1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Function evaluator for LLVM IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/Evaluator.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 #define DEBUG_TYPE "evaluator" 41 42 using namespace llvm; 43 44 static inline bool 45 isSimpleEnoughValueToCommit(Constant *C, 46 SmallPtrSetImpl<Constant *> &SimpleConstants, 47 const DataLayout &DL); 48 49 /// Return true if the specified constant can be handled by the code generator. 50 /// We don't want to generate something like: 51 /// void *X = &X/42; 52 /// because the code generator doesn't have a relocation that can handle that. 53 /// 54 /// This function should be called if C was not found (but just got inserted) 55 /// in SimpleConstants to avoid having to rescan the same constants all the 56 /// time. 57 static bool 58 isSimpleEnoughValueToCommitHelper(Constant *C, 59 SmallPtrSetImpl<Constant *> &SimpleConstants, 60 const DataLayout &DL) { 61 // Simple global addresses are supported, do not allow dllimport or 62 // thread-local globals. 63 if (auto *GV = dyn_cast<GlobalValue>(C)) 64 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 65 66 // Simple integer, undef, constant aggregate zero, etc are all supported. 67 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 68 return true; 69 70 // Aggregate values are safe if all their elements are. 71 if (isa<ConstantAggregate>(C)) { 72 for (Value *Op : C->operands()) 73 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 74 return false; 75 return true; 76 } 77 78 // We don't know exactly what relocations are allowed in constant expressions, 79 // so we allow &global+constantoffset, which is safe and uniformly supported 80 // across targets. 81 ConstantExpr *CE = cast<ConstantExpr>(C); 82 switch (CE->getOpcode()) { 83 case Instruction::BitCast: 84 // Bitcast is fine if the casted value is fine. 85 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 86 87 case Instruction::IntToPtr: 88 case Instruction::PtrToInt: 89 // int <=> ptr is fine if the int type is the same size as the 90 // pointer type. 91 if (DL.getTypeSizeInBits(CE->getType()) != 92 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 93 return false; 94 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 95 96 // GEP is fine if it is simple + constant offset. 97 case Instruction::GetElementPtr: 98 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 99 if (!isa<ConstantInt>(CE->getOperand(i))) 100 return false; 101 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 102 103 case Instruction::Add: 104 // We allow simple+cst. 105 if (!isa<ConstantInt>(CE->getOperand(1))) 106 return false; 107 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 108 } 109 return false; 110 } 111 112 static inline bool 113 isSimpleEnoughValueToCommit(Constant *C, 114 SmallPtrSetImpl<Constant *> &SimpleConstants, 115 const DataLayout &DL) { 116 // If we already checked this constant, we win. 117 if (!SimpleConstants.insert(C).second) 118 return true; 119 // Check the constant. 120 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 121 } 122 123 void Evaluator::MutableValue::clear() { 124 if (auto *Agg = Val.dyn_cast<MutableAggregate *>()) 125 delete Agg; 126 Val = nullptr; 127 } 128 129 Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset, 130 const DataLayout &DL) const { 131 TypeSize TySize = DL.getTypeStoreSize(Ty); 132 const MutableValue *V = this; 133 while (const auto *Agg = V->Val.dyn_cast<MutableAggregate *>()) { 134 Type *AggTy = Agg->Ty; 135 std::optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset); 136 if (!Index || Index->uge(Agg->Elements.size()) || 137 !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy))) 138 return nullptr; 139 140 V = &Agg->Elements[Index->getZExtValue()]; 141 } 142 143 return ConstantFoldLoadFromConst(V->Val.get<Constant *>(), Ty, Offset, DL); 144 } 145 146 bool Evaluator::MutableValue::makeMutable() { 147 Constant *C = Val.get<Constant *>(); 148 Type *Ty = C->getType(); 149 unsigned NumElements; 150 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 151 NumElements = VT->getNumElements(); 152 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) 153 NumElements = AT->getNumElements(); 154 else if (auto *ST = dyn_cast<StructType>(Ty)) 155 NumElements = ST->getNumElements(); 156 else 157 return false; 158 159 MutableAggregate *MA = new MutableAggregate(Ty); 160 MA->Elements.reserve(NumElements); 161 for (unsigned I = 0; I < NumElements; ++I) 162 MA->Elements.push_back(C->getAggregateElement(I)); 163 Val = MA; 164 return true; 165 } 166 167 bool Evaluator::MutableValue::write(Constant *V, APInt Offset, 168 const DataLayout &DL) { 169 Type *Ty = V->getType(); 170 TypeSize TySize = DL.getTypeStoreSize(Ty); 171 MutableValue *MV = this; 172 while (Offset != 0 || 173 !CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) { 174 if (MV->Val.is<Constant *>() && !MV->makeMutable()) 175 return false; 176 177 MutableAggregate *Agg = MV->Val.get<MutableAggregate *>(); 178 Type *AggTy = Agg->Ty; 179 std::optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset); 180 if (!Index || Index->uge(Agg->Elements.size()) || 181 !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy))) 182 return false; 183 184 MV = &Agg->Elements[Index->getZExtValue()]; 185 } 186 187 Type *MVType = MV->getType(); 188 MV->clear(); 189 if (Ty->isIntegerTy() && MVType->isPointerTy()) 190 MV->Val = ConstantExpr::getIntToPtr(V, MVType); 191 else if (Ty->isPointerTy() && MVType->isIntegerTy()) 192 MV->Val = ConstantExpr::getPtrToInt(V, MVType); 193 else if (Ty != MVType) 194 MV->Val = ConstantExpr::getBitCast(V, MVType); 195 else 196 MV->Val = V; 197 return true; 198 } 199 200 Constant *Evaluator::MutableAggregate::toConstant() const { 201 SmallVector<Constant *, 32> Consts; 202 for (const MutableValue &MV : Elements) 203 Consts.push_back(MV.toConstant()); 204 205 if (auto *ST = dyn_cast<StructType>(Ty)) 206 return ConstantStruct::get(ST, Consts); 207 if (auto *AT = dyn_cast<ArrayType>(Ty)) 208 return ConstantArray::get(AT, Consts); 209 assert(isa<FixedVectorType>(Ty) && "Must be vector"); 210 return ConstantVector::get(Consts); 211 } 212 213 /// Return the value that would be computed by a load from P after the stores 214 /// reflected by 'memory' have been performed. If we can't decide, return null. 215 Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) { 216 APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0); 217 P = cast<Constant>(P->stripAndAccumulateConstantOffsets( 218 DL, Offset, /* AllowNonInbounds */ true)); 219 Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType())); 220 if (auto *GV = dyn_cast<GlobalVariable>(P)) 221 return ComputeLoadResult(GV, Ty, Offset); 222 return nullptr; 223 } 224 225 Constant *Evaluator::ComputeLoadResult(GlobalVariable *GV, Type *Ty, 226 const APInt &Offset) { 227 auto It = MutatedMemory.find(GV); 228 if (It != MutatedMemory.end()) 229 return It->second.read(Ty, Offset, DL); 230 231 if (!GV->hasDefinitiveInitializer()) 232 return nullptr; 233 return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL); 234 } 235 236 static Function *getFunction(Constant *C) { 237 if (auto *Fn = dyn_cast<Function>(C)) 238 return Fn; 239 240 if (auto *Alias = dyn_cast<GlobalAlias>(C)) 241 if (auto *Fn = dyn_cast<Function>(Alias->getAliasee())) 242 return Fn; 243 return nullptr; 244 } 245 246 Function * 247 Evaluator::getCalleeWithFormalArgs(CallBase &CB, 248 SmallVectorImpl<Constant *> &Formals) { 249 auto *V = CB.getCalledOperand()->stripPointerCasts(); 250 if (auto *Fn = getFunction(getVal(V))) 251 return getFormalParams(CB, Fn, Formals) ? Fn : nullptr; 252 return nullptr; 253 } 254 255 bool Evaluator::getFormalParams(CallBase &CB, Function *F, 256 SmallVectorImpl<Constant *> &Formals) { 257 if (!F) 258 return false; 259 260 auto *FTy = F->getFunctionType(); 261 if (FTy->getNumParams() > CB.arg_size()) { 262 LLVM_DEBUG(dbgs() << "Too few arguments for function.\n"); 263 return false; 264 } 265 266 auto ArgI = CB.arg_begin(); 267 for (Type *PTy : FTy->params()) { 268 auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), PTy, DL); 269 if (!ArgC) { 270 LLVM_DEBUG(dbgs() << "Can not convert function argument.\n"); 271 return false; 272 } 273 Formals.push_back(ArgC); 274 ++ArgI; 275 } 276 return true; 277 } 278 279 /// If call expression contains bitcast then we may need to cast 280 /// evaluated return value to a type of the call expression. 281 Constant *Evaluator::castCallResultIfNeeded(Type *ReturnType, Constant *RV) { 282 if (!RV || RV->getType() == ReturnType) 283 return RV; 284 285 RV = ConstantFoldLoadThroughBitcast(RV, ReturnType, DL); 286 if (!RV) 287 LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n"); 288 return RV; 289 } 290 291 /// Evaluate all instructions in block BB, returning true if successful, false 292 /// if we can't evaluate it. NewBB returns the next BB that control flows into, 293 /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if 294 /// we looked through pointer casts to evaluate something. 295 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB, 296 bool &StrippedPointerCastsForAliasAnalysis) { 297 // This is the main evaluation loop. 298 while (true) { 299 Constant *InstResult = nullptr; 300 301 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 302 303 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 304 if (SI->isVolatile()) { 305 LLVM_DEBUG(dbgs() << "Store is volatile! Can not evaluate.\n"); 306 return false; // no volatile accesses. 307 } 308 Constant *Ptr = getVal(SI->getOperand(1)); 309 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 310 if (Ptr != FoldedPtr) { 311 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 312 Ptr = FoldedPtr; 313 LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 314 } 315 316 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 317 Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets( 318 DL, Offset, /* AllowNonInbounds */ true)); 319 Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType())); 320 auto *GV = dyn_cast<GlobalVariable>(Ptr); 321 if (!GV || !GV->hasUniqueInitializer()) { 322 LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: " 323 << *Ptr << "\n"); 324 return false; 325 } 326 327 // If this might be too difficult for the backend to handle (e.g. the addr 328 // of one global variable divided by another) then we can't commit it. 329 Constant *Val = getVal(SI->getOperand(0)); 330 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 331 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. " 332 << *Val << "\n"); 333 return false; 334 } 335 336 auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer()); 337 if (!Res.first->second.write(Val, Offset, DL)) 338 return false; 339 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 340 if (LI->isVolatile()) { 341 LLVM_DEBUG( 342 dbgs() << "Found a Load! Volatile load, can not evaluate.\n"); 343 return false; // no volatile accesses. 344 } 345 346 Constant *Ptr = getVal(LI->getOperand(0)); 347 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 348 if (Ptr != FoldedPtr) { 349 Ptr = FoldedPtr; 350 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant " 351 "folding: " 352 << *Ptr << "\n"); 353 } 354 InstResult = ComputeLoadResult(Ptr, LI->getType()); 355 if (!InstResult) { 356 LLVM_DEBUG( 357 dbgs() << "Failed to compute load result. Can not evaluate load." 358 "\n"); 359 return false; // Could not evaluate load. 360 } 361 362 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 363 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 364 if (AI->isArrayAllocation()) { 365 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 366 return false; // Cannot handle array allocs. 367 } 368 Type *Ty = AI->getAllocatedType(); 369 AllocaTmps.push_back(std::make_unique<GlobalVariable>( 370 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), 371 AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal, 372 AI->getType()->getPointerAddressSpace())); 373 InstResult = AllocaTmps.back().get(); 374 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 375 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 376 CallBase &CB = *cast<CallBase>(&*CurInst); 377 378 // Debug info can safely be ignored here. 379 if (isa<DbgInfoIntrinsic>(CB)) { 380 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n"); 381 ++CurInst; 382 continue; 383 } 384 385 // Cannot handle inline asm. 386 if (CB.isInlineAsm()) { 387 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 388 return false; 389 } 390 391 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) { 392 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 393 if (MSI->isVolatile()) { 394 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset " 395 << "intrinsic.\n"); 396 return false; 397 } 398 399 auto *LenC = dyn_cast<ConstantInt>(getVal(MSI->getLength())); 400 if (!LenC) { 401 LLVM_DEBUG(dbgs() << "Memset with unknown length.\n"); 402 return false; 403 } 404 405 Constant *Ptr = getVal(MSI->getDest()); 406 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 407 Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets( 408 DL, Offset, /* AllowNonInbounds */ true)); 409 auto *GV = dyn_cast<GlobalVariable>(Ptr); 410 if (!GV) { 411 LLVM_DEBUG(dbgs() << "Memset with unknown base.\n"); 412 return false; 413 } 414 415 Constant *Val = getVal(MSI->getValue()); 416 APInt Len = LenC->getValue(); 417 while (Len != 0) { 418 Constant *DestVal = ComputeLoadResult(GV, Val->getType(), Offset); 419 if (DestVal != Val) { 420 LLVM_DEBUG(dbgs() << "Memset is not a no-op at offset " 421 << Offset << " of " << *GV << ".\n"); 422 return false; 423 } 424 ++Offset; 425 --Len; 426 } 427 428 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n"); 429 ++CurInst; 430 continue; 431 } 432 433 if (II->isLifetimeStartOrEnd()) { 434 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 435 ++CurInst; 436 continue; 437 } 438 439 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 440 // We don't insert an entry into Values, as it doesn't have a 441 // meaningful return value. 442 if (!II->use_empty()) { 443 LLVM_DEBUG(dbgs() 444 << "Found unused invariant_start. Can't evaluate.\n"); 445 return false; 446 } 447 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 448 Value *PtrArg = getVal(II->getArgOperand(1)); 449 Value *Ptr = PtrArg->stripPointerCasts(); 450 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 451 Type *ElemTy = GV->getValueType(); 452 if (!Size->isMinusOne() && 453 Size->getValue().getLimitedValue() >= 454 DL.getTypeStoreSize(ElemTy)) { 455 Invariants.insert(GV); 456 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: " 457 << *GV << "\n"); 458 } else { 459 LLVM_DEBUG(dbgs() 460 << "Found a global var, but can not treat it as an " 461 "invariant.\n"); 462 } 463 } 464 // Continue even if we do nothing. 465 ++CurInst; 466 continue; 467 } else if (II->getIntrinsicID() == Intrinsic::assume) { 468 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 469 ++CurInst; 470 continue; 471 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { 472 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); 473 ++CurInst; 474 continue; 475 } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) { 476 LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n"); 477 ++CurInst; 478 continue; 479 } else { 480 Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis(); 481 // Only attempt to getVal() if we've actually managed to strip 482 // anything away, or else we'll call getVal() on the current 483 // instruction. 484 if (Stripped != &*CurInst) { 485 InstResult = getVal(Stripped); 486 } 487 if (InstResult) { 488 LLVM_DEBUG(dbgs() 489 << "Stripped pointer casts for alias analysis for " 490 "intrinsic call.\n"); 491 StrippedPointerCastsForAliasAnalysis = true; 492 InstResult = ConstantExpr::getBitCast(InstResult, II->getType()); 493 } else { 494 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n"); 495 return false; 496 } 497 } 498 } 499 500 if (!InstResult) { 501 // Resolve function pointers. 502 SmallVector<Constant *, 8> Formals; 503 Function *Callee = getCalleeWithFormalArgs(CB, Formals); 504 if (!Callee || Callee->isInterposable()) { 505 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n"); 506 return false; // Cannot resolve. 507 } 508 509 if (Callee->isDeclaration()) { 510 // If this is a function we can constant fold, do it. 511 if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) { 512 InstResult = castCallResultIfNeeded(CB.getType(), C); 513 if (!InstResult) 514 return false; 515 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: " 516 << *InstResult << "\n"); 517 } else { 518 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n"); 519 return false; 520 } 521 } else { 522 if (Callee->getFunctionType()->isVarArg()) { 523 LLVM_DEBUG(dbgs() 524 << "Can not constant fold vararg function call.\n"); 525 return false; 526 } 527 528 Constant *RetVal = nullptr; 529 // Execute the call, if successful, use the return value. 530 ValueStack.emplace_back(); 531 if (!EvaluateFunction(Callee, RetVal, Formals)) { 532 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n"); 533 return false; 534 } 535 ValueStack.pop_back(); 536 InstResult = castCallResultIfNeeded(CB.getType(), RetVal); 537 if (RetVal && !InstResult) 538 return false; 539 540 if (InstResult) { 541 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: " 542 << *InstResult << "\n\n"); 543 } else { 544 LLVM_DEBUG(dbgs() 545 << "Successfully evaluated function. Result: 0\n\n"); 546 } 547 } 548 } 549 } else if (CurInst->isTerminator()) { 550 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n"); 551 552 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 553 if (BI->isUnconditional()) { 554 NextBB = BI->getSuccessor(0); 555 } else { 556 ConstantInt *Cond = 557 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 558 if (!Cond) return false; // Cannot determine. 559 560 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 561 } 562 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 563 ConstantInt *Val = 564 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 565 if (!Val) return false; // Cannot determine. 566 NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); 567 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 568 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 569 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 570 NextBB = BA->getBasicBlock(); 571 else 572 return false; // Cannot determine. 573 } else if (isa<ReturnInst>(CurInst)) { 574 NextBB = nullptr; 575 } else { 576 // invoke, unwind, resume, unreachable. 577 LLVM_DEBUG(dbgs() << "Can not handle terminator."); 578 return false; // Cannot handle this terminator. 579 } 580 581 // We succeeded at evaluating this block! 582 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n"); 583 return true; 584 } else { 585 SmallVector<Constant *> Ops; 586 for (Value *Op : CurInst->operands()) 587 Ops.push_back(getVal(Op)); 588 InstResult = ConstantFoldInstOperands(&*CurInst, Ops, DL, TLI); 589 if (!InstResult) { 590 LLVM_DEBUG(dbgs() << "Cannot fold instruction: " << *CurInst << "\n"); 591 return false; 592 } 593 LLVM_DEBUG(dbgs() << "Folded instruction " << *CurInst << " to " 594 << *InstResult << "\n"); 595 } 596 597 if (!CurInst->use_empty()) { 598 InstResult = ConstantFoldConstant(InstResult, DL, TLI); 599 setVal(&*CurInst, InstResult); 600 } 601 602 // If we just processed an invoke, we finished evaluating the block. 603 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 604 NextBB = II->getNormalDest(); 605 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 606 return true; 607 } 608 609 // Advance program counter. 610 ++CurInst; 611 } 612 } 613 614 /// Evaluate a call to function F, returning true if successful, false if we 615 /// can't evaluate it. ActualArgs contains the formal arguments for the 616 /// function. 617 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 618 const SmallVectorImpl<Constant*> &ActualArgs) { 619 assert(ActualArgs.size() == F->arg_size() && "wrong number of arguments"); 620 621 // Check to see if this function is already executing (recursion). If so, 622 // bail out. TODO: we might want to accept limited recursion. 623 if (is_contained(CallStack, F)) 624 return false; 625 626 CallStack.push_back(F); 627 628 // Initialize arguments to the incoming values specified. 629 for (const auto &[ArgNo, Arg] : llvm::enumerate(F->args())) 630 setVal(&Arg, ActualArgs[ArgNo]); 631 632 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 633 // we can only evaluate any one basic block at most once. This set keeps 634 // track of what we have executed so we can detect recursive cases etc. 635 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 636 637 // CurBB - The current basic block we're evaluating. 638 BasicBlock *CurBB = &F->front(); 639 640 BasicBlock::iterator CurInst = CurBB->begin(); 641 642 while (true) { 643 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 644 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 645 646 bool StrippedPointerCastsForAliasAnalysis = false; 647 648 if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis)) 649 return false; 650 651 if (!NextBB) { 652 // Successfully running until there's no next block means that we found 653 // the return. Fill it the return value and pop the call stack. 654 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 655 if (RI->getNumOperands()) { 656 // The Evaluator can look through pointer casts as long as alias 657 // analysis holds because it's just a simple interpreter and doesn't 658 // skip memory accesses due to invariant group metadata, but we can't 659 // let users of Evaluator use a value that's been gleaned looking 660 // through stripping pointer casts. 661 if (StrippedPointerCastsForAliasAnalysis && 662 !RI->getReturnValue()->getType()->isVoidTy()) { 663 return false; 664 } 665 RetVal = getVal(RI->getOperand(0)); 666 } 667 CallStack.pop_back(); 668 return true; 669 } 670 671 // Okay, we succeeded in evaluating this control flow. See if we have 672 // executed the new block before. If so, we have a looping function, 673 // which we cannot evaluate in reasonable time. 674 if (!ExecutedBlocks.insert(NextBB).second) 675 return false; // looped! 676 677 // Okay, we have never been in this block before. Check to see if there 678 // are any PHI nodes. If so, evaluate them with information about where 679 // we came from. 680 PHINode *PN = nullptr; 681 for (CurInst = NextBB->begin(); 682 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 683 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 684 685 // Advance to the next block. 686 CurBB = NextBB; 687 } 688 } 689