xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/Evaluator.cpp (revision 562894f0dc310f658284863ff329906e7737a0a0)
1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Function evaluator for LLVM IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/Evaluator.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <iterator>
42 
43 #define DEBUG_TYPE "evaluator"
44 
45 using namespace llvm;
46 
47 static inline bool
48 isSimpleEnoughValueToCommit(Constant *C,
49                             SmallPtrSetImpl<Constant *> &SimpleConstants,
50                             const DataLayout &DL);
51 
52 /// Return true if the specified constant can be handled by the code generator.
53 /// We don't want to generate something like:
54 ///   void *X = &X/42;
55 /// because the code generator doesn't have a relocation that can handle that.
56 ///
57 /// This function should be called if C was not found (but just got inserted)
58 /// in SimpleConstants to avoid having to rescan the same constants all the
59 /// time.
60 static bool
61 isSimpleEnoughValueToCommitHelper(Constant *C,
62                                   SmallPtrSetImpl<Constant *> &SimpleConstants,
63                                   const DataLayout &DL) {
64   // Simple global addresses are supported, do not allow dllimport or
65   // thread-local globals.
66   if (auto *GV = dyn_cast<GlobalValue>(C))
67     return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
68 
69   // Simple integer, undef, constant aggregate zero, etc are all supported.
70   if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
71     return true;
72 
73   // Aggregate values are safe if all their elements are.
74   if (isa<ConstantAggregate>(C)) {
75     for (Value *Op : C->operands())
76       if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
77         return false;
78     return true;
79   }
80 
81   // We don't know exactly what relocations are allowed in constant expressions,
82   // so we allow &global+constantoffset, which is safe and uniformly supported
83   // across targets.
84   ConstantExpr *CE = cast<ConstantExpr>(C);
85   switch (CE->getOpcode()) {
86   case Instruction::BitCast:
87     // Bitcast is fine if the casted value is fine.
88     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
89 
90   case Instruction::IntToPtr:
91   case Instruction::PtrToInt:
92     // int <=> ptr is fine if the int type is the same size as the
93     // pointer type.
94     if (DL.getTypeSizeInBits(CE->getType()) !=
95         DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
96       return false;
97     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
98 
99   // GEP is fine if it is simple + constant offset.
100   case Instruction::GetElementPtr:
101     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
102       if (!isa<ConstantInt>(CE->getOperand(i)))
103         return false;
104     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
105 
106   case Instruction::Add:
107     // We allow simple+cst.
108     if (!isa<ConstantInt>(CE->getOperand(1)))
109       return false;
110     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
111   }
112   return false;
113 }
114 
115 static inline bool
116 isSimpleEnoughValueToCommit(Constant *C,
117                             SmallPtrSetImpl<Constant *> &SimpleConstants,
118                             const DataLayout &DL) {
119   // If we already checked this constant, we win.
120   if (!SimpleConstants.insert(C).second)
121     return true;
122   // Check the constant.
123   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
124 }
125 
126 /// Return true if this constant is simple enough for us to understand.  In
127 /// particular, if it is a cast to anything other than from one pointer type to
128 /// another pointer type, we punt.  We basically just support direct accesses to
129 /// globals and GEP's of globals.  This should be kept up to date with
130 /// CommitValueTo.
131 static bool isSimpleEnoughPointerToCommit(Constant *C) {
132   // Conservatively, avoid aggregate types. This is because we don't
133   // want to worry about them partially overlapping other stores.
134   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
135     return false;
136 
137   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
138     // Do not allow weak/*_odr/linkonce linkage or external globals.
139     return GV->hasUniqueInitializer();
140 
141   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
142     // Handle a constantexpr gep.
143     if (CE->getOpcode() == Instruction::GetElementPtr &&
144         isa<GlobalVariable>(CE->getOperand(0)) &&
145         cast<GEPOperator>(CE)->isInBounds()) {
146       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
147       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
148       // external globals.
149       if (!GV->hasUniqueInitializer())
150         return false;
151 
152       // The first index must be zero.
153       ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
154       if (!CI || !CI->isZero()) return false;
155 
156       // The remaining indices must be compile-time known integers within the
157       // notional bounds of the corresponding static array types.
158       if (!CE->isGEPWithNoNotionalOverIndexing())
159         return false;
160 
161       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
162 
163     // A constantexpr bitcast from a pointer to another pointer is a no-op,
164     // and we know how to evaluate it by moving the bitcast from the pointer
165     // operand to the value operand.
166     } else if (CE->getOpcode() == Instruction::BitCast &&
167                isa<GlobalVariable>(CE->getOperand(0))) {
168       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
169       // external globals.
170       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
171     }
172   }
173 
174   return false;
175 }
176 
177 /// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's
178 /// type and walk down through the initial elements to obtain additional
179 /// pointers to try. Returns the first non-null return value from Func, or
180 /// nullptr if the type can't be introspected further.
181 static Constant *
182 evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL,
183                        const TargetLibraryInfo *TLI,
184                        std::function<Constant *(Constant *)> Func) {
185   Constant *Val;
186   while (!(Val = Func(Ptr))) {
187     // If Ty is a struct, we can convert the pointer to the struct
188     // into a pointer to its first member.
189     // FIXME: This could be extended to support arrays as well.
190     Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
191     if (!isa<StructType>(Ty))
192       break;
193 
194     IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32);
195     Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
196     Constant *const IdxList[] = {IdxZero, IdxZero};
197 
198     Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList);
199     if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI))
200       Ptr = FoldedPtr;
201   }
202   return Val;
203 }
204 
205 static Constant *getInitializer(Constant *C) {
206   auto *GV = dyn_cast<GlobalVariable>(C);
207   return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr;
208 }
209 
210 /// Return the value that would be computed by a load from P after the stores
211 /// reflected by 'memory' have been performed.  If we can't decide, return null.
212 Constant *Evaluator::ComputeLoadResult(Constant *P) {
213   // If this memory location has been recently stored, use the stored value: it
214   // is the most up-to-date.
215   auto findMemLoc = [this](Constant *Ptr) {
216     DenseMap<Constant *, Constant *>::const_iterator I =
217         MutatedMemory.find(Ptr);
218     return I != MutatedMemory.end() ? I->second : nullptr;
219   };
220 
221   if (Constant *Val = findMemLoc(P))
222     return Val;
223 
224   // Access it.
225   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
226     if (GV->hasDefinitiveInitializer())
227       return GV->getInitializer();
228     return nullptr;
229   }
230 
231   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) {
232     switch (CE->getOpcode()) {
233     // Handle a constantexpr getelementptr.
234     case Instruction::GetElementPtr:
235       if (auto *I = getInitializer(CE->getOperand(0)))
236         return ConstantFoldLoadThroughGEPConstantExpr(I, CE);
237       break;
238     // Handle a constantexpr bitcast.
239     case Instruction::BitCast:
240       // We're evaluating a load through a pointer that was bitcast to a
241       // different type. See if the "from" pointer has recently been stored.
242       // If it hasn't, we may still be able to find a stored pointer by
243       // introspecting the type.
244       Constant *Val =
245           evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc);
246       if (!Val)
247         Val = getInitializer(CE->getOperand(0));
248       if (Val)
249         return ConstantFoldLoadThroughBitcast(
250             Val, P->getType()->getPointerElementType(), DL);
251       break;
252     }
253   }
254 
255   return nullptr;  // don't know how to evaluate.
256 }
257 
258 static Function *getFunction(Constant *C) {
259   if (auto *Fn = dyn_cast<Function>(C))
260     return Fn;
261 
262   if (auto *Alias = dyn_cast<GlobalAlias>(C))
263     if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
264       return Fn;
265   return nullptr;
266 }
267 
268 Function *
269 Evaluator::getCalleeWithFormalArgs(CallSite &CS,
270                                    SmallVector<Constant *, 8> &Formals) {
271   auto *V = CS.getCalledValue();
272   if (auto *Fn = getFunction(getVal(V)))
273     return getFormalParams(CS, Fn, Formals) ? Fn : nullptr;
274 
275   auto *CE = dyn_cast<ConstantExpr>(V);
276   if (!CE || CE->getOpcode() != Instruction::BitCast ||
277       !getFormalParams(CS, getFunction(CE->getOperand(0)), Formals))
278     return nullptr;
279 
280   return dyn_cast<Function>(
281       ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL));
282 }
283 
284 bool Evaluator::getFormalParams(CallSite &CS, Function *F,
285                                 SmallVector<Constant *, 8> &Formals) {
286   if (!F)
287     return false;
288 
289   auto *FTy = F->getFunctionType();
290   if (FTy->getNumParams() > CS.getNumArgOperands()) {
291     LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
292     return false;
293   }
294 
295   auto ArgI = CS.arg_begin();
296   for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE;
297        ++ParI) {
298     auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL);
299     if (!ArgC) {
300       LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
301       return false;
302     }
303     Formals.push_back(ArgC);
304     ++ArgI;
305   }
306   return true;
307 }
308 
309 /// If call expression contains bitcast then we may need to cast
310 /// evaluated return value to a type of the call expression.
311 Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) {
312   ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr);
313   if (!RV || !CE || CE->getOpcode() != Instruction::BitCast)
314     return RV;
315 
316   if (auto *FT =
317           dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) {
318     RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL);
319     if (!RV)
320       LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
321   }
322   return RV;
323 }
324 
325 /// Evaluate all instructions in block BB, returning true if successful, false
326 /// if we can't evaluate it.  NewBB returns the next BB that control flows into,
327 /// or null upon return.
328 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
329                               BasicBlock *&NextBB) {
330   // This is the main evaluation loop.
331   while (true) {
332     Constant *InstResult = nullptr;
333 
334     LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
335 
336     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
337       if (!SI->isSimple()) {
338         LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
339         return false;  // no volatile/atomic accesses.
340       }
341       Constant *Ptr = getVal(SI->getOperand(1));
342       if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
343         LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
344         Ptr = FoldedPtr;
345         LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
346       }
347       if (!isSimpleEnoughPointerToCommit(Ptr)) {
348         // If this is too complex for us to commit, reject it.
349         LLVM_DEBUG(
350             dbgs() << "Pointer is too complex for us to evaluate store.");
351         return false;
352       }
353 
354       Constant *Val = getVal(SI->getOperand(0));
355 
356       // If this might be too difficult for the backend to handle (e.g. the addr
357       // of one global variable divided by another) then we can't commit it.
358       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
359         LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
360                           << *Val << "\n");
361         return false;
362       }
363 
364       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
365         if (CE->getOpcode() == Instruction::BitCast) {
366           LLVM_DEBUG(dbgs()
367                      << "Attempting to resolve bitcast on constant ptr.\n");
368           // If we're evaluating a store through a bitcast, then we need
369           // to pull the bitcast off the pointer type and push it onto the
370           // stored value. In order to push the bitcast onto the stored value,
371           // a bitcast from the pointer's element type to Val's type must be
372           // legal. If it's not, we can try introspecting the type to find a
373           // legal conversion.
374 
375           auto castValTy = [&](Constant *P) -> Constant * {
376             Type *Ty = cast<PointerType>(P->getType())->getElementType();
377             if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) {
378               Ptr = P;
379               return FV;
380             }
381             return nullptr;
382           };
383 
384           Constant *NewVal =
385               evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy);
386           if (!NewVal) {
387             LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
388                                  "evaluate.\n");
389             return false;
390           }
391 
392           Val = NewVal;
393           LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
394         }
395       }
396 
397       MutatedMemory[Ptr] = Val;
398     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
399       InstResult = ConstantExpr::get(BO->getOpcode(),
400                                      getVal(BO->getOperand(0)),
401                                      getVal(BO->getOperand(1)));
402       LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
403                         << *InstResult << "\n");
404     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
405       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
406                                             getVal(CI->getOperand(0)),
407                                             getVal(CI->getOperand(1)));
408       LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
409                         << "\n");
410     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
411       InstResult = ConstantExpr::getCast(CI->getOpcode(),
412                                          getVal(CI->getOperand(0)),
413                                          CI->getType());
414       LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
415                         << "\n");
416     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
417       InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
418                                            getVal(SI->getOperand(1)),
419                                            getVal(SI->getOperand(2)));
420       LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
421                         << "\n");
422     } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
423       InstResult = ConstantExpr::getExtractValue(
424           getVal(EVI->getAggregateOperand()), EVI->getIndices());
425       LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
426                         << *InstResult << "\n");
427     } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
428       InstResult = ConstantExpr::getInsertValue(
429           getVal(IVI->getAggregateOperand()),
430           getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
431       LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
432                         << *InstResult << "\n");
433     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
434       Constant *P = getVal(GEP->getOperand(0));
435       SmallVector<Constant*, 8> GEPOps;
436       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
437            i != e; ++i)
438         GEPOps.push_back(getVal(*i));
439       InstResult =
440           ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
441                                          cast<GEPOperator>(GEP)->isInBounds());
442       LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
443     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
444       if (!LI->isSimple()) {
445         LLVM_DEBUG(
446             dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
447         return false;  // no volatile/atomic accesses.
448       }
449 
450       Constant *Ptr = getVal(LI->getOperand(0));
451       if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
452         Ptr = FoldedPtr;
453         LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
454                              "folding: "
455                           << *Ptr << "\n");
456       }
457       InstResult = ComputeLoadResult(Ptr);
458       if (!InstResult) {
459         LLVM_DEBUG(
460             dbgs() << "Failed to compute load result. Can not evaluate load."
461                       "\n");
462         return false; // Could not evaluate load.
463       }
464 
465       LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
466     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
467       if (AI->isArrayAllocation()) {
468         LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
469         return false;  // Cannot handle array allocs.
470       }
471       Type *Ty = AI->getAllocatedType();
472       AllocaTmps.push_back(std::make_unique<GlobalVariable>(
473           Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
474           AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
475           AI->getType()->getPointerAddressSpace()));
476       InstResult = AllocaTmps.back().get();
477       LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
478     } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
479       CallSite CS(&*CurInst);
480 
481       // Debug info can safely be ignored here.
482       if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
483         LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
484         ++CurInst;
485         continue;
486       }
487 
488       // Cannot handle inline asm.
489       if (isa<InlineAsm>(CS.getCalledValue())) {
490         LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
491         return false;
492       }
493 
494       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
495         if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
496           if (MSI->isVolatile()) {
497             LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
498                               << "intrinsic.\n");
499             return false;
500           }
501           Constant *Ptr = getVal(MSI->getDest());
502           Constant *Val = getVal(MSI->getValue());
503           Constant *DestVal = ComputeLoadResult(getVal(Ptr));
504           if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
505             // This memset is a no-op.
506             LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
507             ++CurInst;
508             continue;
509           }
510         }
511 
512         if (II->isLifetimeStartOrEnd()) {
513           LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
514           ++CurInst;
515           continue;
516         }
517 
518         if (II->getIntrinsicID() == Intrinsic::invariant_start) {
519           // We don't insert an entry into Values, as it doesn't have a
520           // meaningful return value.
521           if (!II->use_empty()) {
522             LLVM_DEBUG(dbgs()
523                        << "Found unused invariant_start. Can't evaluate.\n");
524             return false;
525           }
526           ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
527           Value *PtrArg = getVal(II->getArgOperand(1));
528           Value *Ptr = PtrArg->stripPointerCasts();
529           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
530             Type *ElemTy = GV->getValueType();
531             if (!Size->isMinusOne() &&
532                 Size->getValue().getLimitedValue() >=
533                     DL.getTypeStoreSize(ElemTy)) {
534               Invariants.insert(GV);
535               LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
536                                 << *GV << "\n");
537             } else {
538               LLVM_DEBUG(dbgs()
539                          << "Found a global var, but can not treat it as an "
540                             "invariant.\n");
541             }
542           }
543           // Continue even if we do nothing.
544           ++CurInst;
545           continue;
546         } else if (II->getIntrinsicID() == Intrinsic::assume) {
547           LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
548           ++CurInst;
549           continue;
550         } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
551           LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
552           ++CurInst;
553           continue;
554         }
555 
556         LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
557         return false;
558       }
559 
560       // Resolve function pointers.
561       SmallVector<Constant *, 8> Formals;
562       Function *Callee = getCalleeWithFormalArgs(CS, Formals);
563       if (!Callee || Callee->isInterposable()) {
564         LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
565         return false;  // Cannot resolve.
566       }
567 
568       if (Callee->isDeclaration()) {
569         // If this is a function we can constant fold, do it.
570         if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()),
571                                            Callee, Formals, TLI)) {
572           InstResult = castCallResultIfNeeded(CS.getCalledValue(), C);
573           if (!InstResult)
574             return false;
575           LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
576                             << *InstResult << "\n");
577         } else {
578           LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
579           return false;
580         }
581       } else {
582         if (Callee->getFunctionType()->isVarArg()) {
583           LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
584           return false;
585         }
586 
587         Constant *RetVal = nullptr;
588         // Execute the call, if successful, use the return value.
589         ValueStack.emplace_back();
590         if (!EvaluateFunction(Callee, RetVal, Formals)) {
591           LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
592           return false;
593         }
594         ValueStack.pop_back();
595         InstResult = castCallResultIfNeeded(CS.getCalledValue(), RetVal);
596         if (RetVal && !InstResult)
597           return false;
598 
599         if (InstResult) {
600           LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
601                             << *InstResult << "\n\n");
602         } else {
603           LLVM_DEBUG(dbgs()
604                      << "Successfully evaluated function. Result: 0\n\n");
605         }
606       }
607     } else if (CurInst->isTerminator()) {
608       LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
609 
610       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
611         if (BI->isUnconditional()) {
612           NextBB = BI->getSuccessor(0);
613         } else {
614           ConstantInt *Cond =
615             dyn_cast<ConstantInt>(getVal(BI->getCondition()));
616           if (!Cond) return false;  // Cannot determine.
617 
618           NextBB = BI->getSuccessor(!Cond->getZExtValue());
619         }
620       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
621         ConstantInt *Val =
622           dyn_cast<ConstantInt>(getVal(SI->getCondition()));
623         if (!Val) return false;  // Cannot determine.
624         NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
625       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
626         Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
627         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
628           NextBB = BA->getBasicBlock();
629         else
630           return false;  // Cannot determine.
631       } else if (isa<ReturnInst>(CurInst)) {
632         NextBB = nullptr;
633       } else {
634         // invoke, unwind, resume, unreachable.
635         LLVM_DEBUG(dbgs() << "Can not handle terminator.");
636         return false;  // Cannot handle this terminator.
637       }
638 
639       // We succeeded at evaluating this block!
640       LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
641       return true;
642     } else {
643       // Did not know how to evaluate this!
644       LLVM_DEBUG(
645           dbgs() << "Failed to evaluate block due to unhandled instruction."
646                     "\n");
647       return false;
648     }
649 
650     if (!CurInst->use_empty()) {
651       if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI))
652         InstResult = FoldedInstResult;
653 
654       setVal(&*CurInst, InstResult);
655     }
656 
657     // If we just processed an invoke, we finished evaluating the block.
658     if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
659       NextBB = II->getNormalDest();
660       LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
661       return true;
662     }
663 
664     // Advance program counter.
665     ++CurInst;
666   }
667 }
668 
669 /// Evaluate a call to function F, returning true if successful, false if we
670 /// can't evaluate it.  ActualArgs contains the formal arguments for the
671 /// function.
672 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
673                                  const SmallVectorImpl<Constant*> &ActualArgs) {
674   // Check to see if this function is already executing (recursion).  If so,
675   // bail out.  TODO: we might want to accept limited recursion.
676   if (is_contained(CallStack, F))
677     return false;
678 
679   CallStack.push_back(F);
680 
681   // Initialize arguments to the incoming values specified.
682   unsigned ArgNo = 0;
683   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
684        ++AI, ++ArgNo)
685     setVal(&*AI, ActualArgs[ArgNo]);
686 
687   // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
688   // we can only evaluate any one basic block at most once.  This set keeps
689   // track of what we have executed so we can detect recursive cases etc.
690   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
691 
692   // CurBB - The current basic block we're evaluating.
693   BasicBlock *CurBB = &F->front();
694 
695   BasicBlock::iterator CurInst = CurBB->begin();
696 
697   while (true) {
698     BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
699     LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
700 
701     if (!EvaluateBlock(CurInst, NextBB))
702       return false;
703 
704     if (!NextBB) {
705       // Successfully running until there's no next block means that we found
706       // the return.  Fill it the return value and pop the call stack.
707       ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
708       if (RI->getNumOperands())
709         RetVal = getVal(RI->getOperand(0));
710       CallStack.pop_back();
711       return true;
712     }
713 
714     // Okay, we succeeded in evaluating this control flow.  See if we have
715     // executed the new block before.  If so, we have a looping function,
716     // which we cannot evaluate in reasonable time.
717     if (!ExecutedBlocks.insert(NextBB).second)
718       return false;  // looped!
719 
720     // Okay, we have never been in this block before.  Check to see if there
721     // are any PHI nodes.  If so, evaluate them with information about where
722     // we came from.
723     PHINode *PN = nullptr;
724     for (CurInst = NextBB->begin();
725          (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
726       setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
727 
728     // Advance to the next block.
729     CurBB = NextBB;
730   }
731 }
732