1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the FunctionComparator and GlobalNumberState classes 10 // which are used by the MergeFunctions pass for comparing functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/FunctionComparator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/IR/Attributes.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalValue.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "functioncomparator" 52 53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 54 if (L < R) 55 return -1; 56 if (L > R) 57 return 1; 58 return 0; 59 } 60 61 int FunctionComparator::cmpAligns(Align L, Align R) const { 62 if (L.value() < R.value()) 63 return -1; 64 if (L.value() > R.value()) 65 return 1; 66 return 0; 67 } 68 69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 70 if ((int)L < (int)R) 71 return -1; 72 if ((int)L > (int)R) 73 return 1; 74 return 0; 75 } 76 77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 78 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 79 return Res; 80 if (L.ugt(R)) 81 return 1; 82 if (R.ugt(L)) 83 return -1; 84 return 0; 85 } 86 87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 88 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 89 // then by value interpreted as a bitstring (aka APInt). 90 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 91 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 92 APFloat::semanticsPrecision(SR))) 93 return Res; 94 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 95 APFloat::semanticsMaxExponent(SR))) 96 return Res; 97 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 98 APFloat::semanticsMinExponent(SR))) 99 return Res; 100 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 101 APFloat::semanticsSizeInBits(SR))) 102 return Res; 103 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 104 } 105 106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 107 // Prevent heavy comparison, compare sizes first. 108 if (int Res = cmpNumbers(L.size(), R.size())) 109 return Res; 110 111 // Compare strings lexicographically only when it is necessary: only when 112 // strings are equal in size. 113 return std::clamp(L.compare(R), -1, 1); 114 } 115 116 int FunctionComparator::cmpAttrs(const AttributeList L, 117 const AttributeList R) const { 118 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 119 return Res; 120 121 for (unsigned i : L.indexes()) { 122 AttributeSet LAS = L.getAttributes(i); 123 AttributeSet RAS = R.getAttributes(i); 124 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 125 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 126 for (; LI != LE && RI != RE; ++LI, ++RI) { 127 Attribute LA = *LI; 128 Attribute RA = *RI; 129 if (LA.isTypeAttribute() && RA.isTypeAttribute()) { 130 if (LA.getKindAsEnum() != RA.getKindAsEnum()) 131 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum()); 132 133 Type *TyL = LA.getValueAsType(); 134 Type *TyR = RA.getValueAsType(); 135 if (TyL && TyR) { 136 if (int Res = cmpTypes(TyL, TyR)) 137 return Res; 138 continue; 139 } 140 141 // Two pointers, at least one null, so the comparison result is 142 // independent of the value of a real pointer. 143 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR)) 144 return Res; 145 continue; 146 } 147 if (LA < RA) 148 return -1; 149 if (RA < LA) 150 return 1; 151 } 152 if (LI != LE) 153 return 1; 154 if (RI != RE) 155 return -1; 156 } 157 return 0; 158 } 159 160 int FunctionComparator::cmpMetadata(const Metadata *L, 161 const Metadata *R) const { 162 // TODO: the following routine coerce the metadata contents into constants 163 // before comparison. 164 // It ignores any other cases, so that the metadata nodes are considered 165 // equal even though this is not correct. 166 // We should structurally compare the metadata nodes to be perfect here. 167 auto *CL = dyn_cast<ConstantAsMetadata>(L); 168 auto *CR = dyn_cast<ConstantAsMetadata>(R); 169 if (CL == CR) 170 return 0; 171 if (!CL) 172 return -1; 173 if (!CR) 174 return 1; 175 return cmpConstants(CL->getValue(), CR->getValue()); 176 } 177 178 int FunctionComparator::cmpMDNode(const MDNode *L, const MDNode *R) const { 179 if (L == R) 180 return 0; 181 if (!L) 182 return -1; 183 if (!R) 184 return 1; 185 // TODO: Note that as this is metadata, it is possible to drop and/or merge 186 // this data when considering functions to merge. Thus this comparison would 187 // return 0 (i.e. equivalent), but merging would become more complicated 188 // because the ranges would need to be unioned. It is not likely that 189 // functions differ ONLY in this metadata if they are actually the same 190 // function semantically. 191 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 192 return Res; 193 for (size_t I = 0; I < L->getNumOperands(); ++I) 194 if (int Res = cmpMetadata(L->getOperand(I), R->getOperand(I))) 195 return Res; 196 return 0; 197 } 198 199 int FunctionComparator::cmpInstMetadata(Instruction const *L, 200 Instruction const *R) const { 201 /// These metadata affects the other optimization passes by making assertions 202 /// or constraints. 203 /// Values that carry different expectations should be considered different. 204 SmallVector<std::pair<unsigned, MDNode *>> MDL, MDR; 205 L->getAllMetadataOtherThanDebugLoc(MDL); 206 R->getAllMetadataOtherThanDebugLoc(MDR); 207 if (MDL.size() > MDR.size()) 208 return 1; 209 else if (MDL.size() < MDR.size()) 210 return -1; 211 for (size_t I = 0, N = MDL.size(); I < N; ++I) { 212 auto const [KeyL, ML] = MDL[I]; 213 auto const [KeyR, MR] = MDR[I]; 214 if (int Res = cmpNumbers(KeyL, KeyR)) 215 return Res; 216 if (int Res = cmpMDNode(ML, MR)) 217 return Res; 218 } 219 return 0; 220 } 221 222 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS, 223 const CallBase &RCS) const { 224 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!"); 225 226 if (int Res = 227 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 228 return Res; 229 230 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) { 231 auto OBL = LCS.getOperandBundleAt(I); 232 auto OBR = RCS.getOperandBundleAt(I); 233 234 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 235 return Res; 236 237 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 238 return Res; 239 } 240 241 return 0; 242 } 243 244 /// Constants comparison: 245 /// 1. Check whether type of L constant could be losslessly bitcasted to R 246 /// type. 247 /// 2. Compare constant contents. 248 /// For more details see declaration comments. 249 int FunctionComparator::cmpConstants(const Constant *L, 250 const Constant *R) const { 251 Type *TyL = L->getType(); 252 Type *TyR = R->getType(); 253 254 // Check whether types are bitcastable. This part is just re-factored 255 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 256 // we also pack into result which type is "less" for us. 257 int TypesRes = cmpTypes(TyL, TyR); 258 if (TypesRes != 0) { 259 // Types are different, but check whether we can bitcast them. 260 if (!TyL->isFirstClassType()) { 261 if (TyR->isFirstClassType()) 262 return -1; 263 // Neither TyL nor TyR are values of first class type. Return the result 264 // of comparing the types 265 return TypesRes; 266 } 267 if (!TyR->isFirstClassType()) { 268 if (TyL->isFirstClassType()) 269 return 1; 270 return TypesRes; 271 } 272 273 // Vector -> Vector conversions are always lossless if the two vector types 274 // have the same size, otherwise not. 275 unsigned TyLWidth = 0; 276 unsigned TyRWidth = 0; 277 278 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 279 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue(); 280 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 281 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue(); 282 283 if (TyLWidth != TyRWidth) 284 return cmpNumbers(TyLWidth, TyRWidth); 285 286 // Zero bit-width means neither TyL nor TyR are vectors. 287 if (!TyLWidth) { 288 PointerType *PTyL = dyn_cast<PointerType>(TyL); 289 PointerType *PTyR = dyn_cast<PointerType>(TyR); 290 if (PTyL && PTyR) { 291 unsigned AddrSpaceL = PTyL->getAddressSpace(); 292 unsigned AddrSpaceR = PTyR->getAddressSpace(); 293 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 294 return Res; 295 } 296 if (PTyL) 297 return 1; 298 if (PTyR) 299 return -1; 300 301 // TyL and TyR aren't vectors, nor pointers. We don't know how to 302 // bitcast them. 303 return TypesRes; 304 } 305 } 306 307 // OK, types are bitcastable, now check constant contents. 308 309 if (L->isNullValue() && R->isNullValue()) 310 return TypesRes; 311 if (L->isNullValue() && !R->isNullValue()) 312 return 1; 313 if (!L->isNullValue() && R->isNullValue()) 314 return -1; 315 316 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 317 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 318 if (GlobalValueL && GlobalValueR) { 319 return cmpGlobalValues(GlobalValueL, GlobalValueR); 320 } 321 322 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 323 return Res; 324 325 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 326 const auto *SeqR = cast<ConstantDataSequential>(R); 327 // This handles ConstantDataArray and ConstantDataVector. Note that we 328 // compare the two raw data arrays, which might differ depending on the host 329 // endianness. This isn't a problem though, because the endiness of a module 330 // will affect the order of the constants, but this order is the same 331 // for a given input module and host platform. 332 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 333 } 334 335 switch (L->getValueID()) { 336 case Value::UndefValueVal: 337 case Value::PoisonValueVal: 338 case Value::ConstantTokenNoneVal: 339 return TypesRes; 340 case Value::ConstantIntVal: { 341 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 342 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 343 return cmpAPInts(LInt, RInt); 344 } 345 case Value::ConstantFPVal: { 346 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 347 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 348 return cmpAPFloats(LAPF, RAPF); 349 } 350 case Value::ConstantArrayVal: { 351 const ConstantArray *LA = cast<ConstantArray>(L); 352 const ConstantArray *RA = cast<ConstantArray>(R); 353 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 354 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 355 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 356 return Res; 357 for (uint64_t i = 0; i < NumElementsL; ++i) { 358 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 359 cast<Constant>(RA->getOperand(i)))) 360 return Res; 361 } 362 return 0; 363 } 364 case Value::ConstantStructVal: { 365 const ConstantStruct *LS = cast<ConstantStruct>(L); 366 const ConstantStruct *RS = cast<ConstantStruct>(R); 367 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 368 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 369 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 370 return Res; 371 for (unsigned i = 0; i != NumElementsL; ++i) { 372 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 373 cast<Constant>(RS->getOperand(i)))) 374 return Res; 375 } 376 return 0; 377 } 378 case Value::ConstantVectorVal: { 379 const ConstantVector *LV = cast<ConstantVector>(L); 380 const ConstantVector *RV = cast<ConstantVector>(R); 381 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements(); 382 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements(); 383 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 384 return Res; 385 for (uint64_t i = 0; i < NumElementsL; ++i) { 386 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 387 cast<Constant>(RV->getOperand(i)))) 388 return Res; 389 } 390 return 0; 391 } 392 case Value::ConstantExprVal: { 393 const ConstantExpr *LE = cast<ConstantExpr>(L); 394 const ConstantExpr *RE = cast<ConstantExpr>(R); 395 unsigned NumOperandsL = LE->getNumOperands(); 396 unsigned NumOperandsR = RE->getNumOperands(); 397 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 398 return Res; 399 for (unsigned i = 0; i < NumOperandsL; ++i) { 400 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 401 cast<Constant>(RE->getOperand(i)))) 402 return Res; 403 } 404 return 0; 405 } 406 case Value::BlockAddressVal: { 407 const BlockAddress *LBA = cast<BlockAddress>(L); 408 const BlockAddress *RBA = cast<BlockAddress>(R); 409 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 410 return Res; 411 if (LBA->getFunction() == RBA->getFunction()) { 412 // They are BBs in the same function. Order by which comes first in the 413 // BB order of the function. This order is deterministic. 414 Function *F = LBA->getFunction(); 415 BasicBlock *LBB = LBA->getBasicBlock(); 416 BasicBlock *RBB = RBA->getBasicBlock(); 417 if (LBB == RBB) 418 return 0; 419 for (BasicBlock &BB : *F) { 420 if (&BB == LBB) { 421 assert(&BB != RBB); 422 return -1; 423 } 424 if (&BB == RBB) 425 return 1; 426 } 427 llvm_unreachable("Basic Block Address does not point to a basic block in " 428 "its function."); 429 return -1; 430 } else { 431 // cmpValues said the functions are the same. So because they aren't 432 // literally the same pointer, they must respectively be the left and 433 // right functions. 434 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 435 // cmpValues will tell us if these are equivalent BasicBlocks, in the 436 // context of their respective functions. 437 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 438 } 439 } 440 case Value::DSOLocalEquivalentVal: { 441 // dso_local_equivalent is functionally equivalent to whatever it points to. 442 // This means the behavior of the IR should be the exact same as if the 443 // function was referenced directly rather than through a 444 // dso_local_equivalent. 445 const auto *LEquiv = cast<DSOLocalEquivalent>(L); 446 const auto *REquiv = cast<DSOLocalEquivalent>(R); 447 return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue()); 448 } 449 default: // Unknown constant, abort. 450 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 451 llvm_unreachable("Constant ValueID not recognized."); 452 return -1; 453 } 454 } 455 456 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 457 uint64_t LNumber = GlobalNumbers->getNumber(L); 458 uint64_t RNumber = GlobalNumbers->getNumber(R); 459 return cmpNumbers(LNumber, RNumber); 460 } 461 462 /// cmpType - compares two types, 463 /// defines total ordering among the types set. 464 /// See method declaration comments for more details. 465 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 466 PointerType *PTyL = dyn_cast<PointerType>(TyL); 467 PointerType *PTyR = dyn_cast<PointerType>(TyR); 468 469 const DataLayout &DL = FnL->getParent()->getDataLayout(); 470 if (PTyL && PTyL->getAddressSpace() == 0) 471 TyL = DL.getIntPtrType(TyL); 472 if (PTyR && PTyR->getAddressSpace() == 0) 473 TyR = DL.getIntPtrType(TyR); 474 475 if (TyL == TyR) 476 return 0; 477 478 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 479 return Res; 480 481 switch (TyL->getTypeID()) { 482 default: 483 llvm_unreachable("Unknown type!"); 484 case Type::IntegerTyID: 485 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 486 cast<IntegerType>(TyR)->getBitWidth()); 487 // TyL == TyR would have returned true earlier, because types are uniqued. 488 case Type::VoidTyID: 489 case Type::FloatTyID: 490 case Type::DoubleTyID: 491 case Type::X86_FP80TyID: 492 case Type::FP128TyID: 493 case Type::PPC_FP128TyID: 494 case Type::LabelTyID: 495 case Type::MetadataTyID: 496 case Type::TokenTyID: 497 return 0; 498 499 case Type::PointerTyID: 500 assert(PTyL && PTyR && "Both types must be pointers here."); 501 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 502 503 case Type::StructTyID: { 504 StructType *STyL = cast<StructType>(TyL); 505 StructType *STyR = cast<StructType>(TyR); 506 if (STyL->getNumElements() != STyR->getNumElements()) 507 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 508 509 if (STyL->isPacked() != STyR->isPacked()) 510 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 511 512 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 513 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 514 return Res; 515 } 516 return 0; 517 } 518 519 case Type::FunctionTyID: { 520 FunctionType *FTyL = cast<FunctionType>(TyL); 521 FunctionType *FTyR = cast<FunctionType>(TyR); 522 if (FTyL->getNumParams() != FTyR->getNumParams()) 523 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 524 525 if (FTyL->isVarArg() != FTyR->isVarArg()) 526 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 527 528 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 529 return Res; 530 531 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 532 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 533 return Res; 534 } 535 return 0; 536 } 537 538 case Type::ArrayTyID: { 539 auto *STyL = cast<ArrayType>(TyL); 540 auto *STyR = cast<ArrayType>(TyR); 541 if (STyL->getNumElements() != STyR->getNumElements()) 542 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 543 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 544 } 545 case Type::FixedVectorTyID: 546 case Type::ScalableVectorTyID: { 547 auto *STyL = cast<VectorType>(TyL); 548 auto *STyR = cast<VectorType>(TyR); 549 if (STyL->getElementCount().isScalable() != 550 STyR->getElementCount().isScalable()) 551 return cmpNumbers(STyL->getElementCount().isScalable(), 552 STyR->getElementCount().isScalable()); 553 if (STyL->getElementCount() != STyR->getElementCount()) 554 return cmpNumbers(STyL->getElementCount().getKnownMinValue(), 555 STyR->getElementCount().getKnownMinValue()); 556 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 557 } 558 } 559 } 560 561 // Determine whether the two operations are the same except that pointer-to-A 562 // and pointer-to-B are equivalent. This should be kept in sync with 563 // Instruction::isSameOperationAs. 564 // Read method declaration comments for more details. 565 int FunctionComparator::cmpOperations(const Instruction *L, 566 const Instruction *R, 567 bool &needToCmpOperands) const { 568 needToCmpOperands = true; 569 if (int Res = cmpValues(L, R)) 570 return Res; 571 572 // Differences from Instruction::isSameOperationAs: 573 // * replace type comparison with calls to cmpTypes. 574 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 575 // * because of the above, we don't test for the tail bit on calls later on. 576 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 577 return Res; 578 579 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 580 needToCmpOperands = false; 581 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 582 if (int Res = 583 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 584 return Res; 585 return cmpGEPs(GEPL, GEPR); 586 } 587 588 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 589 return Res; 590 591 if (int Res = cmpTypes(L->getType(), R->getType())) 592 return Res; 593 594 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 595 R->getRawSubclassOptionalData())) 596 return Res; 597 598 // We have two instructions of identical opcode and #operands. Check to see 599 // if all operands are the same type 600 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 601 if (int Res = 602 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 603 return Res; 604 } 605 606 // Check special state that is a part of some instructions. 607 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 608 if (int Res = cmpTypes(AI->getAllocatedType(), 609 cast<AllocaInst>(R)->getAllocatedType())) 610 return Res; 611 return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign()); 612 } 613 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 614 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 615 return Res; 616 if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign())) 617 return Res; 618 if (int Res = 619 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 620 return Res; 621 if (int Res = cmpNumbers(LI->getSyncScopeID(), 622 cast<LoadInst>(R)->getSyncScopeID())) 623 return Res; 624 return cmpInstMetadata(L, R); 625 } 626 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 627 if (int Res = 628 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 629 return Res; 630 if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign())) 631 return Res; 632 if (int Res = 633 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 634 return Res; 635 return cmpNumbers(SI->getSyncScopeID(), 636 cast<StoreInst>(R)->getSyncScopeID()); 637 } 638 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 639 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 640 if (auto *CBL = dyn_cast<CallBase>(L)) { 641 auto *CBR = cast<CallBase>(R); 642 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv())) 643 return Res; 644 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes())) 645 return Res; 646 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR)) 647 return Res; 648 if (const CallInst *CI = dyn_cast<CallInst>(L)) 649 if (int Res = cmpNumbers(CI->getTailCallKind(), 650 cast<CallInst>(R)->getTailCallKind())) 651 return Res; 652 return cmpMDNode(L->getMetadata(LLVMContext::MD_range), 653 R->getMetadata(LLVMContext::MD_range)); 654 } 655 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 656 ArrayRef<unsigned> LIndices = IVI->getIndices(); 657 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 658 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 659 return Res; 660 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 661 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 662 return Res; 663 } 664 return 0; 665 } 666 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 667 ArrayRef<unsigned> LIndices = EVI->getIndices(); 668 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 669 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 670 return Res; 671 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 672 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 673 return Res; 674 } 675 } 676 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 677 if (int Res = 678 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 679 return Res; 680 return cmpNumbers(FI->getSyncScopeID(), 681 cast<FenceInst>(R)->getSyncScopeID()); 682 } 683 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 684 if (int Res = cmpNumbers(CXI->isVolatile(), 685 cast<AtomicCmpXchgInst>(R)->isVolatile())) 686 return Res; 687 if (int Res = 688 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak())) 689 return Res; 690 if (int Res = 691 cmpOrderings(CXI->getSuccessOrdering(), 692 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 693 return Res; 694 if (int Res = 695 cmpOrderings(CXI->getFailureOrdering(), 696 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 697 return Res; 698 return cmpNumbers(CXI->getSyncScopeID(), 699 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 700 } 701 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 702 if (int Res = cmpNumbers(RMWI->getOperation(), 703 cast<AtomicRMWInst>(R)->getOperation())) 704 return Res; 705 if (int Res = cmpNumbers(RMWI->isVolatile(), 706 cast<AtomicRMWInst>(R)->isVolatile())) 707 return Res; 708 if (int Res = cmpOrderings(RMWI->getOrdering(), 709 cast<AtomicRMWInst>(R)->getOrdering())) 710 return Res; 711 return cmpNumbers(RMWI->getSyncScopeID(), 712 cast<AtomicRMWInst>(R)->getSyncScopeID()); 713 } 714 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) { 715 ArrayRef<int> LMask = SVI->getShuffleMask(); 716 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask(); 717 if (int Res = cmpNumbers(LMask.size(), RMask.size())) 718 return Res; 719 for (size_t i = 0, e = LMask.size(); i != e; ++i) { 720 if (int Res = cmpNumbers(LMask[i], RMask[i])) 721 return Res; 722 } 723 } 724 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 725 const PHINode *PNR = cast<PHINode>(R); 726 // Ensure that in addition to the incoming values being identical 727 // (checked by the caller of this function), the incoming blocks 728 // are also identical. 729 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 730 if (int Res = 731 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 732 return Res; 733 } 734 } 735 return 0; 736 } 737 738 // Determine whether two GEP operations perform the same underlying arithmetic. 739 // Read method declaration comments for more details. 740 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 741 const GEPOperator *GEPR) const { 742 unsigned int ASL = GEPL->getPointerAddressSpace(); 743 unsigned int ASR = GEPR->getPointerAddressSpace(); 744 745 if (int Res = cmpNumbers(ASL, ASR)) 746 return Res; 747 748 // When we have target data, we can reduce the GEP down to the value in bytes 749 // added to the address. 750 const DataLayout &DL = FnL->getParent()->getDataLayout(); 751 unsigned OffsetBitWidth = DL.getIndexSizeInBits(ASL); 752 APInt OffsetL(OffsetBitWidth, 0), OffsetR(OffsetBitWidth, 0); 753 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 754 GEPR->accumulateConstantOffset(DL, OffsetR)) 755 return cmpAPInts(OffsetL, OffsetR); 756 if (int Res = 757 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType())) 758 return Res; 759 760 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 761 return Res; 762 763 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 764 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 765 return Res; 766 } 767 768 return 0; 769 } 770 771 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 772 const InlineAsm *R) const { 773 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 774 // the same, otherwise compare the fields. 775 if (L == R) 776 return 0; 777 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 778 return Res; 779 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 780 return Res; 781 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 782 return Res; 783 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 784 return Res; 785 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 786 return Res; 787 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 788 return Res; 789 assert(L->getFunctionType() != R->getFunctionType()); 790 return 0; 791 } 792 793 /// Compare two values used by the two functions under pair-wise comparison. If 794 /// this is the first time the values are seen, they're added to the mapping so 795 /// that we will detect mismatches on next use. 796 /// See comments in declaration for more details. 797 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 798 // Catch self-reference case. 799 if (L == FnL) { 800 if (R == FnR) 801 return 0; 802 return -1; 803 } 804 if (R == FnR) { 805 if (L == FnL) 806 return 0; 807 return 1; 808 } 809 810 const Constant *ConstL = dyn_cast<Constant>(L); 811 const Constant *ConstR = dyn_cast<Constant>(R); 812 if (ConstL && ConstR) { 813 if (L == R) 814 return 0; 815 return cmpConstants(ConstL, ConstR); 816 } 817 818 if (ConstL) 819 return 1; 820 if (ConstR) 821 return -1; 822 823 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 824 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 825 826 if (InlineAsmL && InlineAsmR) 827 return cmpInlineAsm(InlineAsmL, InlineAsmR); 828 if (InlineAsmL) 829 return 1; 830 if (InlineAsmR) 831 return -1; 832 833 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 834 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 835 836 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 837 } 838 839 // Test whether two basic blocks have equivalent behaviour. 840 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 841 const BasicBlock *BBR) const { 842 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 843 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 844 845 do { 846 bool needToCmpOperands = true; 847 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 848 return Res; 849 if (needToCmpOperands) { 850 assert(InstL->getNumOperands() == InstR->getNumOperands()); 851 852 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 853 Value *OpL = InstL->getOperand(i); 854 Value *OpR = InstR->getOperand(i); 855 if (int Res = cmpValues(OpL, OpR)) 856 return Res; 857 // cmpValues should ensure this is true. 858 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 859 } 860 } 861 862 ++InstL; 863 ++InstR; 864 } while (InstL != InstLE && InstR != InstRE); 865 866 if (InstL != InstLE && InstR == InstRE) 867 return 1; 868 if (InstL == InstLE && InstR != InstRE) 869 return -1; 870 return 0; 871 } 872 873 int FunctionComparator::compareSignature() const { 874 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 875 return Res; 876 877 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 878 return Res; 879 880 if (FnL->hasGC()) { 881 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 882 return Res; 883 } 884 885 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 886 return Res; 887 888 if (FnL->hasSection()) { 889 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 890 return Res; 891 } 892 893 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 894 return Res; 895 896 // TODO: if it's internal and only used in direct calls, we could handle this 897 // case too. 898 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 899 return Res; 900 901 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 902 return Res; 903 904 assert(FnL->arg_size() == FnR->arg_size() && 905 "Identically typed functions have different numbers of args!"); 906 907 // Visit the arguments so that they get enumerated in the order they're 908 // passed in. 909 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 910 ArgRI = FnR->arg_begin(), 911 ArgLE = FnL->arg_end(); 912 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 913 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 914 llvm_unreachable("Arguments repeat!"); 915 } 916 return 0; 917 } 918 919 // Test whether the two functions have equivalent behaviour. 920 int FunctionComparator::compare() { 921 beginCompare(); 922 923 if (int Res = compareSignature()) 924 return Res; 925 926 // We do a CFG-ordered walk since the actual ordering of the blocks in the 927 // linked list is immaterial. Our walk starts at the entry block for both 928 // functions, then takes each block from each terminator in order. As an 929 // artifact, this also means that unreachable blocks are ignored. 930 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 931 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 932 933 FnLBBs.push_back(&FnL->getEntryBlock()); 934 FnRBBs.push_back(&FnR->getEntryBlock()); 935 936 VisitedBBs.insert(FnLBBs[0]); 937 while (!FnLBBs.empty()) { 938 const BasicBlock *BBL = FnLBBs.pop_back_val(); 939 const BasicBlock *BBR = FnRBBs.pop_back_val(); 940 941 if (int Res = cmpValues(BBL, BBR)) 942 return Res; 943 944 if (int Res = cmpBasicBlocks(BBL, BBR)) 945 return Res; 946 947 const Instruction *TermL = BBL->getTerminator(); 948 const Instruction *TermR = BBR->getTerminator(); 949 950 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 951 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 952 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 953 continue; 954 955 FnLBBs.push_back(TermL->getSuccessor(i)); 956 FnRBBs.push_back(TermR->getSuccessor(i)); 957 } 958 } 959 return 0; 960 } 961 962 namespace { 963 964 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 965 // hash of a sequence of 64bit ints, but the entire input does not need to be 966 // available at once. This interface is necessary for functionHash because it 967 // needs to accumulate the hash as the structure of the function is traversed 968 // without saving these values to an intermediate buffer. This form of hashing 969 // is not often needed, as usually the object to hash is just read from a 970 // buffer. 971 class HashAccumulator64 { 972 uint64_t Hash; 973 974 public: 975 // Initialize to random constant, so the state isn't zero. 976 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 977 978 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); } 979 980 // No finishing is required, because the entire hash value is used. 981 uint64_t getHash() { return Hash; } 982 }; 983 984 } // end anonymous namespace 985 986 // A function hash is calculated by considering only the number of arguments and 987 // whether a function is varargs, the order of basic blocks (given by the 988 // successors of each basic block in depth first order), and the order of 989 // opcodes of each instruction within each of these basic blocks. This mirrors 990 // the strategy compare() uses to compare functions by walking the BBs in depth 991 // first order and comparing each instruction in sequence. Because this hash 992 // does not look at the operands, it is insensitive to things such as the 993 // target of calls and the constants used in the function, which makes it useful 994 // when possibly merging functions which are the same modulo constants and call 995 // targets. 996 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 997 HashAccumulator64 H; 998 H.add(F.isVarArg()); 999 H.add(F.arg_size()); 1000 1001 SmallVector<const BasicBlock *, 8> BBs; 1002 SmallPtrSet<const BasicBlock *, 16> VisitedBBs; 1003 1004 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 1005 // accumulating the hash of the function "structure." (BB and opcode sequence) 1006 BBs.push_back(&F.getEntryBlock()); 1007 VisitedBBs.insert(BBs[0]); 1008 while (!BBs.empty()) { 1009 const BasicBlock *BB = BBs.pop_back_val(); 1010 // This random value acts as a block header, as otherwise the partition of 1011 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 1012 H.add(45798); 1013 for (const auto &Inst : *BB) { 1014 H.add(Inst.getOpcode()); 1015 } 1016 const Instruction *Term = BB->getTerminator(); 1017 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 1018 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 1019 continue; 1020 BBs.push_back(Term->getSuccessor(i)); 1021 } 1022 } 1023 return H.getHash(); 1024 } 1025