1 //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks 10 // with control-flow edges incident from outside the SCC. This pass converts a 11 // irreducible SCC into a natural loop by applying the following transformation: 12 // 13 // 1. Collect the set of headers H of the SCC. 14 // 2. Collect the set of predecessors P of these headers. These may be inside as 15 // well as outside the SCC. 16 // 3. Create block N and redirect every edge from set P to set H through N. 17 // 18 // This converts the SCC into a natural loop with N as the header: N is the only 19 // block with edges incident from outside the SCC, and all backedges in the SCC 20 // are incident on N, i.e., for every backedge, the head now dominates the tail. 21 // 22 // INPUT CFG: The blocks A and B form an irreducible loop with two headers. 23 // 24 // Entry 25 // / \ 26 // v v 27 // A ----> B 28 // ^ /| 29 // `----' | 30 // v 31 // Exit 32 // 33 // OUTPUT CFG: Edges incident on A and B are now redirected through a 34 // new block N, forming a natural loop consisting of N, A and B. 35 // 36 // Entry 37 // | 38 // v 39 // .---> N <---. 40 // / / \ \ 41 // | / \ | 42 // \ v v / 43 // `-- A B --' 44 // | 45 // v 46 // Exit 47 // 48 // The transformation is applied to every maximal SCC that is not already 49 // recognized as a loop. The pass operates on all maximal SCCs found in the 50 // function body outside of any loop, as well as those found inside each loop, 51 // including inside any newly created loops. This ensures that any SCC hidden 52 // inside a maximal SCC is also transformed. 53 // 54 // The actual transformation is handled by function CreateControlFlowHub, which 55 // takes a set of incoming blocks (the predecessors) and outgoing blocks (the 56 // headers). The function also moves every PHINode in an outgoing block to the 57 // hub. Since the hub dominates all the outgoing blocks, each such PHINode 58 // continues to dominate its uses. Since every header in an SCC has at least two 59 // predecessors, every value used in the header (or later) but defined in a 60 // predecessor (or earlier) is represented by a PHINode in a header. Hence the 61 // above handling of PHINodes is sufficient and no further processing is 62 // required to restore SSA. 63 // 64 // Limitation: The pass cannot handle switch statements and indirect 65 // branches. Both must be lowered to plain branches first. 66 // 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/ADT/SCCIterator.h" 70 #include "llvm/Analysis/LoopIterator.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Transforms/Utils.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 76 #define DEBUG_TYPE "fix-irreducible" 77 78 using namespace llvm; 79 80 namespace { 81 struct FixIrreducible : public FunctionPass { 82 static char ID; 83 FixIrreducible() : FunctionPass(ID) { 84 initializeFixIrreduciblePass(*PassRegistry::getPassRegistry()); 85 } 86 87 void getAnalysisUsage(AnalysisUsage &AU) const override { 88 AU.addRequiredID(LowerSwitchID); 89 AU.addRequired<DominatorTreeWrapperPass>(); 90 AU.addRequired<LoopInfoWrapperPass>(); 91 AU.addPreservedID(LowerSwitchID); 92 AU.addPreserved<DominatorTreeWrapperPass>(); 93 AU.addPreserved<LoopInfoWrapperPass>(); 94 } 95 96 bool runOnFunction(Function &F) override; 97 }; 98 } // namespace 99 100 char FixIrreducible::ID = 0; 101 102 FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); } 103 104 INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible", 105 "Convert irreducible control-flow into natural loops", 106 false /* Only looks at CFG */, false /* Analysis Pass */) 107 INITIALIZE_PASS_DEPENDENCY(LowerSwitch) 108 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 110 INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible", 111 "Convert irreducible control-flow into natural loops", 112 false /* Only looks at CFG */, false /* Analysis Pass */) 113 114 // When a new loop is created, existing children of the parent loop may now be 115 // fully inside the new loop. Reconnect these as children of the new loop. 116 static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop, 117 SetVector<BasicBlock *> &Blocks, 118 SetVector<BasicBlock *> &Headers) { 119 auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector() 120 : LI.getTopLevelLoopsVector(); 121 // The new loop cannot be its own child, and any candidate is a 122 // child iff its header is owned by the new loop. Move all the 123 // children to a new vector. 124 auto FirstChild = std::partition( 125 CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) { 126 return L == NewLoop || Blocks.count(L->getHeader()) == 0; 127 }); 128 SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end()); 129 CandidateLoops.erase(FirstChild, CandidateLoops.end()); 130 131 for (auto II = ChildLoops.begin(), IE = ChildLoops.end(); II != IE; ++II) { 132 auto Child = *II; 133 LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName() 134 << "\n"); 135 // TODO: A child loop whose header is also a header in the current 136 // SCC gets destroyed since its backedges are removed. That may 137 // not be necessary if we can retain such backedges. 138 if (Headers.count(Child->getHeader())) { 139 for (auto BB : Child->blocks()) { 140 LI.changeLoopFor(BB, NewLoop); 141 LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName() 142 << "\n"); 143 } 144 LI.destroy(Child); 145 LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n"); 146 continue; 147 } 148 149 Child->setParentLoop(nullptr); 150 NewLoop->addChildLoop(Child); 151 LLVM_DEBUG(dbgs() << "added child loop to new loop\n"); 152 } 153 } 154 155 // Given a set of blocks and headers in an irreducible SCC, convert it into a 156 // natural loop. Also insert this new loop at its appropriate place in the 157 // hierarchy of loops. 158 static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT, 159 Loop *ParentLoop, 160 SetVector<BasicBlock *> &Blocks, 161 SetVector<BasicBlock *> &Headers) { 162 #ifndef NDEBUG 163 // All headers are part of the SCC 164 for (auto H : Headers) { 165 assert(Blocks.count(H)); 166 } 167 #endif 168 169 SetVector<BasicBlock *> Predecessors; 170 for (auto H : Headers) { 171 for (auto P : predecessors(H)) { 172 Predecessors.insert(P); 173 } 174 } 175 176 LLVM_DEBUG( 177 dbgs() << "Found predecessors:"; 178 for (auto P : Predecessors) { 179 dbgs() << " " << P->getName(); 180 } 181 dbgs() << "\n"); 182 183 // Redirect all the backedges through a "hub" consisting of a series 184 // of guard blocks that manage the flow of control from the 185 // predecessors to the headers. 186 SmallVector<BasicBlock *, 8> GuardBlocks; 187 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 188 CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr"); 189 #if defined(EXPENSIVE_CHECKS) 190 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 191 #else 192 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 193 #endif 194 195 // Create a new loop from the now-transformed cycle 196 auto NewLoop = LI.AllocateLoop(); 197 if (ParentLoop) { 198 ParentLoop->addChildLoop(NewLoop); 199 } else { 200 LI.addTopLevelLoop(NewLoop); 201 } 202 203 // Add the guard blocks to the new loop. The first guard block is 204 // the head of all the backedges, and it is the first to be inserted 205 // in the loop. This ensures that it is recognized as the 206 // header. Since the new loop is already in LoopInfo, the new blocks 207 // are also propagated up the chain of parent loops. 208 for (auto G : GuardBlocks) { 209 LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n"); 210 NewLoop->addBasicBlockToLoop(G, LI); 211 } 212 213 // Add the SCC blocks to the new loop. 214 for (auto BB : Blocks) { 215 NewLoop->addBlockEntry(BB); 216 if (LI.getLoopFor(BB) == ParentLoop) { 217 LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName() 218 << "\n"); 219 LI.changeLoopFor(BB, NewLoop); 220 } else { 221 LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n"); 222 } 223 } 224 LLVM_DEBUG(dbgs() << "header for new loop: " 225 << NewLoop->getHeader()->getName() << "\n"); 226 227 reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers); 228 229 NewLoop->verifyLoop(); 230 if (ParentLoop) { 231 ParentLoop->verifyLoop(); 232 } 233 #if defined(EXPENSIVE_CHECKS) 234 LI.verify(DT); 235 #endif // EXPENSIVE_CHECKS 236 } 237 238 namespace llvm { 239 // Enable the graph traits required for traversing a Loop body. 240 template <> struct GraphTraits<Loop> : LoopBodyTraits {}; 241 } // namespace llvm 242 243 // Overloaded wrappers to go with the function template below. 244 static BasicBlock *unwrapBlock(BasicBlock *B) { return B; } 245 static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; } 246 247 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F, 248 SetVector<BasicBlock *> &Blocks, 249 SetVector<BasicBlock *> &Headers) { 250 createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers); 251 } 252 253 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L, 254 SetVector<BasicBlock *> &Blocks, 255 SetVector<BasicBlock *> &Headers) { 256 createNaturalLoopInternal(LI, DT, &L, Blocks, Headers); 257 } 258 259 // Convert irreducible SCCs; Graph G may be a Function* or a Loop&. 260 template <class Graph> 261 static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) { 262 bool Changed = false; 263 for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) { 264 if (Scc->size() < 2) 265 continue; 266 SetVector<BasicBlock *> Blocks; 267 LLVM_DEBUG(dbgs() << "Found SCC:"); 268 for (auto N : *Scc) { 269 auto BB = unwrapBlock(N); 270 LLVM_DEBUG(dbgs() << " " << BB->getName()); 271 Blocks.insert(BB); 272 } 273 LLVM_DEBUG(dbgs() << "\n"); 274 275 // Minor optimization: The SCC blocks are usually discovered in an order 276 // that is the opposite of the order in which these blocks appear as branch 277 // targets. This results in a lot of condition inversions in the control 278 // flow out of the new ControlFlowHub, which can be mitigated if the orders 279 // match. So we discover the headers using the reverse of the block order. 280 SetVector<BasicBlock *> Headers; 281 LLVM_DEBUG(dbgs() << "Found headers:"); 282 for (auto BB : reverse(Blocks)) { 283 for (const auto P : predecessors(BB)) { 284 // Skip unreachable predecessors. 285 if (!DT.isReachableFromEntry(P)) 286 continue; 287 if (!Blocks.count(P)) { 288 LLVM_DEBUG(dbgs() << " " << BB->getName()); 289 Headers.insert(BB); 290 break; 291 } 292 } 293 } 294 LLVM_DEBUG(dbgs() << "\n"); 295 296 if (Headers.size() == 1) { 297 assert(LI.isLoopHeader(Headers.front())); 298 LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n"); 299 continue; 300 } 301 createNaturalLoop(LI, DT, G, Blocks, Headers); 302 Changed = true; 303 } 304 return Changed; 305 } 306 307 bool FixIrreducible::runOnFunction(Function &F) { 308 LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: " 309 << F.getName() << "\n"); 310 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 311 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 312 313 bool Changed = false; 314 SmallVector<Loop *, 8> WorkList; 315 316 LLVM_DEBUG(dbgs() << "visiting top-level\n"); 317 Changed |= makeReducible(LI, DT, &F); 318 319 // Any SCCs reduced are now already in the list of top-level loops, so simply 320 // add them all to the worklist. 321 for (auto L : LI) { 322 WorkList.push_back(L); 323 } 324 325 while (!WorkList.empty()) { 326 auto L = WorkList.back(); 327 WorkList.pop_back(); 328 LLVM_DEBUG(dbgs() << "visiting loop with header " 329 << L->getHeader()->getName() << "\n"); 330 Changed |= makeReducible(LI, DT, *L); 331 // Any SCCs reduced are now already in the list of child loops, so simply 332 // add them all to the worklist. 333 WorkList.append(L->begin(), L->end()); 334 } 335 336 return Changed; 337 } 338