1 //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks 10 // with control-flow edges incident from outside the SCC. This pass converts a 11 // irreducible SCC into a natural loop by applying the following transformation: 12 // 13 // 1. Collect the set of headers H of the SCC. 14 // 2. Collect the set of predecessors P of these headers. These may be inside as 15 // well as outside the SCC. 16 // 3. Create block N and redirect every edge from set P to set H through N. 17 // 18 // This converts the SCC into a natural loop with N as the header: N is the only 19 // block with edges incident from outside the SCC, and all backedges in the SCC 20 // are incident on N, i.e., for every backedge, the head now dominates the tail. 21 // 22 // INPUT CFG: The blocks A and B form an irreducible loop with two headers. 23 // 24 // Entry 25 // / \ 26 // v v 27 // A ----> B 28 // ^ /| 29 // `----' | 30 // v 31 // Exit 32 // 33 // OUTPUT CFG: Edges incident on A and B are now redirected through a 34 // new block N, forming a natural loop consisting of N, A and B. 35 // 36 // Entry 37 // | 38 // v 39 // .---> N <---. 40 // / / \ \ 41 // | / \ | 42 // \ v v / 43 // `-- A B --' 44 // | 45 // v 46 // Exit 47 // 48 // The transformation is applied to every maximal SCC that is not already 49 // recognized as a loop. The pass operates on all maximal SCCs found in the 50 // function body outside of any loop, as well as those found inside each loop, 51 // including inside any newly created loops. This ensures that any SCC hidden 52 // inside a maximal SCC is also transformed. 53 // 54 // The actual transformation is handled by function CreateControlFlowHub, which 55 // takes a set of incoming blocks (the predecessors) and outgoing blocks (the 56 // headers). The function also moves every PHINode in an outgoing block to the 57 // hub. Since the hub dominates all the outgoing blocks, each such PHINode 58 // continues to dominate its uses. Since every header in an SCC has at least two 59 // predecessors, every value used in the header (or later) but defined in a 60 // predecessor (or earlier) is represented by a PHINode in a header. Hence the 61 // above handling of PHINodes is sufficient and no further processing is 62 // required to restore SSA. 63 // 64 // Limitation: The pass cannot handle switch statements and indirect 65 // branches. Both must be lowered to plain branches first. 66 // 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/Transforms/Utils/FixIrreducible.h" 70 #include "llvm/ADT/SCCIterator.h" 71 #include "llvm/Analysis/LoopIterator.h" 72 #include "llvm/InitializePasses.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Transforms/Utils.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 77 #define DEBUG_TYPE "fix-irreducible" 78 79 using namespace llvm; 80 81 namespace { 82 struct FixIrreducible : public FunctionPass { 83 static char ID; 84 FixIrreducible() : FunctionPass(ID) { 85 initializeFixIrreduciblePass(*PassRegistry::getPassRegistry()); 86 } 87 88 void getAnalysisUsage(AnalysisUsage &AU) const override { 89 AU.addRequiredID(LowerSwitchID); 90 AU.addRequired<DominatorTreeWrapperPass>(); 91 AU.addRequired<LoopInfoWrapperPass>(); 92 AU.addPreservedID(LowerSwitchID); 93 AU.addPreserved<DominatorTreeWrapperPass>(); 94 AU.addPreserved<LoopInfoWrapperPass>(); 95 } 96 97 bool runOnFunction(Function &F) override; 98 }; 99 } // namespace 100 101 char FixIrreducible::ID = 0; 102 103 FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); } 104 105 INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible", 106 "Convert irreducible control-flow into natural loops", 107 false /* Only looks at CFG */, false /* Analysis Pass */) 108 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass) 109 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 110 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 111 INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible", 112 "Convert irreducible control-flow into natural loops", 113 false /* Only looks at CFG */, false /* Analysis Pass */) 114 115 // When a new loop is created, existing children of the parent loop may now be 116 // fully inside the new loop. Reconnect these as children of the new loop. 117 static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop, 118 SetVector<BasicBlock *> &Blocks, 119 SetVector<BasicBlock *> &Headers) { 120 auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector() 121 : LI.getTopLevelLoopsVector(); 122 // The new loop cannot be its own child, and any candidate is a 123 // child iff its header is owned by the new loop. Move all the 124 // children to a new vector. 125 auto FirstChild = std::partition( 126 CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) { 127 return L == NewLoop || Blocks.count(L->getHeader()) == 0; 128 }); 129 SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end()); 130 CandidateLoops.erase(FirstChild, CandidateLoops.end()); 131 132 for (auto II = ChildLoops.begin(), IE = ChildLoops.end(); II != IE; ++II) { 133 auto Child = *II; 134 LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName() 135 << "\n"); 136 // TODO: A child loop whose header is also a header in the current 137 // SCC gets destroyed since its backedges are removed. That may 138 // not be necessary if we can retain such backedges. 139 if (Headers.count(Child->getHeader())) { 140 for (auto BB : Child->blocks()) { 141 LI.changeLoopFor(BB, NewLoop); 142 LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName() 143 << "\n"); 144 } 145 LI.destroy(Child); 146 LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n"); 147 continue; 148 } 149 150 Child->setParentLoop(nullptr); 151 NewLoop->addChildLoop(Child); 152 LLVM_DEBUG(dbgs() << "added child loop to new loop\n"); 153 } 154 } 155 156 // Given a set of blocks and headers in an irreducible SCC, convert it into a 157 // natural loop. Also insert this new loop at its appropriate place in the 158 // hierarchy of loops. 159 static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT, 160 Loop *ParentLoop, 161 SetVector<BasicBlock *> &Blocks, 162 SetVector<BasicBlock *> &Headers) { 163 #ifndef NDEBUG 164 // All headers are part of the SCC 165 for (auto H : Headers) { 166 assert(Blocks.count(H)); 167 } 168 #endif 169 170 SetVector<BasicBlock *> Predecessors; 171 for (auto H : Headers) { 172 for (auto P : predecessors(H)) { 173 Predecessors.insert(P); 174 } 175 } 176 177 LLVM_DEBUG( 178 dbgs() << "Found predecessors:"; 179 for (auto P : Predecessors) { 180 dbgs() << " " << P->getName(); 181 } 182 dbgs() << "\n"); 183 184 // Redirect all the backedges through a "hub" consisting of a series 185 // of guard blocks that manage the flow of control from the 186 // predecessors to the headers. 187 SmallVector<BasicBlock *, 8> GuardBlocks; 188 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 189 CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr"); 190 #if defined(EXPENSIVE_CHECKS) 191 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 192 #else 193 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 194 #endif 195 196 // Create a new loop from the now-transformed cycle 197 auto NewLoop = LI.AllocateLoop(); 198 if (ParentLoop) { 199 ParentLoop->addChildLoop(NewLoop); 200 } else { 201 LI.addTopLevelLoop(NewLoop); 202 } 203 204 // Add the guard blocks to the new loop. The first guard block is 205 // the head of all the backedges, and it is the first to be inserted 206 // in the loop. This ensures that it is recognized as the 207 // header. Since the new loop is already in LoopInfo, the new blocks 208 // are also propagated up the chain of parent loops. 209 for (auto G : GuardBlocks) { 210 LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n"); 211 NewLoop->addBasicBlockToLoop(G, LI); 212 } 213 214 // Add the SCC blocks to the new loop. 215 for (auto BB : Blocks) { 216 NewLoop->addBlockEntry(BB); 217 if (LI.getLoopFor(BB) == ParentLoop) { 218 LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName() 219 << "\n"); 220 LI.changeLoopFor(BB, NewLoop); 221 } else { 222 LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n"); 223 } 224 } 225 LLVM_DEBUG(dbgs() << "header for new loop: " 226 << NewLoop->getHeader()->getName() << "\n"); 227 228 reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers); 229 230 NewLoop->verifyLoop(); 231 if (ParentLoop) { 232 ParentLoop->verifyLoop(); 233 } 234 #if defined(EXPENSIVE_CHECKS) 235 LI.verify(DT); 236 #endif // EXPENSIVE_CHECKS 237 } 238 239 namespace llvm { 240 // Enable the graph traits required for traversing a Loop body. 241 template <> struct GraphTraits<Loop> : LoopBodyTraits {}; 242 } // namespace llvm 243 244 // Overloaded wrappers to go with the function template below. 245 static BasicBlock *unwrapBlock(BasicBlock *B) { return B; } 246 static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; } 247 248 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F, 249 SetVector<BasicBlock *> &Blocks, 250 SetVector<BasicBlock *> &Headers) { 251 createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers); 252 } 253 254 static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L, 255 SetVector<BasicBlock *> &Blocks, 256 SetVector<BasicBlock *> &Headers) { 257 createNaturalLoopInternal(LI, DT, &L, Blocks, Headers); 258 } 259 260 // Convert irreducible SCCs; Graph G may be a Function* or a Loop&. 261 template <class Graph> 262 static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) { 263 bool Changed = false; 264 for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) { 265 if (Scc->size() < 2) 266 continue; 267 SetVector<BasicBlock *> Blocks; 268 LLVM_DEBUG(dbgs() << "Found SCC:"); 269 for (auto N : *Scc) { 270 auto BB = unwrapBlock(N); 271 LLVM_DEBUG(dbgs() << " " << BB->getName()); 272 Blocks.insert(BB); 273 } 274 LLVM_DEBUG(dbgs() << "\n"); 275 276 // Minor optimization: The SCC blocks are usually discovered in an order 277 // that is the opposite of the order in which these blocks appear as branch 278 // targets. This results in a lot of condition inversions in the control 279 // flow out of the new ControlFlowHub, which can be mitigated if the orders 280 // match. So we discover the headers using the reverse of the block order. 281 SetVector<BasicBlock *> Headers; 282 LLVM_DEBUG(dbgs() << "Found headers:"); 283 for (auto BB : reverse(Blocks)) { 284 for (const auto P : predecessors(BB)) { 285 // Skip unreachable predecessors. 286 if (!DT.isReachableFromEntry(P)) 287 continue; 288 if (!Blocks.count(P)) { 289 LLVM_DEBUG(dbgs() << " " << BB->getName()); 290 Headers.insert(BB); 291 break; 292 } 293 } 294 } 295 LLVM_DEBUG(dbgs() << "\n"); 296 297 if (Headers.size() == 1) { 298 assert(LI.isLoopHeader(Headers.front())); 299 LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n"); 300 continue; 301 } 302 createNaturalLoop(LI, DT, G, Blocks, Headers); 303 Changed = true; 304 } 305 return Changed; 306 } 307 308 static bool FixIrreducibleImpl(Function &F, LoopInfo &LI, DominatorTree &DT) { 309 LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: " 310 << F.getName() << "\n"); 311 312 bool Changed = false; 313 SmallVector<Loop *, 8> WorkList; 314 315 LLVM_DEBUG(dbgs() << "visiting top-level\n"); 316 Changed |= makeReducible(LI, DT, &F); 317 318 // Any SCCs reduced are now already in the list of top-level loops, so simply 319 // add them all to the worklist. 320 append_range(WorkList, LI); 321 322 while (!WorkList.empty()) { 323 auto L = WorkList.pop_back_val(); 324 LLVM_DEBUG(dbgs() << "visiting loop with header " 325 << L->getHeader()->getName() << "\n"); 326 Changed |= makeReducible(LI, DT, *L); 327 // Any SCCs reduced are now already in the list of child loops, so simply 328 // add them all to the worklist. 329 WorkList.append(L->begin(), L->end()); 330 } 331 332 return Changed; 333 } 334 335 bool FixIrreducible::runOnFunction(Function &F) { 336 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 337 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 338 return FixIrreducibleImpl(F, LI, DT); 339 } 340 341 PreservedAnalyses FixIrreduciblePass::run(Function &F, 342 FunctionAnalysisManager &AM) { 343 auto &LI = AM.getResult<LoopAnalysis>(F); 344 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 345 if (!FixIrreducibleImpl(F, LI, DT)) 346 return PreservedAnalyses::all(); 347 PreservedAnalyses PA; 348 PA.preserve<LoopAnalysis>(); 349 PA.preserve<DominatorTreeAnalysis>(); 350 return PA; 351 } 352