInst>(L))
594       if (int Res = cmpNumbers(CI->getTailCallKind(),
595                                cast<CallInst>(R)->getTailCallKind()))
596         return Res;
597     return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
598                             R->getMetadata(LLVMContext::MD_range));
599   }
600   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
601     ArrayRef<unsigned> LIndices = IVI->getIndices();
602     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
603     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
604       return Res;
605     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
606       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
607         return Res;
608     }
609     return 0;
610   }
611   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
612     ArrayRef<unsigned> LIndices = EVI->getIndices();
613     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
614     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
615       return Res;
616     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
617       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
618         return Res;
619     }
620   }
621   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
622     if (int Res =
623             cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
624       return Res;
625     return cmpNumbers(FI->getSyncScopeID(),
626                       cast<FenceInst>(R)->getSyncScopeID());
627   }
628   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
629     if (int Res = cmpNumbers(CXI->isVolatile(),
630                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
631       return Res;
632     if (int Res =
633             cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
634       return Res;
635     if (int Res =
636             cmpOrderings(CXI->getSuccessOrdering(),
637                          cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
638       return Res;
639     if (int Res =
640             cmpOrderings(CXI->getFailureOrdering(),
641                          cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
642       return Res;
643     return cmpNumbers(CXI->getSyncScopeID(),
644                       cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
645   }
646   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
647     if (int Res = cmpNumbers(RMWI->getOperation(),
648                              cast<AtomicRMWInst>(R)->getOperation()))
649       return Res;
650     if (int Res = cmpNumbers(RMWI->isVolatile(),
651                              cast<AtomicRMWInst>(R)->isVolatile()))
652       return Res;
653     if (int Res = cmpOrderings(RMWI->getOrdering(),
654                                cast<AtomicRMWInst>(R)->getOrdering()))
655       return Res;
656     return cmpNumbers(RMWI->getSyncScopeID(),
657                       cast<AtomicRMWInst>(R)->getSyncScopeID());
658   }
659   if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
660     ArrayRef<int> LMask = SVI->getShuffleMask();
661     ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
662     if (int Res = cmpNumbers(LMask.size(), RMask.size()))
663       return Res;
664     for (size_t i = 0, e = LMask.size(); i != e; ++i) {
665       if (int Res = cmpNumbers(LMask[i], RMask[i]))
666         return Res;
667     }
668   }
669   if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
670     const PHINode *PNR = cast<PHINode>(R);
671     // Ensure that in addition to the incoming values being identical
672     // (checked by the caller of this function), the incoming blocks
673     // are also identical.
674     for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
675       if (int Res =
676               cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
677         return Res;
678     }
679   }
680   return 0;
681 }
682 
683 // Determine whether two GEP operations perform the same underlying arithmetic.
684 // Read method declaration comments for more details.
685 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
686                                 const GEPOperator *GEPR) const {
687   unsigned int ASL = GEPL->getPointerAddressSpace();
688   unsigned int ASR = GEPR->getPointerAddressSpace();
689 
690   if (int Res = cmpNumbers(ASL, ASR))
691     return Res;
692 
693   // When we have target data, we can reduce the GEP down to the value in bytes
694   // added to the address.
695   const DataLayout &DL = FnL->getParent()->getDataLayout();
696   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
697   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
698   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
699       GEPR->accumulateConstantOffset(DL, OffsetR))
700     return cmpAPInts(OffsetL, OffsetR);
701   if (int Res =
702           cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
703     return Res;
704 
705   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
706     return Res;
707 
708   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
709     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
710       return Res;
711   }
712 
713   return 0;
714 }
715 
716 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
717                                      const InlineAsm *R) const {
718   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
719   // the same, otherwise compare the fields.
720   if (L == R)
721     return 0;
722   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
723     return Res;
724   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
725     return Res;
726   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
727     return Res;
728   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
729     return Res;
730   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
731     return Res;
732   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
733     return Res;
734   assert(L->getFunctionType() != R->getFunctionType());
735   return 0;
736 }
737 
738 /// Compare two values used by the two functions under pair-wise comparison. If
739 /// this is the first time the values are seen, they're added to the mapping so
740 /// that we will detect mismatches on next use.
741 /// See comments in declaration for more details.
742 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
743   // Catch self-reference case.
744   if (L == FnL) {
745     if (R == FnR)
746       return 0;
747     return -1;
748   }
749   if (R == FnR) {
750     if (L == FnL)
751       return 0;
752     return 1;
753   }
754 
755   const Constant *ConstL = dyn_cast<Constant>(L);
756   const Constant *ConstR = dyn_cast<Constant>(R);
757   if (ConstL && ConstR) {
758     if (L == R)
759       return 0;
760     return cmpConstants(ConstL, ConstR);
761   }
762 
763   if (ConstL)
764     return 1;
765   if (ConstR)
766     return -1;
767 
768   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
769   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
770 
771   if (InlineAsmL && InlineAsmR)
772     return cmpInlineAsm(InlineAsmL, InlineAsmR);
773   if (InlineAsmL)
774     return 1;
775   if (InlineAsmR)
776     return -1;
777 
778   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
779        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
780 
781   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
782 }
783 
784 // Test whether two basic blocks have equivalent behaviour.
785 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
786                                        const BasicBlock *BBR) const {
787   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
788   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
789 
790   do {
791     bool needToCmpOperands = true;
792     if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
793       return Res;
794     if (needToCmpOperands) {
795       assert(InstL->getNumOperands() == InstR->getNumOperands());
796 
797       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
798         Value *OpL = InstL->getOperand(i);
799         Value *OpR = InstR->getOperand(i);
800         if (int Res = cmpValues(OpL, OpR))
801           return Res;
802         // cmpValues should ensure this is true.
803         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
804       }
805     }
806 
807     ++InstL;
808     ++InstR;
809   } while (InstL != InstLE && InstR != InstRE);
810 
811   if (InstL != InstLE && InstR == InstRE)
812     return 1;
813   if (InstL == InstLE && InstR != InstRE)
814     return -1;
815   return 0;
816 }
817 
818 int FunctionComparator::compareSignature() const {
819   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
820     return Res;
821 
822   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
823     return Res;
824 
825   if (FnL->hasGC()) {
826     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
827       return Res;
828   }
829 
830   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
831     return Res;
832 
833   if (FnL->hasSection()) {
834     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
835       return Res;
836   }
837 
838   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
839     return Res;
840 
841   // TODO: if it's internal and only used in direct calls, we could handle this
842   // case too.
843   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
844     return Res;
845 
846   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
847     return Res;
848 
849   assert(FnL->arg_size() == FnR->arg_size() &&
850          "Identically typed functions have different numbers of args!");
851 
852   // Visit the arguments so that they get enumerated in the order they're
853   // passed in.
854   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
855                                     ArgRI = FnR->arg_begin(),
856                                     ArgLE = FnL->arg_end();
857        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
858     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
859       llvm_unreachable("Arguments repeat!");
860   }
861   return 0;
862 }
863 
864 // Test whether the two functions have equivalent behaviour.
865 int FunctionComparator::compare() {
866   beginCompare();
867 
868   if (int Res = compareSignature())
869     return Res;
870 
871   // We do a CFG-ordered walk since the actual ordering of the blocks in the
872   // linked list is immaterial. Our walk starts at the entry block for both
873   // functions, then takes each block from each terminator in order. As an
874   // artifact, this also means that unreachable blocks are ignored.
875   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
876   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
877 
878   FnLBBs.push_back(&FnL->getEntryBlock());
879   FnRBBs.push_back(&FnR->getEntryBlock());
880 
881   VisitedBBs.insert(FnLBBs[0]);
882   while (!FnLBBs.empty()) {
883     const BasicBlock *BBL = FnLBBs.pop_back_val();
884     const BasicBlock *BBR = FnRBBs.pop_back_val();
885 
886     if (int Res = cmpValues(BBL, BBR))
887       return Res;
888 
889     if (int Res = cmpBasicBlocks(BBL, BBR))
890       return Res;
891 
892     const Instruction *TermL = BBL->getTerminator();
893     const Instruction *TermR = BBR->getTerminator();
894 
895     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
896     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
897       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
898         continue;
899 
900       FnLBBs.push_back(TermL->getSuccessor(i));
901       FnRBBs.push_back(TermR->getSuccessor(i));
902     }
903   }
904   return 0;
905 }
906 
907 namespace {
908 
909 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
910 // hash of a sequence of 64bit ints, but the entire input does not need to be
911 // available at once. This interface is necessary for functionHash because it
912 // needs to accumulate the hash as the structure of the function is traversed
913 // without saving these values to an intermediate buffer. This form of hashing
914 // is not often needed, as usually the object to hash is just read from a
915 // buffer.
916 class HashAccumulator64 {
917   uint64_t Hash;
918 
919 public:
920   // Initialize to random constant, so the state isn't zero.
921   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
922 
923   void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); }
924 
925   // No finishing is required, because the entire hash value is used.
926   uint64_t getHash() { return Hash; }
927 };
928 
929 } // end anonymous namespace
930 
931 // A function hash is calculated by considering only the number of arguments and
932 // whether a function is varargs, the order of basic blocks (given by the
933 // successors of each basic block in depth first order), and the order of
934 // opcodes of each instruction within each of these basic blocks. This mirrors
935 // the strategy compare() uses to compare functions by walking the BBs in depth
936 // first order and comparing each instruction in sequence. Because this hash
937 // does not look at the operands, it is insensitive to things such as the
938 // target of calls and the constants used in the function, which makes it useful
939 // when possibly merging functions which are the same modulo constants and call
940 // targets.
941 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
942   HashAccumulator64 H;
943   H.add(F.isVarArg());
944   H.add(F.arg_size());
945 
946   SmallVector<const BasicBlock *, 8> BBs;
947   SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
948 
949   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
950   // accumulating the hash of the function "structure." (BB and opcode sequence)
951   BBs.push_back(&F.getEntryBlock());
952   VisitedBBs.insert(BBs[0]);
953   while (!BBs.empty()) {
954     const BasicBlock *BB = BBs.pop_back_val();
955     // This random value acts as a block header, as otherwise the partition of
956     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
957     H.add(45798);
958     for (auto &Inst : *BB) {
959       H.add(Inst.getOpcode());
960     }
961     const Instruction *Term = BB->getTerminator();
962     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
963       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
964         continue;
965       BBs.push_back(Term->getSuccessor(i));
966     }
967   }
968   return H.getHash();
969 }
970