1 //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks 10 // with control-flow edges incident from outside the SCC. This pass converts a 11 // irreducible SCC into a natural loop by applying the following transformation: 12 // 13 // 1. Collect the set of headers H of the SCC. 14 // 2. Collect the set of predecessors P of these headers. These may be inside as 15 // well as outside the SCC. 16 // 3. Create block N and redirect every edge from set P to set H through N. 17 // 18 // This converts the SCC into a natural loop with N as the header: N is the only 19 // block with edges incident from outside the SCC, and all backedges in the SCC 20 // are incident on N, i.e., for every backedge, the head now dominates the tail. 21 // 22 // INPUT CFG: The blocks A and B form an irreducible loop with two headers. 23 // 24 // Entry 25 // / \ 26 // v v 27 // A ----> B 28 // ^ /| 29 // `----' | 30 // v 31 // Exit 32 // 33 // OUTPUT CFG: Edges incident on A and B are now redirected through a 34 // new block N, forming a natural loop consisting of N, A and B. 35 // 36 // Entry 37 // | 38 // v 39 // .---> N <---. 40 // / / \ \ 41 // | / \ | 42 // \ v v / 43 // `-- A B --' 44 // | 45 // v 46 // Exit 47 // 48 // The transformation is applied to every maximal SCC that is not already 49 // recognized as a loop. The pass operates on all maximal SCCs found in the 50 // function body outside of any loop, as well as those found inside each loop, 51 // including inside any newly created loops. This ensures that any SCC hidden 52 // inside a maximal SCC is also transformed. 53 // 54 // The actual transformation is handled by function CreateControlFlowHub, which 55 // takes a set of incoming blocks (the predecessors) and outgoing blocks (the 56 // headers). The function also moves every PHINode in an outgoing block to the 57 // hub. Since the hub dominates all the outgoing blocks, each such PHINode 58 // continues to dominate its uses. Since every header in an SCC has at least two 59 // predecessors, every value used in the header (or later) but defined in a 60 // predecessor (or earlier) is represented by a PHINode in a header. Hence the 61 // above handling of PHINodes is sufficient and no further processing is 62 // required to restore SSA. 63 // 64 // Limitation: The pass cannot handle switch statements and indirect 65 // branches. Both must be lowered to plain branches first. 66 // 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/Transforms/Utils/FixIrreducible.h" 70 #include "llvm/ADT/SCCIterator.h" 71 #include "llvm/Analysis/DomTreeUpdater.h" 72 #include "llvm/Analysis/LoopIterator.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 78 #define DEBUG_TYPE "fix-irreducible" 79 80 using namespace llvm; 81 82 namespace { 83 struct FixIrreducible : public FunctionPass { 84 static char ID; 85 FixIrreducible() : FunctionPass(ID) { 86 initializeFixIrreduciblePass(*PassRegistry::getPassRegistry()); 87 } 88 89 void getAnalysisUsage(AnalysisUsage &AU) const override { 90 AU.addRequired<DominatorTreeWrapperPass>(); 91 AU.addRequired<LoopInfoWrapperPass>(); 92 AU.addPreserved<DominatorTreeWrapperPass>(); 93 AU.addPreserved<LoopInfoWrapperPass>(); 94 } 95 96 bool runOnFunction(Function &F) override; 97 }; 98 } // namespace 99 100 char FixIrreducible::ID = 0; 101 102 FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); } 103 104 INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible", 105 "Convert irreducible control-flow into natural loops", 106 false /* Only looks at CFG */, false /* Analysis Pass */) 107 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 108 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 109 INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible", 110 "Convert irreducible control-flow into natural loops", 111 false /* Only looks at CFG */, false /* Analysis Pass */) 112 113 // When a new loop is created, existing children of the parent loop may now be 114 // fully inside the new loop. Reconnect these as children of the new loop. 115 static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop, 116 SetVector<BasicBlock *> &Blocks, 117 SetVector<BasicBlock *> &Headers) { 118 auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector() 119 : LI.getTopLevelLoopsVector(); 120 // The new loop cannot be its own child, and any candidate is a 121 // child iff its header is owned by the new loop. Move all the 122 // children to a new vector. 123 auto FirstChild = std::partition( 124 CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) { 125 return L == NewLoop || !Blocks.contains(L->getHeader()); 126 }); 127 SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end()); 128 CandidateLoops.erase(FirstChild, CandidateLoops.end()); 129 130 for (Loop *Child : ChildLoops) { 131 LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName() 132 << "\n"); 133 // TODO: A child loop whose header is also a header in the current 134 // SCC gets destroyed since its backedges are removed. That may 135 // not be necessary if we can retain such backedges. 136 if (Headers.count(Child->getHeader())) { 137 for (auto *BB : Child->blocks()) { 138 if (LI.getLoopFor(BB) != Child) 139 continue; 140 LI.changeLoopFor(BB, NewLoop); 141 LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName() 142 << "\n"); 143 } 144 std::vector<Loop *> GrandChildLoops; 145 std::swap(GrandChildLoops, Child->getSubLoopsVector()); 146 for (auto *GrandChildLoop : GrandChildLoops) { 147 GrandChildLoop->setParentLoop(nullptr); 148 NewLoop->addChildLoop(GrandChildLoop); 149 } 150 LI.destroy(Child); 151 LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n"); 152 continue; 153 } 154 155 Child->setParentLoop(nullptr); 156 NewLoop->addChildLoop(Child); 157 LLVM_DEBUG(dbgs() << "added child loop to new loop\n"); 158 } 159 } 160 161 // Given a set of blocks and headers in an irreducible SCC, convert it into a 162 // natural loop. Also insert this new loop at its appropriate place in the 163 // hierarchy of loops. 164 static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT, 165 Loop *ParentLoop, 166 SetVector<BasicBlock *> &Blocks, 167 SetVector<BasicBlock *> &Headers) { 168 #ifndef NDEBUG 169 // All headers are part of the SCC 170 for (auto *H : Headers) { 171 assert(Blocks.count(H)); 172 } 173 #endif 174 175 SetVector<BasicBlock *> Predecessors; 176 for (auto *H : Headers) { 177 for (auto *P : predecessors(H)) { 178 Predecessors.insert(P); 179 } 180 } 181 182 LLVM_DEBUG( 183 dbgs() << "Found predecessors:"; 184 for (auto P : Predecessors) { 185 dbgs() << " " << P->getName(); 186 } 187 dbgs() << "\n"); 188 189 // Redirect all the backedges through a "hub" consisting of a series 190 // of guard blocks that manage the flow of control from the 191 // predecessors to the headers. 192 SmallVector<BasicBlock *, 8> GuardBlocks; 193 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 194 CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr"); 195 #if defined(EXPENSIVE_CHECKS) 196 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 197 #else 198 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 199 #endif 200 201 // Create a new loop from the now-transformed cycle 202 auto NewLoop = LI.AllocateLoop(); 203 if (ParentLoop) { 204 ParentLoop->addChildLoop(NewLoop); 205 } else { 206 LI.addTopLevelLoop(NewLoop); 207 } 208 209 // Add the guard blocks to the new loop. The first guard block is 210 // the head of all the backedges, and it is the first to be inserted 211 // in the loop. This ensures that it is recognized as the 212 // header. Since the new loop is already in LoopInfo, the new blocks 213 // are also propagated up the chain of parent loops. 214 for (auto *G : GuardBlocks) { 215 LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n"); 216 NewLoop->addBasicBlockToLoop(G, LI); 217 } 218 219 // Add the SCC blocks to the new loop. 220 for (auto *BB : Blocks) { 221 NewLoop->addBlockEntry(BB); 222 if (LI.getLoopFor(BB) == ParentLoop) { 223 LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName() 224 << "\n"); 225 LI.changeLoopFor(BB, NewLoop); 226 } else { 227 LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n"); 228 } 229 } 230 LLVM_DEBUG(dbgs() << "header for new loop: " 231 << NewLoop->getHeader()->getName() << "\n"); 232 233 reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers); 234 235 NewLoop->verifyLoop(); 236 if (ParentLoop) { 237 ParentLoop->verifyLoop(); 238 } 239 #if defined(EXPENSIVE_CHECKS) 240 LI.verify(DT); 241 #endif // EXPENSIVE_CHECKS 242 } 243 244 namespace llvm { 245 // Enable the graph traits required for traversing a Loop body. 246 template <> struct GraphTraits<Loop> : LoopBodyTraits {}; 247 } // namespace llvm 248 249 // Overloaded wrappers to go with the function template below. 250 static BasicBlock *unwrapBlock(BasicBlock *B) { return B; } 251 static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; } 252 253 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F, 254 SetVector<BasicBlock *> &Blocks, 255 SetVector<BasicBlock *> &Headers) { 256 createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers); 257 } 258 259 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L, 260 SetVector<BasicBlock *> &Blocks, 261 SetVector<BasicBlock *> &Headers) { 262 createNaturalLoopInternal(LI, DT, &L, Blocks, Headers); 263 } 264 265 // Convert irreducible SCCs; Graph G may be a Function* or a Loop&. 266 template <class Graph> 267 static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) { 268 bool Changed = false; 269 for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) { 270 if (Scc->size() < 2) 271 continue; 272 SetVector<BasicBlock *> Blocks; 273 LLVM_DEBUG(dbgs() << "Found SCC:"); 274 for (auto N : *Scc) { 275 auto BB = unwrapBlock(N); 276 LLVM_DEBUG(dbgs() << " " << BB->getName()); 277 Blocks.insert(BB); 278 } 279 LLVM_DEBUG(dbgs() << "\n"); 280 281 // Minor optimization: The SCC blocks are usually discovered in an order 282 // that is the opposite of the order in which these blocks appear as branch 283 // targets. This results in a lot of condition inversions in the control 284 // flow out of the new ControlFlowHub, which can be mitigated if the orders 285 // match. So we discover the headers using the reverse of the block order. 286 SetVector<BasicBlock *> Headers; 287 LLVM_DEBUG(dbgs() << "Found headers:"); 288 for (auto *BB : reverse(Blocks)) { 289 for (const auto P : predecessors(BB)) { 290 // Skip unreachable predecessors. 291 if (!DT.isReachableFromEntry(P)) 292 continue; 293 if (!Blocks.count(P)) { 294 LLVM_DEBUG(dbgs() << " " << BB->getName()); 295 Headers.insert(BB); 296 break; 297 } 298 } 299 } 300 LLVM_DEBUG(dbgs() << "\n"); 301 302 if (Headers.size() == 1) { 303 assert(LI.isLoopHeader(Headers.front())); 304 LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n"); 305 continue; 306 } 307 createNaturalLoop(LI, DT, G, Blocks, Headers); 308 Changed = true; 309 } 310 return Changed; 311 } 312 313 static bool FixIrreducibleImpl(Function &F, LoopInfo &LI, DominatorTree &DT) { 314 LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: " 315 << F.getName() << "\n"); 316 317 assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator."); 318 319 bool Changed = false; 320 SmallVector<Loop *, 8> WorkList; 321 322 LLVM_DEBUG(dbgs() << "visiting top-level\n"); 323 Changed |= makeReducible(LI, DT, &F); 324 325 // Any SCCs reduced are now already in the list of top-level loops, so simply 326 // add them all to the worklist. 327 append_range(WorkList, LI); 328 329 while (!WorkList.empty()) { 330 auto L = WorkList.pop_back_val(); 331 LLVM_DEBUG(dbgs() << "visiting loop with header " 332 << L->getHeader()->getName() << "\n"); 333 Changed |= makeReducible(LI, DT, *L); 334 // Any SCCs reduced are now already in the list of child loops, so simply 335 // add them all to the worklist. 336 WorkList.append(L->begin(), L->end()); 337 } 338 339 return Changed; 340 } 341 342 bool FixIrreducible::runOnFunction(Function &F) { 343 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 344 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 345 return FixIrreducibleImpl(F, LI, DT); 346 } 347 348 PreservedAnalyses FixIrreduciblePass::run(Function &F, 349 FunctionAnalysisManager &AM) { 350 auto &LI = AM.getResult<LoopAnalysis>(F); 351 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 352 if (!FixIrreducibleImpl(F, LI, DT)) 353 return PreservedAnalyses::all(); 354 PreservedAnalyses PA; 355 PA.preserve<LoopAnalysis>(); 356 PA.preserve<DominatorTreeAnalysis>(); 357 return PA; 358 } 359