1 //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks 10 // with control-flow edges incident from outside the SCC. This pass converts a 11 // irreducible SCC into a natural loop by applying the following transformation: 12 // 13 // 1. Collect the set of headers H of the SCC. 14 // 2. Collect the set of predecessors P of these headers. These may be inside as 15 // well as outside the SCC. 16 // 3. Create block N and redirect every edge from set P to set H through N. 17 // 18 // This converts the SCC into a natural loop with N as the header: N is the only 19 // block with edges incident from outside the SCC, and all backedges in the SCC 20 // are incident on N, i.e., for every backedge, the head now dominates the tail. 21 // 22 // INPUT CFG: The blocks A and B form an irreducible loop with two headers. 23 // 24 // Entry 25 // / \ 26 // v v 27 // A ----> B 28 // ^ /| 29 // `----' | 30 // v 31 // Exit 32 // 33 // OUTPUT CFG: Edges incident on A and B are now redirected through a 34 // new block N, forming a natural loop consisting of N, A and B. 35 // 36 // Entry 37 // | 38 // v 39 // .---> N <---. 40 // / / \ \ 41 // | / \ | 42 // \ v v / 43 // `-- A B --' 44 // | 45 // v 46 // Exit 47 // 48 // The transformation is applied to every maximal SCC that is not already 49 // recognized as a loop. The pass operates on all maximal SCCs found in the 50 // function body outside of any loop, as well as those found inside each loop, 51 // including inside any newly created loops. This ensures that any SCC hidden 52 // inside a maximal SCC is also transformed. 53 // 54 // The actual transformation is handled by function CreateControlFlowHub, which 55 // takes a set of incoming blocks (the predecessors) and outgoing blocks (the 56 // headers). The function also moves every PHINode in an outgoing block to the 57 // hub. Since the hub dominates all the outgoing blocks, each such PHINode 58 // continues to dominate its uses. Since every header in an SCC has at least two 59 // predecessors, every value used in the header (or later) but defined in a 60 // predecessor (or earlier) is represented by a PHINode in a header. Hence the 61 // above handling of PHINodes is sufficient and no further processing is 62 // required to restore SSA. 63 // 64 // Limitation: The pass cannot handle switch statements and indirect 65 // branches. Both must be lowered to plain branches first. 66 // 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/Transforms/Utils/FixIrreducible.h" 70 #include "llvm/ADT/SCCIterator.h" 71 #include "llvm/Analysis/DomTreeUpdater.h" 72 #include "llvm/Analysis/LoopIterator.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 78 #define DEBUG_TYPE "fix-irreducible" 79 80 using namespace llvm; 81 82 namespace { 83 struct FixIrreducible : public FunctionPass { 84 static char ID; 85 FixIrreducible() : FunctionPass(ID) { 86 initializeFixIrreduciblePass(*PassRegistry::getPassRegistry()); 87 } 88 89 void getAnalysisUsage(AnalysisUsage &AU) const override { 90 AU.addRequiredID(LowerSwitchID); 91 AU.addRequired<DominatorTreeWrapperPass>(); 92 AU.addRequired<LoopInfoWrapperPass>(); 93 AU.addPreservedID(LowerSwitchID); 94 AU.addPreserved<DominatorTreeWrapperPass>(); 95 AU.addPreserved<LoopInfoWrapperPass>(); 96 } 97 98 bool runOnFunction(Function &F) override; 99 }; 100 } // namespace 101 102 char FixIrreducible::ID = 0; 103 104 FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); } 105 106 INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible", 107 "Convert irreducible control-flow into natural loops", 108 false /* Only looks at CFG */, false /* Analysis Pass */) 109 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass) 110 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 111 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 112 INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible", 113 "Convert irreducible control-flow into natural loops", 114 false /* Only looks at CFG */, false /* Analysis Pass */) 115 116 // When a new loop is created, existing children of the parent loop may now be 117 // fully inside the new loop. Reconnect these as children of the new loop. 118 static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop, 119 SetVector<BasicBlock *> &Blocks, 120 SetVector<BasicBlock *> &Headers) { 121 auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector() 122 : LI.getTopLevelLoopsVector(); 123 // The new loop cannot be its own child, and any candidate is a 124 // child iff its header is owned by the new loop. Move all the 125 // children to a new vector. 126 auto FirstChild = std::partition( 127 CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) { 128 return L == NewLoop || !Blocks.contains(L->getHeader()); 129 }); 130 SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end()); 131 CandidateLoops.erase(FirstChild, CandidateLoops.end()); 132 133 for (Loop *Child : ChildLoops) { 134 LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName() 135 << "\n"); 136 // TODO: A child loop whose header is also a header in the current 137 // SCC gets destroyed since its backedges are removed. That may 138 // not be necessary if we can retain such backedges. 139 if (Headers.count(Child->getHeader())) { 140 for (auto BB : Child->blocks()) { 141 if (LI.getLoopFor(BB) != Child) 142 continue; 143 LI.changeLoopFor(BB, NewLoop); 144 LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName() 145 << "\n"); 146 } 147 std::vector<Loop *> GrandChildLoops; 148 std::swap(GrandChildLoops, Child->getSubLoopsVector()); 149 for (auto GrandChildLoop : GrandChildLoops) { 150 GrandChildLoop->setParentLoop(nullptr); 151 NewLoop->addChildLoop(GrandChildLoop); 152 } 153 LI.destroy(Child); 154 LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n"); 155 continue; 156 } 157 158 Child->setParentLoop(nullptr); 159 NewLoop->addChildLoop(Child); 160 LLVM_DEBUG(dbgs() << "added child loop to new loop\n"); 161 } 162 } 163 164 // Given a set of blocks and headers in an irreducible SCC, convert it into a 165 // natural loop. Also insert this new loop at its appropriate place in the 166 // hierarchy of loops. 167 static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT, 168 Loop *ParentLoop, 169 SetVector<BasicBlock *> &Blocks, 170 SetVector<BasicBlock *> &Headers) { 171 #ifndef NDEBUG 172 // All headers are part of the SCC 173 for (auto H : Headers) { 174 assert(Blocks.count(H)); 175 } 176 #endif 177 178 SetVector<BasicBlock *> Predecessors; 179 for (auto H : Headers) { 180 for (auto P : predecessors(H)) { 181 Predecessors.insert(P); 182 } 183 } 184 185 LLVM_DEBUG( 186 dbgs() << "Found predecessors:"; 187 for (auto P : Predecessors) { 188 dbgs() << " " << P->getName(); 189 } 190 dbgs() << "\n"); 191 192 // Redirect all the backedges through a "hub" consisting of a series 193 // of guard blocks that manage the flow of control from the 194 // predecessors to the headers. 195 SmallVector<BasicBlock *, 8> GuardBlocks; 196 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 197 CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr"); 198 #if defined(EXPENSIVE_CHECKS) 199 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 200 #else 201 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 202 #endif 203 204 // Create a new loop from the now-transformed cycle 205 auto NewLoop = LI.AllocateLoop(); 206 if (ParentLoop) { 207 ParentLoop->addChildLoop(NewLoop); 208 } else { 209 LI.addTopLevelLoop(NewLoop); 210 } 211 212 // Add the guard blocks to the new loop. The first guard block is 213 // the head of all the backedges, and it is the first to be inserted 214 // in the loop. This ensures that it is recognized as the 215 // header. Since the new loop is already in LoopInfo, the new blocks 216 // are also propagated up the chain of parent loops. 217 for (auto G : GuardBlocks) { 218 LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n"); 219 NewLoop->addBasicBlockToLoop(G, LI); 220 } 221 222 // Add the SCC blocks to the new loop. 223 for (auto BB : Blocks) { 224 NewLoop->addBlockEntry(BB); 225 if (LI.getLoopFor(BB) == ParentLoop) { 226 LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName() 227 << "\n"); 228 LI.changeLoopFor(BB, NewLoop); 229 } else { 230 LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n"); 231 } 232 } 233 LLVM_DEBUG(dbgs() << "header for new loop: " 234 << NewLoop->getHeader()->getName() << "\n"); 235 236 reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers); 237 238 NewLoop->verifyLoop(); 239 if (ParentLoop) { 240 ParentLoop->verifyLoop(); 241 } 242 #if defined(EXPENSIVE_CHECKS) 243 LI.verify(DT); 244 #endif // EXPENSIVE_CHECKS 245 } 246 247 namespace llvm { 248 // Enable the graph traits required for traversing a Loop body. 249 template <> struct GraphTraits<Loop> : LoopBodyTraits {}; 250 } // namespace llvm 251 252 // Overloaded wrappers to go with the function template below. 253 static BasicBlock *unwrapBlock(BasicBlock *B) { return B; } 254 static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; } 255 256 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F, 257 SetVector<BasicBlock *> &Blocks, 258 SetVector<BasicBlock *> &Headers) { 259 createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers); 260 } 261 262 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L, 263 SetVector<BasicBlock *> &Blocks, 264 SetVector<BasicBlock *> &Headers) { 265 createNaturalLoopInternal(LI, DT, &L, Blocks, Headers); 266 } 267 268 // Convert irreducible SCCs; Graph G may be a Function* or a Loop&. 269 template <class Graph> 270 static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) { 271 bool Changed = false; 272 for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) { 273 if (Scc->size() < 2) 274 continue; 275 SetVector<BasicBlock *> Blocks; 276 LLVM_DEBUG(dbgs() << "Found SCC:"); 277 for (auto N : *Scc) { 278 auto BB = unwrapBlock(N); 279 LLVM_DEBUG(dbgs() << " " << BB->getName()); 280 Blocks.insert(BB); 281 } 282 LLVM_DEBUG(dbgs() << "\n"); 283 284 // Minor optimization: The SCC blocks are usually discovered in an order 285 // that is the opposite of the order in which these blocks appear as branch 286 // targets. This results in a lot of condition inversions in the control 287 // flow out of the new ControlFlowHub, which can be mitigated if the orders 288 // match. So we discover the headers using the reverse of the block order. 289 SetVector<BasicBlock *> Headers; 290 LLVM_DEBUG(dbgs() << "Found headers:"); 291 for (auto BB : reverse(Blocks)) { 292 for (const auto P : predecessors(BB)) { 293 // Skip unreachable predecessors. 294 if (!DT.isReachableFromEntry(P)) 295 continue; 296 if (!Blocks.count(P)) { 297 LLVM_DEBUG(dbgs() << " " << BB->getName()); 298 Headers.insert(BB); 299 break; 300 } 301 } 302 } 303 LLVM_DEBUG(dbgs() << "\n"); 304 305 if (Headers.size() == 1) { 306 assert(LI.isLoopHeader(Headers.front())); 307 LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n"); 308 continue; 309 } 310 createNaturalLoop(LI, DT, G, Blocks, Headers); 311 Changed = true; 312 } 313 return Changed; 314 } 315 316 static bool FixIrreducibleImpl(Function &F, LoopInfo &LI, DominatorTree &DT) { 317 LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: " 318 << F.getName() << "\n"); 319 320 bool Changed = false; 321 SmallVector<Loop *, 8> WorkList; 322 323 LLVM_DEBUG(dbgs() << "visiting top-level\n"); 324 Changed |= makeReducible(LI, DT, &F); 325 326 // Any SCCs reduced are now already in the list of top-level loops, so simply 327 // add them all to the worklist. 328 append_range(WorkList, LI); 329 330 while (!WorkList.empty()) { 331 auto L = WorkList.pop_back_val(); 332 LLVM_DEBUG(dbgs() << "visiting loop with header " 333 << L->getHeader()->getName() << "\n"); 334 Changed |= makeReducible(LI, DT, *L); 335 // Any SCCs reduced are now already in the list of child loops, so simply 336 // add them all to the worklist. 337 WorkList.append(L->begin(), L->end()); 338 } 339 340 return Changed; 341 } 342 343 bool FixIrreducible::runOnFunction(Function &F) { 344 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 345 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 346 return FixIrreducibleImpl(F, LI, DT); 347 } 348 349 PreservedAnalyses FixIrreduciblePass::run(Function &F, 350 FunctionAnalysisManager &AM) { 351 auto &LI = AM.getResult<LoopAnalysis>(F); 352 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 353 if (!FixIrreducibleImpl(F, LI, DT)) 354 return PreservedAnalyses::all(); 355 PreservedAnalyses PA; 356 PA.preserve<LoopAnalysis>(); 357 PA.preserve<DominatorTreeAnalysis>(); 358 return PA; 359 } 360