1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Function evaluator for LLVM IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/Evaluator.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <iterator> 41 42 #define DEBUG_TYPE "evaluator" 43 44 using namespace llvm; 45 46 static inline bool 47 isSimpleEnoughValueToCommit(Constant *C, 48 SmallPtrSetImpl<Constant *> &SimpleConstants, 49 const DataLayout &DL); 50 51 /// Return true if the specified constant can be handled by the code generator. 52 /// We don't want to generate something like: 53 /// void *X = &X/42; 54 /// because the code generator doesn't have a relocation that can handle that. 55 /// 56 /// This function should be called if C was not found (but just got inserted) 57 /// in SimpleConstants to avoid having to rescan the same constants all the 58 /// time. 59 static bool 60 isSimpleEnoughValueToCommitHelper(Constant *C, 61 SmallPtrSetImpl<Constant *> &SimpleConstants, 62 const DataLayout &DL) { 63 // Simple global addresses are supported, do not allow dllimport or 64 // thread-local globals. 65 if (auto *GV = dyn_cast<GlobalValue>(C)) 66 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 67 68 // Simple integer, undef, constant aggregate zero, etc are all supported. 69 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 70 return true; 71 72 // Aggregate values are safe if all their elements are. 73 if (isa<ConstantAggregate>(C)) { 74 for (Value *Op : C->operands()) 75 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 76 return false; 77 return true; 78 } 79 80 // We don't know exactly what relocations are allowed in constant expressions, 81 // so we allow &global+constantoffset, which is safe and uniformly supported 82 // across targets. 83 ConstantExpr *CE = cast<ConstantExpr>(C); 84 switch (CE->getOpcode()) { 85 case Instruction::BitCast: 86 // Bitcast is fine if the casted value is fine. 87 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 88 89 case Instruction::IntToPtr: 90 case Instruction::PtrToInt: 91 // int <=> ptr is fine if the int type is the same size as the 92 // pointer type. 93 if (DL.getTypeSizeInBits(CE->getType()) != 94 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 95 return false; 96 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 97 98 // GEP is fine if it is simple + constant offset. 99 case Instruction::GetElementPtr: 100 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 101 if (!isa<ConstantInt>(CE->getOperand(i))) 102 return false; 103 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 104 105 case Instruction::Add: 106 // We allow simple+cst. 107 if (!isa<ConstantInt>(CE->getOperand(1))) 108 return false; 109 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 110 } 111 return false; 112 } 113 114 static inline bool 115 isSimpleEnoughValueToCommit(Constant *C, 116 SmallPtrSetImpl<Constant *> &SimpleConstants, 117 const DataLayout &DL) { 118 // If we already checked this constant, we win. 119 if (!SimpleConstants.insert(C).second) 120 return true; 121 // Check the constant. 122 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 123 } 124 125 /// Return true if this constant is simple enough for us to understand. In 126 /// particular, if it is a cast to anything other than from one pointer type to 127 /// another pointer type, we punt. We basically just support direct accesses to 128 /// globals and GEP's of globals. This should be kept up to date with 129 /// CommitValueTo. 130 static bool isSimpleEnoughPointerToCommit(Constant *C, const DataLayout &DL) { 131 // Conservatively, avoid aggregate types. This is because we don't 132 // want to worry about them partially overlapping other stores. 133 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 134 return false; 135 136 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 137 // Do not allow weak/*_odr/linkonce linkage or external globals. 138 return GV->hasUniqueInitializer(); 139 140 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 141 // Handle a constantexpr gep. 142 if (CE->getOpcode() == Instruction::GetElementPtr && 143 isa<GlobalVariable>(CE->getOperand(0)) && 144 cast<GEPOperator>(CE)->isInBounds()) { 145 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 146 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 147 // external globals. 148 if (!GV->hasUniqueInitializer()) 149 return false; 150 151 // The first index must be zero. 152 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); 153 if (!CI || !CI->isZero()) return false; 154 155 // The remaining indices must be compile-time known integers within the 156 // notional bounds of the corresponding static array types. 157 if (!CE->isGEPWithNoNotionalOverIndexing()) 158 return false; 159 160 return ConstantFoldLoadThroughGEPConstantExpr( 161 GV->getInitializer(), CE, 162 cast<GEPOperator>(CE)->getResultElementType(), DL); 163 } else if (CE->getOpcode() == Instruction::BitCast && 164 isa<GlobalVariable>(CE->getOperand(0))) { 165 // A constantexpr bitcast from a pointer to another pointer is a no-op, 166 // and we know how to evaluate it by moving the bitcast from the pointer 167 // operand to the value operand. 168 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 169 // external globals. 170 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 171 } 172 } 173 174 return false; 175 } 176 177 /// Apply \p TryLoad to Ptr. If this returns \p nullptr, introspect the 178 /// pointer's type and walk down through the initial elements to obtain 179 /// additional pointers to try. Returns the first non-null return value from 180 /// \p TryLoad, or \p nullptr if the type can't be introspected further. 181 static Constant * 182 evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL, 183 const TargetLibraryInfo *TLI, 184 std::function<Constant *(Constant *)> TryLoad) { 185 Constant *Val; 186 while (!(Val = TryLoad(Ptr))) { 187 // If Ty is a non-opaque struct, we can convert the pointer to the struct 188 // into a pointer to its first member. 189 // FIXME: This could be extended to support arrays as well. 190 Type *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 191 if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isOpaque()) 192 break; 193 194 IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32); 195 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 196 Constant *const IdxList[] = {IdxZero, IdxZero}; 197 198 Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList); 199 Ptr = ConstantFoldConstant(Ptr, DL, TLI); 200 } 201 return Val; 202 } 203 204 static Constant *getInitializer(Constant *C) { 205 auto *GV = dyn_cast<GlobalVariable>(C); 206 return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr; 207 } 208 209 /// Return the value that would be computed by a load from P after the stores 210 /// reflected by 'memory' have been performed. If we can't decide, return null. 211 Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) { 212 // If this memory location has been recently stored, use the stored value: it 213 // is the most up-to-date. 214 auto TryFindMemLoc = [this](Constant *Ptr) { 215 return MutatedMemory.lookup(Ptr); 216 }; 217 218 if (Constant *Val = TryFindMemLoc(P)) 219 return Val; 220 221 // Access it. 222 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 223 if (GV->hasDefinitiveInitializer()) 224 return GV->getInitializer(); 225 return nullptr; 226 } 227 228 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) { 229 switch (CE->getOpcode()) { 230 // Handle a constantexpr getelementptr. 231 case Instruction::GetElementPtr: 232 if (auto *I = getInitializer(CE->getOperand(0))) 233 return ConstantFoldLoadThroughGEPConstantExpr(I, CE, Ty, DL); 234 break; 235 // Handle a constantexpr bitcast. 236 case Instruction::BitCast: 237 // We're evaluating a load through a pointer that was bitcast to a 238 // different type. See if the "from" pointer has recently been stored. 239 // If it hasn't, we may still be able to find a stored pointer by 240 // introspecting the type. 241 Constant *Val = 242 evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, TryFindMemLoc); 243 if (!Val) 244 Val = getInitializer(CE->getOperand(0)); 245 if (Val) 246 return ConstantFoldLoadThroughBitcast( 247 Val, P->getType()->getPointerElementType(), DL); 248 break; 249 } 250 } 251 252 return nullptr; // don't know how to evaluate. 253 } 254 255 static Function *getFunction(Constant *C) { 256 if (auto *Fn = dyn_cast<Function>(C)) 257 return Fn; 258 259 if (auto *Alias = dyn_cast<GlobalAlias>(C)) 260 if (auto *Fn = dyn_cast<Function>(Alias->getAliasee())) 261 return Fn; 262 return nullptr; 263 } 264 265 Function * 266 Evaluator::getCalleeWithFormalArgs(CallBase &CB, 267 SmallVectorImpl<Constant *> &Formals) { 268 auto *V = CB.getCalledOperand(); 269 if (auto *Fn = getFunction(getVal(V))) 270 return getFormalParams(CB, Fn, Formals) ? Fn : nullptr; 271 272 auto *CE = dyn_cast<ConstantExpr>(V); 273 if (!CE || CE->getOpcode() != Instruction::BitCast || 274 !getFormalParams(CB, getFunction(CE->getOperand(0)), Formals)) 275 return nullptr; 276 277 return dyn_cast<Function>( 278 ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL)); 279 } 280 281 bool Evaluator::getFormalParams(CallBase &CB, Function *F, 282 SmallVectorImpl<Constant *> &Formals) { 283 if (!F) 284 return false; 285 286 auto *FTy = F->getFunctionType(); 287 if (FTy->getNumParams() > CB.getNumArgOperands()) { 288 LLVM_DEBUG(dbgs() << "Too few arguments for function.\n"); 289 return false; 290 } 291 292 auto ArgI = CB.arg_begin(); 293 for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE; 294 ++ParI) { 295 auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL); 296 if (!ArgC) { 297 LLVM_DEBUG(dbgs() << "Can not convert function argument.\n"); 298 return false; 299 } 300 Formals.push_back(ArgC); 301 ++ArgI; 302 } 303 return true; 304 } 305 306 /// If call expression contains bitcast then we may need to cast 307 /// evaluated return value to a type of the call expression. 308 Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) { 309 ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr); 310 if (!RV || !CE || CE->getOpcode() != Instruction::BitCast) 311 return RV; 312 313 if (auto *FT = 314 dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) { 315 RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL); 316 if (!RV) 317 LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n"); 318 } 319 return RV; 320 } 321 322 /// Evaluate all instructions in block BB, returning true if successful, false 323 /// if we can't evaluate it. NewBB returns the next BB that control flows into, 324 /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if 325 /// we looked through pointer casts to evaluate something. 326 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB, 327 bool &StrippedPointerCastsForAliasAnalysis) { 328 // This is the main evaluation loop. 329 while (true) { 330 Constant *InstResult = nullptr; 331 332 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 333 334 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 335 if (!SI->isSimple()) { 336 LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 337 return false; // no volatile/atomic accesses. 338 } 339 Constant *Ptr = getVal(SI->getOperand(1)); 340 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 341 if (Ptr != FoldedPtr) { 342 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 343 Ptr = FoldedPtr; 344 LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 345 } 346 if (!isSimpleEnoughPointerToCommit(Ptr, DL)) { 347 // If this is too complex for us to commit, reject it. 348 LLVM_DEBUG( 349 dbgs() << "Pointer is too complex for us to evaluate store."); 350 return false; 351 } 352 353 Constant *Val = getVal(SI->getOperand(0)); 354 355 // If this might be too difficult for the backend to handle (e.g. the addr 356 // of one global variable divided by another) then we can't commit it. 357 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 358 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. " 359 << *Val << "\n"); 360 return false; 361 } 362 363 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 364 if (CE->getOpcode() == Instruction::BitCast) { 365 LLVM_DEBUG(dbgs() 366 << "Attempting to resolve bitcast on constant ptr.\n"); 367 // If we're evaluating a store through a bitcast, then we need 368 // to pull the bitcast off the pointer type and push it onto the 369 // stored value. In order to push the bitcast onto the stored value, 370 // a bitcast from the pointer's element type to Val's type must be 371 // legal. If it's not, we can try introspecting the type to find a 372 // legal conversion. 373 374 auto TryCastValTy = [&](Constant *P) -> Constant * { 375 // The conversion is illegal if the store is wider than the 376 // pointee proposed by `evaluateBitcastFromPtr`, since that would 377 // drop stores to other struct elements when the caller attempts to 378 // look through a struct's 0th element. 379 Type *NewTy = cast<PointerType>(P->getType())->getElementType(); 380 Type *STy = Val->getType(); 381 if (DL.getTypeSizeInBits(NewTy) < DL.getTypeSizeInBits(STy)) 382 return nullptr; 383 384 if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, NewTy, DL)) { 385 Ptr = P; 386 return FV; 387 } 388 return nullptr; 389 }; 390 391 Constant *NewVal = 392 evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, TryCastValTy); 393 if (!NewVal) { 394 LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 395 "evaluate.\n"); 396 return false; 397 } 398 399 Val = NewVal; 400 LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 401 } 402 } 403 404 MutatedMemory[Ptr] = Val; 405 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 406 InstResult = ConstantExpr::get(BO->getOpcode(), 407 getVal(BO->getOperand(0)), 408 getVal(BO->getOperand(1))); 409 LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " 410 << *InstResult << "\n"); 411 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 412 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 413 getVal(CI->getOperand(0)), 414 getVal(CI->getOperand(1))); 415 LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 416 << "\n"); 417 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 418 InstResult = ConstantExpr::getCast(CI->getOpcode(), 419 getVal(CI->getOperand(0)), 420 CI->getType()); 421 LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 422 << "\n"); 423 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 424 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 425 getVal(SI->getOperand(1)), 426 getVal(SI->getOperand(2))); 427 LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 428 << "\n"); 429 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { 430 InstResult = ConstantExpr::getExtractValue( 431 getVal(EVI->getAggregateOperand()), EVI->getIndices()); 432 LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " 433 << *InstResult << "\n"); 434 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { 435 InstResult = ConstantExpr::getInsertValue( 436 getVal(IVI->getAggregateOperand()), 437 getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); 438 LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " 439 << *InstResult << "\n"); 440 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 441 Constant *P = getVal(GEP->getOperand(0)); 442 SmallVector<Constant*, 8> GEPOps; 443 for (Use &Op : llvm::drop_begin(GEP->operands())) 444 GEPOps.push_back(getVal(Op)); 445 InstResult = 446 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, 447 cast<GEPOperator>(GEP)->isInBounds()); 448 LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n"); 449 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 450 if (!LI->isSimple()) { 451 LLVM_DEBUG( 452 dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 453 return false; // no volatile/atomic accesses. 454 } 455 456 Constant *Ptr = getVal(LI->getOperand(0)); 457 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 458 if (Ptr != FoldedPtr) { 459 Ptr = FoldedPtr; 460 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant " 461 "folding: " 462 << *Ptr << "\n"); 463 } 464 InstResult = ComputeLoadResult(Ptr, LI->getType()); 465 if (!InstResult) { 466 LLVM_DEBUG( 467 dbgs() << "Failed to compute load result. Can not evaluate load." 468 "\n"); 469 return false; // Could not evaluate load. 470 } 471 472 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 473 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 474 if (AI->isArrayAllocation()) { 475 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 476 return false; // Cannot handle array allocs. 477 } 478 Type *Ty = AI->getAllocatedType(); 479 AllocaTmps.push_back(std::make_unique<GlobalVariable>( 480 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), 481 AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal, 482 AI->getType()->getPointerAddressSpace())); 483 InstResult = AllocaTmps.back().get(); 484 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 485 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 486 CallBase &CB = *cast<CallBase>(&*CurInst); 487 488 // Debug info can safely be ignored here. 489 if (isa<DbgInfoIntrinsic>(CB)) { 490 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n"); 491 ++CurInst; 492 continue; 493 } 494 495 // Cannot handle inline asm. 496 if (CB.isInlineAsm()) { 497 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 498 return false; 499 } 500 501 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) { 502 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 503 if (MSI->isVolatile()) { 504 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset " 505 << "intrinsic.\n"); 506 return false; 507 } 508 Constant *Ptr = getVal(MSI->getDest()); 509 Constant *Val = getVal(MSI->getValue()); 510 Constant *DestVal = 511 ComputeLoadResult(getVal(Ptr), MSI->getValue()->getType()); 512 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 513 // This memset is a no-op. 514 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n"); 515 ++CurInst; 516 continue; 517 } 518 } 519 520 if (II->isLifetimeStartOrEnd()) { 521 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 522 ++CurInst; 523 continue; 524 } 525 526 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 527 // We don't insert an entry into Values, as it doesn't have a 528 // meaningful return value. 529 if (!II->use_empty()) { 530 LLVM_DEBUG(dbgs() 531 << "Found unused invariant_start. Can't evaluate.\n"); 532 return false; 533 } 534 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 535 Value *PtrArg = getVal(II->getArgOperand(1)); 536 Value *Ptr = PtrArg->stripPointerCasts(); 537 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 538 Type *ElemTy = GV->getValueType(); 539 if (!Size->isMinusOne() && 540 Size->getValue().getLimitedValue() >= 541 DL.getTypeStoreSize(ElemTy)) { 542 Invariants.insert(GV); 543 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: " 544 << *GV << "\n"); 545 } else { 546 LLVM_DEBUG(dbgs() 547 << "Found a global var, but can not treat it as an " 548 "invariant.\n"); 549 } 550 } 551 // Continue even if we do nothing. 552 ++CurInst; 553 continue; 554 } else if (II->getIntrinsicID() == Intrinsic::assume) { 555 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 556 ++CurInst; 557 continue; 558 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { 559 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); 560 ++CurInst; 561 continue; 562 } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) { 563 LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n"); 564 ++CurInst; 565 continue; 566 } else { 567 Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis(); 568 // Only attempt to getVal() if we've actually managed to strip 569 // anything away, or else we'll call getVal() on the current 570 // instruction. 571 if (Stripped != &*CurInst) { 572 InstResult = getVal(Stripped); 573 } 574 if (InstResult) { 575 LLVM_DEBUG(dbgs() 576 << "Stripped pointer casts for alias analysis for " 577 "intrinsic call.\n"); 578 StrippedPointerCastsForAliasAnalysis = true; 579 InstResult = ConstantExpr::getBitCast(InstResult, II->getType()); 580 } else { 581 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n"); 582 return false; 583 } 584 } 585 } 586 587 if (!InstResult) { 588 // Resolve function pointers. 589 SmallVector<Constant *, 8> Formals; 590 Function *Callee = getCalleeWithFormalArgs(CB, Formals); 591 if (!Callee || Callee->isInterposable()) { 592 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n"); 593 return false; // Cannot resolve. 594 } 595 596 if (Callee->isDeclaration()) { 597 // If this is a function we can constant fold, do it. 598 if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) { 599 InstResult = castCallResultIfNeeded(CB.getCalledOperand(), C); 600 if (!InstResult) 601 return false; 602 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: " 603 << *InstResult << "\n"); 604 } else { 605 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n"); 606 return false; 607 } 608 } else { 609 if (Callee->getFunctionType()->isVarArg()) { 610 LLVM_DEBUG(dbgs() 611 << "Can not constant fold vararg function call.\n"); 612 return false; 613 } 614 615 Constant *RetVal = nullptr; 616 // Execute the call, if successful, use the return value. 617 ValueStack.emplace_back(); 618 if (!EvaluateFunction(Callee, RetVal, Formals)) { 619 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n"); 620 return false; 621 } 622 ValueStack.pop_back(); 623 InstResult = castCallResultIfNeeded(CB.getCalledOperand(), RetVal); 624 if (RetVal && !InstResult) 625 return false; 626 627 if (InstResult) { 628 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: " 629 << *InstResult << "\n\n"); 630 } else { 631 LLVM_DEBUG(dbgs() 632 << "Successfully evaluated function. Result: 0\n\n"); 633 } 634 } 635 } 636 } else if (CurInst->isTerminator()) { 637 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n"); 638 639 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 640 if (BI->isUnconditional()) { 641 NextBB = BI->getSuccessor(0); 642 } else { 643 ConstantInt *Cond = 644 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 645 if (!Cond) return false; // Cannot determine. 646 647 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 648 } 649 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 650 ConstantInt *Val = 651 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 652 if (!Val) return false; // Cannot determine. 653 NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); 654 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 655 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 656 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 657 NextBB = BA->getBasicBlock(); 658 else 659 return false; // Cannot determine. 660 } else if (isa<ReturnInst>(CurInst)) { 661 NextBB = nullptr; 662 } else { 663 // invoke, unwind, resume, unreachable. 664 LLVM_DEBUG(dbgs() << "Can not handle terminator."); 665 return false; // Cannot handle this terminator. 666 } 667 668 // We succeeded at evaluating this block! 669 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n"); 670 return true; 671 } else { 672 // Did not know how to evaluate this! 673 LLVM_DEBUG( 674 dbgs() << "Failed to evaluate block due to unhandled instruction." 675 "\n"); 676 return false; 677 } 678 679 if (!CurInst->use_empty()) { 680 InstResult = ConstantFoldConstant(InstResult, DL, TLI); 681 setVal(&*CurInst, InstResult); 682 } 683 684 // If we just processed an invoke, we finished evaluating the block. 685 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 686 NextBB = II->getNormalDest(); 687 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 688 return true; 689 } 690 691 // Advance program counter. 692 ++CurInst; 693 } 694 } 695 696 /// Evaluate a call to function F, returning true if successful, false if we 697 /// can't evaluate it. ActualArgs contains the formal arguments for the 698 /// function. 699 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 700 const SmallVectorImpl<Constant*> &ActualArgs) { 701 // Check to see if this function is already executing (recursion). If so, 702 // bail out. TODO: we might want to accept limited recursion. 703 if (is_contained(CallStack, F)) 704 return false; 705 706 CallStack.push_back(F); 707 708 // Initialize arguments to the incoming values specified. 709 unsigned ArgNo = 0; 710 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 711 ++AI, ++ArgNo) 712 setVal(&*AI, ActualArgs[ArgNo]); 713 714 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 715 // we can only evaluate any one basic block at most once. This set keeps 716 // track of what we have executed so we can detect recursive cases etc. 717 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 718 719 // CurBB - The current basic block we're evaluating. 720 BasicBlock *CurBB = &F->front(); 721 722 BasicBlock::iterator CurInst = CurBB->begin(); 723 724 while (true) { 725 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 726 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 727 728 bool StrippedPointerCastsForAliasAnalysis = false; 729 730 if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis)) 731 return false; 732 733 if (!NextBB) { 734 // Successfully running until there's no next block means that we found 735 // the return. Fill it the return value and pop the call stack. 736 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 737 if (RI->getNumOperands()) { 738 // The Evaluator can look through pointer casts as long as alias 739 // analysis holds because it's just a simple interpreter and doesn't 740 // skip memory accesses due to invariant group metadata, but we can't 741 // let users of Evaluator use a value that's been gleaned looking 742 // through stripping pointer casts. 743 if (StrippedPointerCastsForAliasAnalysis && 744 !RI->getReturnValue()->getType()->isVoidTy()) { 745 return false; 746 } 747 RetVal = getVal(RI->getOperand(0)); 748 } 749 CallStack.pop_back(); 750 return true; 751 } 752 753 // Okay, we succeeded in evaluating this control flow. See if we have 754 // executed the new block before. If so, we have a looping function, 755 // which we cannot evaluate in reasonable time. 756 if (!ExecutedBlocks.insert(NextBB).second) 757 return false; // looped! 758 759 // Okay, we have never been in this block before. Check to see if there 760 // are any PHI nodes. If so, evaluate them with information about where 761 // we came from. 762 PHINode *PN = nullptr; 763 for (CurInst = NextBB->begin(); 764 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 765 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 766 767 // Advance to the next block. 768 CurBB = NextBB; 769 } 770 } 771