xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/FixIrreducible.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
10 // with control-flow edges incident from outside the SCC.  This pass converts a
11 // irreducible SCC into a natural loop by applying the following transformation:
12 //
13 // 1. Collect the set of headers H of the SCC.
14 // 2. Collect the set of predecessors P of these headers. These may be inside as
15 //    well as outside the SCC.
16 // 3. Create block N and redirect every edge from set P to set H through N.
17 //
18 // This converts the SCC into a natural loop with N as the header: N is the only
19 // block with edges incident from outside the SCC, and all backedges in the SCC
20 // are incident on N, i.e., for every backedge, the head now dominates the tail.
21 //
22 // INPUT CFG: The blocks A and B form an irreducible loop with two headers.
23 //
24 //                        Entry
25 //                       /     \
26 //                      v       v
27 //                      A ----> B
28 //                      ^      /|
29 //                       `----' |
30 //                              v
31 //                             Exit
32 //
33 // OUTPUT CFG: Edges incident on A and B are now redirected through a
34 // new block N, forming a natural loop consisting of N, A and B.
35 //
36 //                        Entry
37 //                          |
38 //                          v
39 //                    .---> N <---.
40 //                   /     / \     \
41 //                  |     /   \     |
42 //                  \    v     v    /
43 //                   `-- A     B --'
44 //                             |
45 //                             v
46 //                            Exit
47 //
48 // The transformation is applied to every maximal SCC that is not already
49 // recognized as a loop. The pass operates on all maximal SCCs found in the
50 // function body outside of any loop, as well as those found inside each loop,
51 // including inside any newly created loops. This ensures that any SCC hidden
52 // inside a maximal SCC is also transformed.
53 //
54 // The actual transformation is handled by function CreateControlFlowHub, which
55 // takes a set of incoming blocks (the predecessors) and outgoing blocks (the
56 // headers). The function also moves every PHINode in an outgoing block to the
57 // hub. Since the hub dominates all the outgoing blocks, each such PHINode
58 // continues to dominate its uses. Since every header in an SCC has at least two
59 // predecessors, every value used in the header (or later) but defined in a
60 // predecessor (or earlier) is represented by a PHINode in a header. Hence the
61 // above handling of PHINodes is sufficient and no further processing is
62 // required to restore SSA.
63 //
64 // Limitation: The pass cannot handle switch statements and indirect
65 //             branches. Both must be lowered to plain branches first.
66 //
67 //===----------------------------------------------------------------------===//
68 
69 #include "llvm/Transforms/Utils/FixIrreducible.h"
70 #include "llvm/ADT/SCCIterator.h"
71 #include "llvm/Analysis/DomTreeUpdater.h"
72 #include "llvm/Analysis/LoopIterator.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Transforms/Utils.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 
78 #define DEBUG_TYPE "fix-irreducible"
79 
80 using namespace llvm;
81 
82 namespace {
83 struct FixIrreducible : public FunctionPass {
84   static char ID;
85   FixIrreducible() : FunctionPass(ID) {
86     initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
87   }
88 
89   void getAnalysisUsage(AnalysisUsage &AU) const override {
90     AU.addRequired<DominatorTreeWrapperPass>();
91     AU.addRequired<LoopInfoWrapperPass>();
92     AU.addPreserved<DominatorTreeWrapperPass>();
93     AU.addPreserved<LoopInfoWrapperPass>();
94   }
95 
96   bool runOnFunction(Function &F) override;
97 };
98 } // namespace
99 
100 char FixIrreducible::ID = 0;
101 
102 FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
103 
104 INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible",
105                       "Convert irreducible control-flow into natural loops",
106                       false /* Only looks at CFG */, false /* Analysis Pass */)
107 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
108 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
109 INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible",
110                     "Convert irreducible control-flow into natural loops",
111                     false /* Only looks at CFG */, false /* Analysis Pass */)
112 
113 // When a new loop is created, existing children of the parent loop may now be
114 // fully inside the new loop. Reconnect these as children of the new loop.
115 static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop,
116                                 SetVector<BasicBlock *> &Blocks,
117                                 SetVector<BasicBlock *> &Headers) {
118   auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector()
119                                     : LI.getTopLevelLoopsVector();
120   // The new loop cannot be its own child, and any candidate is a
121   // child iff its header is owned by the new loop. Move all the
122   // children to a new vector.
123   auto FirstChild = std::partition(
124       CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) {
125         return L == NewLoop || !Blocks.contains(L->getHeader());
126       });
127   SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end());
128   CandidateLoops.erase(FirstChild, CandidateLoops.end());
129 
130   for (Loop *Child : ChildLoops) {
131     LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName()
132                       << "\n");
133     // TODO: A child loop whose header is also a header in the current
134     // SCC gets destroyed since its backedges are removed. That may
135     // not be necessary if we can retain such backedges.
136     if (Headers.count(Child->getHeader())) {
137       for (auto *BB : Child->blocks()) {
138         if (LI.getLoopFor(BB) != Child)
139           continue;
140         LI.changeLoopFor(BB, NewLoop);
141         LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName()
142                           << "\n");
143       }
144       std::vector<Loop *> GrandChildLoops;
145       std::swap(GrandChildLoops, Child->getSubLoopsVector());
146       for (auto *GrandChildLoop : GrandChildLoops) {
147         GrandChildLoop->setParentLoop(nullptr);
148         NewLoop->addChildLoop(GrandChildLoop);
149       }
150       LI.destroy(Child);
151       LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
152       continue;
153     }
154 
155     Child->setParentLoop(nullptr);
156     NewLoop->addChildLoop(Child);
157     LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
158   }
159 }
160 
161 // Given a set of blocks and headers in an irreducible SCC, convert it into a
162 // natural loop. Also insert this new loop at its appropriate place in the
163 // hierarchy of loops.
164 static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT,
165                                       Loop *ParentLoop,
166                                       SetVector<BasicBlock *> &Blocks,
167                                       SetVector<BasicBlock *> &Headers) {
168 #ifndef NDEBUG
169   // All headers are part of the SCC
170   for (auto *H : Headers) {
171     assert(Blocks.count(H));
172   }
173 #endif
174 
175   SetVector<BasicBlock *> Predecessors;
176   for (auto *H : Headers) {
177     for (auto *P : predecessors(H)) {
178       Predecessors.insert(P);
179     }
180   }
181 
182   LLVM_DEBUG(
183       dbgs() << "Found predecessors:";
184       for (auto P : Predecessors) {
185         dbgs() << " " << P->getName();
186       }
187       dbgs() << "\n");
188 
189   // Redirect all the backedges through a "hub" consisting of a series
190   // of guard blocks that manage the flow of control from the
191   // predecessors to the headers.
192   SmallVector<BasicBlock *, 8> GuardBlocks;
193   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
194   CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr");
195 #if defined(EXPENSIVE_CHECKS)
196   assert(DT.verify(DominatorTree::VerificationLevel::Full));
197 #else
198   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
199 #endif
200 
201   // Create a new loop from the now-transformed cycle
202   auto NewLoop = LI.AllocateLoop();
203   if (ParentLoop) {
204     ParentLoop->addChildLoop(NewLoop);
205   } else {
206     LI.addTopLevelLoop(NewLoop);
207   }
208 
209   // Add the guard blocks to the new loop. The first guard block is
210   // the head of all the backedges, and it is the first to be inserted
211   // in the loop. This ensures that it is recognized as the
212   // header. Since the new loop is already in LoopInfo, the new blocks
213   // are also propagated up the chain of parent loops.
214   for (auto *G : GuardBlocks) {
215     LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n");
216     NewLoop->addBasicBlockToLoop(G, LI);
217   }
218 
219   // Add the SCC blocks to the new loop.
220   for (auto *BB : Blocks) {
221     NewLoop->addBlockEntry(BB);
222     if (LI.getLoopFor(BB) == ParentLoop) {
223       LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName()
224                         << "\n");
225       LI.changeLoopFor(BB, NewLoop);
226     } else {
227       LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n");
228     }
229   }
230   LLVM_DEBUG(dbgs() << "header for new loop: "
231                     << NewLoop->getHeader()->getName() << "\n");
232 
233   reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers);
234 
235   NewLoop->verifyLoop();
236   if (ParentLoop) {
237     ParentLoop->verifyLoop();
238   }
239 #if defined(EXPENSIVE_CHECKS)
240   LI.verify(DT);
241 #endif // EXPENSIVE_CHECKS
242 }
243 
244 namespace llvm {
245 // Enable the graph traits required for traversing a Loop body.
246 template <> struct GraphTraits<Loop> : LoopBodyTraits {};
247 } // namespace llvm
248 
249 // Overloaded wrappers to go with the function template below.
250 static BasicBlock *unwrapBlock(BasicBlock *B) { return B; }
251 static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; }
252 
253 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F,
254                               SetVector<BasicBlock *> &Blocks,
255                               SetVector<BasicBlock *> &Headers) {
256   createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers);
257 }
258 
259 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L,
260                               SetVector<BasicBlock *> &Blocks,
261                               SetVector<BasicBlock *> &Headers) {
262   createNaturalLoopInternal(LI, DT, &L, Blocks, Headers);
263 }
264 
265 // Convert irreducible SCCs; Graph G may be a Function* or a Loop&.
266 template <class Graph>
267 static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) {
268   bool Changed = false;
269   for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) {
270     if (Scc->size() < 2)
271       continue;
272     SetVector<BasicBlock *> Blocks;
273     LLVM_DEBUG(dbgs() << "Found SCC:");
274     for (auto N : *Scc) {
275       auto BB = unwrapBlock(N);
276       LLVM_DEBUG(dbgs() << " " << BB->getName());
277       Blocks.insert(BB);
278     }
279     LLVM_DEBUG(dbgs() << "\n");
280 
281     // Minor optimization: The SCC blocks are usually discovered in an order
282     // that is the opposite of the order in which these blocks appear as branch
283     // targets. This results in a lot of condition inversions in the control
284     // flow out of the new ControlFlowHub, which can be mitigated if the orders
285     // match. So we discover the headers using the reverse of the block order.
286     SetVector<BasicBlock *> Headers;
287     LLVM_DEBUG(dbgs() << "Found headers:");
288     for (auto *BB : reverse(Blocks)) {
289       for (const auto P : predecessors(BB)) {
290         // Skip unreachable predecessors.
291         if (!DT.isReachableFromEntry(P))
292           continue;
293         if (!Blocks.count(P)) {
294           LLVM_DEBUG(dbgs() << " " << BB->getName());
295           Headers.insert(BB);
296           break;
297         }
298       }
299     }
300     LLVM_DEBUG(dbgs() << "\n");
301 
302     if (Headers.size() == 1) {
303       assert(LI.isLoopHeader(Headers.front()));
304       LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n");
305       continue;
306     }
307     createNaturalLoop(LI, DT, G, Blocks, Headers);
308     Changed = true;
309   }
310   return Changed;
311 }
312 
313 static bool FixIrreducibleImpl(Function &F, LoopInfo &LI, DominatorTree &DT) {
314   LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
315                     << F.getName() << "\n");
316 
317   assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
318 
319   bool Changed = false;
320   SmallVector<Loop *, 8> WorkList;
321 
322   LLVM_DEBUG(dbgs() << "visiting top-level\n");
323   Changed |= makeReducible(LI, DT, &F);
324 
325   // Any SCCs reduced are now already in the list of top-level loops, so simply
326   // add them all to the worklist.
327   append_range(WorkList, LI);
328 
329   while (!WorkList.empty()) {
330     auto L = WorkList.pop_back_val();
331     LLVM_DEBUG(dbgs() << "visiting loop with header "
332                       << L->getHeader()->getName() << "\n");
333     Changed |= makeReducible(LI, DT, *L);
334     // Any SCCs reduced are now already in the list of child loops, so simply
335     // add them all to the worklist.
336     WorkList.append(L->begin(), L->end());
337   }
338 
339   return Changed;
340 }
341 
342 bool FixIrreducible::runOnFunction(Function &F) {
343   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
344   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
345   return FixIrreducibleImpl(F, LI, DT);
346 }
347 
348 PreservedAnalyses FixIrreduciblePass::run(Function &F,
349                                           FunctionAnalysisManager &AM) {
350   auto &LI = AM.getResult<LoopAnalysis>(F);
351   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
352   if (!FixIrreducibleImpl(F, LI, DT))
353     return PreservedAnalyses::all();
354   PreservedAnalyses PA;
355   PA.preserve<LoopAnalysis>();
356   PA.preserve<DominatorTreeAnalysis>();
357   return PA;
358 }
359