1 //===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/DenseMap.h" 10 #include "llvm/Analysis/CFG.h" 11 #include "llvm/IR/DataLayout.h" 12 #include "llvm/IR/Function.h" 13 #include "llvm/IR/Instructions.h" 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/Transforms/Utils/Local.h" 16 using namespace llvm; 17 18 /// DemoteRegToStack - This function takes a virtual register computed by an 19 /// Instruction and replaces it with a slot in the stack frame, allocated via 20 /// alloca. This allows the CFG to be changed around without fear of 21 /// invalidating the SSA information for the value. It returns the pointer to 22 /// the alloca inserted to create a stack slot for I. 23 AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads, 24 std::optional<BasicBlock::iterator> AllocaPoint) { 25 if (I.use_empty()) { 26 I.eraseFromParent(); 27 return nullptr; 28 } 29 30 Function *F = I.getParent()->getParent(); 31 const DataLayout &DL = F->getDataLayout(); 32 33 // Create a stack slot to hold the value. 34 AllocaInst *Slot; 35 if (AllocaPoint) { 36 Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr, 37 I.getName()+".reg2mem", *AllocaPoint); 38 } else { 39 Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr, 40 I.getName() + ".reg2mem", F->getEntryBlock().begin()); 41 } 42 43 // We cannot demote invoke instructions to the stack if their normal edge 44 // is critical. Therefore, split the critical edge and create a basic block 45 // into which the store can be inserted. 46 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 47 if (!II->getNormalDest()->getSinglePredecessor()) { 48 unsigned SuccNum = GetSuccessorNumber(II->getParent(), II->getNormalDest()); 49 assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!"); 50 BasicBlock *BB = SplitCriticalEdge(II, SuccNum); 51 assert(BB && "Unable to split critical edge."); 52 (void)BB; 53 } 54 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 55 for (unsigned i = 0; i < CBI->getNumSuccessors(); i++) { 56 auto *Succ = CBI->getSuccessor(i); 57 if (!Succ->getSinglePredecessor()) { 58 assert(isCriticalEdge(II, i) && "Expected a critical edge!"); 59 [[maybe_unused]] BasicBlock *BB = SplitCriticalEdge(II, i); 60 assert(BB && "Unable to split critical edge."); 61 } 62 } 63 } 64 65 // Change all of the users of the instruction to read from the stack slot. 66 while (!I.use_empty()) { 67 Instruction *U = cast<Instruction>(I.user_back()); 68 if (PHINode *PN = dyn_cast<PHINode>(U)) { 69 // If this is a PHI node, we can't insert a load of the value before the 70 // use. Instead insert the load in the predecessor block corresponding 71 // to the incoming value. 72 // 73 // Note that if there are multiple edges from a basic block to this PHI 74 // node that we cannot have multiple loads. The problem is that the 75 // resulting PHI node will have multiple values (from each load) coming in 76 // from the same block, which is illegal SSA form. For this reason, we 77 // keep track of and reuse loads we insert. 78 DenseMap<BasicBlock*, Value*> Loads; 79 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 80 if (PN->getIncomingValue(i) == &I) { 81 Value *&V = Loads[PN->getIncomingBlock(i)]; 82 if (!V) { 83 // Insert the load into the predecessor block 84 V = new LoadInst(I.getType(), Slot, I.getName() + ".reload", 85 VolatileLoads, 86 PN->getIncomingBlock(i)->getTerminator()->getIterator()); 87 Loads[PN->getIncomingBlock(i)] = V; 88 } 89 PN->setIncomingValue(i, V); 90 } 91 92 } else { 93 // If this is a normal instruction, just insert a load. 94 Value *V = new LoadInst(I.getType(), Slot, I.getName() + ".reload", 95 VolatileLoads, U->getIterator()); 96 U->replaceUsesOfWith(&I, V); 97 } 98 } 99 100 // Insert stores of the computed value into the stack slot. We have to be 101 // careful if I is an invoke instruction, because we can't insert the store 102 // AFTER the terminator instruction. 103 BasicBlock::iterator InsertPt; 104 if (!I.isTerminator()) { 105 InsertPt = ++I.getIterator(); 106 // Don't insert before PHI nodes or landingpad instrs. 107 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 108 if (isa<CatchSwitchInst>(InsertPt)) 109 break; 110 if (isa<CatchSwitchInst>(InsertPt)) { 111 for (BasicBlock *Handler : successors(&*InsertPt)) 112 new StoreInst(&I, Slot, Handler->getFirstInsertionPt()); 113 return Slot; 114 } 115 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 116 InsertPt = II->getNormalDest()->getFirstInsertionPt(); 117 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 118 for (BasicBlock *Succ : successors(CBI)) 119 new StoreInst(CBI, Slot, Succ->getFirstInsertionPt()); 120 return Slot; 121 } else { 122 llvm_unreachable("Unsupported terminator for Reg2Mem"); 123 } 124 125 new StoreInst(&I, Slot, InsertPt); 126 return Slot; 127 } 128 129 /// DemotePHIToStack - This function takes a virtual register computed by a PHI 130 /// node and replaces it with a slot in the stack frame allocated via alloca. 131 /// The PHI node is deleted. It returns the pointer to the alloca inserted. 132 AllocaInst *llvm::DemotePHIToStack(PHINode *P, std::optional<BasicBlock::iterator> AllocaPoint) { 133 if (P->use_empty()) { 134 P->eraseFromParent(); 135 return nullptr; 136 } 137 138 const DataLayout &DL = P->getDataLayout(); 139 140 // Create a stack slot to hold the value. 141 AllocaInst *Slot; 142 if (AllocaPoint) { 143 Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr, 144 P->getName()+".reg2mem", *AllocaPoint); 145 } else { 146 Function *F = P->getParent()->getParent(); 147 Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr, 148 P->getName() + ".reg2mem", 149 F->getEntryBlock().begin()); 150 } 151 152 // Iterate over each operand inserting a store in each predecessor. 153 for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { 154 if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) { 155 assert(II->getParent() != P->getIncomingBlock(i) && 156 "Invoke edge not supported yet"); (void)II; 157 } 158 new StoreInst(P->getIncomingValue(i), Slot, 159 P->getIncomingBlock(i)->getTerminator()->getIterator()); 160 } 161 162 // Insert a load in place of the PHI and replace all uses. 163 BasicBlock::iterator InsertPt = P->getIterator(); 164 // Don't insert before PHI nodes or landingpad instrs. 165 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 166 if (isa<CatchSwitchInst>(InsertPt)) 167 break; 168 if (isa<CatchSwitchInst>(InsertPt)) { 169 // We need a separate load before each actual use of the PHI 170 SmallVector<Instruction *, 4> Users; 171 for (User *U : P->users()) { 172 Instruction *User = cast<Instruction>(U); 173 Users.push_back(User); 174 } 175 for (Instruction *User : Users) { 176 Value *V = 177 new LoadInst(P->getType(), Slot, P->getName() + ".reload", User->getIterator()); 178 User->replaceUsesOfWith(P, V); 179 } 180 } else { 181 Value *V = 182 new LoadInst(P->getType(), Slot, P->getName() + ".reload", InsertPt); 183 P->replaceAllUsesWith(V); 184 } 185 // Delete PHI. 186 P->eraseFromParent(); 187 return Slot; 188 } 189